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We present the results of a band-structure calculation for the first-stage graphite-

intercalation compound of potassium, KC8. A modified Korringa-Kohn-Rostoker for-
malism which was applied successfully to LiC6 has been used. To good approximation,
the KCS bands are given by those of two-dimensional graphite folded into the smaller

Brillouin zone of KCS, with —, of an extra electron per C atom. The K 3p states lead to a

dispersionless set of bands 14 eV below the Fermi level, and the K4s states create an iso-

tropic, parabolic band with a minimum 1.8 eV above EF. Hybridization of K states with

the filled C bands is fairly weak but has a noticeable effect on the band dispersion at the
Fermi level. From our band calculation we extract the KC8 density of states, the Fermi

surface, de Haas —van Alphen frequencies and masses, and plasma frequencies. We find

fairly good agreement with the experimental de Haas —van Alphen frequencies, but our

calculated density of states at the Fermi level is smaller than that obtained from low-

temperature specific heat. We compare our work with other experimental and theoretical

studies of KC8.

I. INTRODUCTION

The intercalation compounds of graphite are

highly anisotropic metals which consist of a regu-

lar array of n carbon planes separating planes of
some foreign sptx:ies (e.g., Li, K, AsF&, SbCls, Br2),
n denoting the stage of the compound. These com-

pounds have been the object of great experimental
and theoretical interest in recent years' because
of the tremendous chemical variety they offer, be-

cause of the different ordered phases which they

display, and because of the unique competition in

their binding properties between covalent, metallic,
and electrostatic.

This paper presents the results of a band-struc-
ture calculation for the saturated intercalation
compound of potassium, first-stage potassium gra-

phite, KC8. %e have been motivated by the suc-
cessful earlier calculation for first-stage lithium

graphite, LiCs, by the availability of other theoret-
ical studies6'7 of KCs, and by the question of the
degree of occupancy of the Ks band. By applying

the identical modified Korringa-Kohn-Rostoker
(KKR) formalism to KC& as was used for LiCs, we

hope to follow the chemical and structural trends
for different members of the alkali metals and to
provide a further test of the formalism. KCs has

the additional advantage that, besides LiC6, it is
structurally one of the simplest and best character-
ized intercalation compounds. Also, KCS has been

particularly well studied by a variety of experimen-

tal techniques. Many of these experiments have

been interpreted in terms of the previous theoreti-
cal band-structure calculations ' on KC8. We will

provide a thorough reexamination of these mea-

surements in light of the present work.
The remainder of our paper is organized as fol-

lows. Section II discusses the crystal structure and

symmetry of KCs and the model one-electron po-
tential which we use. Section III presents the
non-muffin-tin KKR formalism for the band-

structure calculation. The energy bands of KC8
are shown in Sec. IV, and Sec. V gives the KC8
density of states, Fermi surface, plasma frequen-

cies, and de Haas —van Alphen frequencies and
masses. Section VI discusses our results in terms
of a number of the experiments on KC8.

II. CRYSTAL STRUCTURE AND POTENTIAL

The crystal structure of KCs, shown in Fig. l,
has been firmly established by experiment. ' It
consists of alternate layers of potassium and car-
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FIG. 1 (a) Conventional face-centered orthorhombic unit cell for KCS. (b) Top view of the KCS structure.

bon. The carbon layers form an open hexagonal

net as in pure graphite; the nearest-neighbor car-
bon-carbon separation is 1.42 k Adjacent carbon

layers are in registry {A-A stacking) and are
separated by 5.35 k K layers order in a triangu-

lar lattice such that 8 potassium atom lies above

the center of every fourth carbon hexagon; that is,
the potassium atoms form a 2 X2 superlattice.

Adjacent K layers axe staggered, and begin succes-

sively at each of four possible origins denoted a, P,
y, and 5. Thus the intercalant layer sequence fol-

lows the pattern aPy5aPy5a. . . .
The space-gmup symmetry of KCs is Eddd

(Cls).' " The Bravais-lattice type is face-centered

orthofhoIQbic. Figurc 1 outllncs tll conventional

orthorhombic unit cell, which contains four primi-

tive unit cells. Besides translational symmetry

opclatlons, theic are clght operations which lcavc

tile clystal lllvarla11t: ideIltlty, tllree ortllogoIlal

twofold rotations through a potassium atom, inver-

sion, and thxee distinct diamond-type glide planes.

The point group about each K site is 222 (DI), and

about each C site it is 1 (E), the trivial group.
Each primitive unit cell contains two K atoms and

16 C atoxns. The taro K atoms are equivalent by
symmetry. However, there are two crystallograph-

ically distinct C atoms; half of the carbons have
two potassium nearest neighbors, the other half
only one. All of this symmetry information is in-
dispensable for the accurate calculation of wave
functions and matrix elements (Appendix C).

The one-electron model potential is constructed
by the superposition of spherically averaged
atomic-charge densities for K and C. Slater's Xa
approximation to the exchange and correlation' is
used, with Schwarz's' values of n =0.721 17 for K
and a=0.75928 for C. Atomic calculations are
carried out using the Hartree-Pock-Slater self-
consistent-field technique as developed by Herman
and Skillman. ' We use the following atomic con-
figurations:

&( ——): ls 2s'2pl+I~s,

&(+1): ls12s22ps3s23ps .
These reflect the known sp hybridization of the o
bonding states of carbon and the presumed ioniza-
tion of the potassium intercalant in the crystaL

III. FORMALISM

The large anisotmpy of KCs dictates the tech-
nique which eve use to solve Schrodinger's equation
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for our model potential. Figure 2 shows the crys-
tal potential at carbon and potassium sites along
several directions. Even within the C and K atom-
ic spheres this potential is highly nonspherical, and
it is far from flat in the interstitial region. This
discourages the use of a conventional muffin-tin
(MT) approximation. We have modified the stand-
ard muffin-tin forinulation of the KKR tech-
nique' ' to accurately calculate the eigenstates
and eigenvalues of such a system. Our method,
applied recently to LiC6 (Ref. 5) and developed ori-

ginally by Painter, ' still relies on the separation of
the crystal volume into muffin-tin and interstitial
regions. In KCs the carbon muffin-tin (CMT)
spheres are chosen to touch (rcMr ——0.71 A}, then
the potassium muffin-tin (KMT) spheres are re-

quired to touch to carbon muffin tins (rxMr ——2.34
A). The muffin tins contain 58% of the crystal
volume. The crystal potential is then divided into
two parts: V,z„(r)=VMr (r)+EV(r). VMr(r)
is the full potential inside the muffin tins, a con-
stant (Vr ———0.984 Ry} in the interstitial volume.
The eigenvalues and eigenvectors for the muffin-
tin part of the potential VM&(r) are abtained from
a KKR secular equation:

g [& '(E)I'P 5-, -, ,+M(k, E)i'I' ]
H, l', m'

Xio(k,E)i'~ =0. (1)
+ + p

4i i
'

~ is the inverse scattering matrix, Mi'I' ~ is
the structure factor matrix, r and r ' index atoms
in the unit cell, l,m&l', m' are angular momentum
indices, and the wi "s are the components of the
KKR eigenfunction. Appendix A describes the de-

tails of this calculation. The energies and wave
functions obtained from Eq. (1), Ezz„and

"(k, r ), are then used in a second secular
equation, which takes the remainder of the crystal
potential B,V(r) inta account:

g[(ExxR Es„,] )5 „+LL „—(k)]C ( k ) =0,

K-K
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(2)

where b, „(k) is the matrix element of EV(r) be-

tween the KKR wave functions:

5 „(k)=J ., % (k, r)EV(r)%'„"(k,r)dr .
cell

(3)

Appendix B explains in detail the calculation of
the KKR wave functians and the numerical
methods used for the integral in Eq. (3). Diagonal-

C SITE

FIG. 2. Model one-electron crystal potential for KCS
{a) around the K atom in different nearest-neighbor
directions, and {b) around the C atom in different
nearest-neighbor directions. The muffin-tin radii are in-
dicated.
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ization of Eq. (2} gives the final energy bands and
eigenfunctions for this calculation.

IV. CALCULATED ENERGY BANDS

Equations (1}—(3) of Sec. III allow us to find
the energy eigenvalues E(k) for any wave vector
in the Brillouin zone. In the present calculation
we have determined the bands in a 40-eV energy
range at the high-symmetry k points I, X, F, and
Z, and along the high-symmetry directions X, 6,
A, and B—14 points in all, as shown in Fig. 3.

Figure 4 shows the resulting band structure for
KC8. The bands are labeled according to the ir-
reducible representation of the group of k. ' Ex-
cept for the set of dispersionless K 3p bands at
—18.9 eV, the bands drawn as solid lines up to an
energy of about —10.5 eV come from the 0(sp }
states of graphite. Up to an energy of about —5

eV, bands derived from the n bands of graphite are
dashed; above this energy, the m bands mix too
much with other states to be distinguished clearly.
On this band structure, the Fermi energy of gra-
phite lies at approximately —6.8 eV.

Many of the KCs energy bands at and below the
Fermi level can be identified with the n and cr

bands of two-dimensional graphite. This identifi-
cation is made clear by comparing our calculation
with the KCs bands in the "folded-band" approxi-
mation, in which we assume that there is no in-
teraction between the carbon layers and that the K
potential is vanishingly small at the graphite
planes. Under these conditions the KCS bands
have no k, dispersion and are simply given by the
bands of two-dimensional graphite folded into the
KCs Brillouin zone; Fig. 5 shows the result of such
folding applied to Nagayoshi's' graphite bands.
(The zeros of energy in Figs. 4 and 5 are not relat-
ed. ) Comparing this with our calculated KCs bands

Z

A', B
U i T—--- r

H

FIG. 3. Brillouin zone of KCS. Special points and
lines are labeled according to Ref. 18.

shows the cr band shapes to be quite similar to
those of the folded bands. The 16-eV width of the
0 bands is correctly predicted by Fig. 5, and the
band degeneracies indicated on the folded bands
correspond in each case to the same number of
nearly degenerate bands in Fig. 4.

A closer comparison of the KC& bands with the
folded two-dimensional graphite levels also reveals

important differences. While the lowest-energy m.

bands of KCs have the same shape as those of
graphite, the position of the ir bands relative to the
cr bands is about 2 eV lower than in graphite. This
is consistent with the expectation that the energy
of the ir states, which extend away from the car-
bon layer, will be lowered by the attractive potassi-
um potential. Around the Fermi level, the pres-
ence of potassium also has a significant effect on
the m band shapes, and the splittings of degenerate
graphite levels are greater than 1 eV. The effective
masses of the ir bands starting as I i and I z

states at about —S.l eV are reversed from negative
to positive by the interaction with potassium states.
For energies higher than —4 eV, the picture of the
KCS bands as slightly perturbed graphite states
breaks down completely.

Besides disturbing the carbon eigenstates, potas-
sium introduces entirely new bands which originate
from K atomic levels. The core 3p states of potas-
sium manifest themselves as a set of six almost flat
bands at —19 eV. Although they lie within the o.

bands, they interact very little with the carbon
planes and remain corelike. The valence 4s level of
potassium appears as a parabolic band with its
minimum, I'+i at —3.5 eV, about 1.8 eV above the
Fermi level. The band starting at the I i level at
—2.9 eV is another piece of the K4s band arising
from folding in the k, direction. Although these
bands interact significantly with graphite levels,
particularly along the X direction, they largely re-
tain their Ks identity throughout the Brillouin
zone. In contrast to the graphite state, the K4s
bands have significant dispersion in the k, direc-
tion, which is consistent with their metallic, isotro-
pic, plane-wave character.

V. FERMI-LEVEL PROPERTIES

In order to obtain the shape of the Fermi surface
and calculate the optical properties of KCS, we
need to know the energy bands on a fine mesh in
the Brillouin zone. It is, however, not feasible to
use an ab initio approach for this purpose. There-
fore, we have fitted a tight-binding model to our
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FIG. 6. Density of states of KCS as determined by an
LCAO fit to the first-principles energy bands (Fig. 4).
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FIG. 5. Energy bands of two-dimensional graphite
(Ref. 19) folded into the smaller Brillouin zone of two-
dimensional KCS. o. bands are solid lines, m band
dashed. The inset shows the relationship between the
graphite and KC8 zones.

KKR results. This model uses C m and Ks orbi-
tals and includes first-, second-, and third-neighbor
interactions between in-plane carbons, one carbon-
carbon interplane interaction, nearest-neighbor C-K
interactions, and first- and second-neighbor K-K
interactions. The two-center approximation is used
in this calculation. These matrix elements (13 in
all) were adjusted to minimize the disagreement
with the ab initio KKR calculation near the Fermi
level. The resulting fit matched all the C n bands
and Ks bands to within 0.3 eV, and agreed with
the KKR bands in the vicinity of the Fermi energy
to within 0.005 eV.

The simplicity of this linear combination of
atomic orbitals (LCAO) model allows us to accu-
rately determine the KC8 density of states, Fig. 6.
This calculation uses the histogram method to do
the density sum on 31004 points in the Brillouin
zone, with an energy resolution of 0.06 eV. This

density of states is very similar to that of pure gra-
phite ' with the band minimum at —6.9 eV and
the peaks due to the saddle points at M at —8.6
and —5.0 eV. The K4s band shows a sharp onset
in the density of states at about —3.0 eV. By in-
tegrating this density of states, we determine the
Fermi level shown, EF———5.23 eV. This lies
about 1A eV above the graphite Fermi level, near
the upper M point peak in the density of states.
The 4s metal band lies about 1.8 eV above E~.
According to this calculation, the density of states
at the Fermi energy is 0.2 states/C atoin eV; the
value observed from specific-heat measurements22
is 0.33 states/C atom eV. We will examine this
discrepancy in Sec. IV. We have also used the
LCAO fit to the KCs bands to calculate the Fermi
surface, shown in Fig. 7. The surface consists of
two electron sheets centered at each of the six
corners of the Brillouin zone. The shix:ts are
roughly triangular and show rather small disper-
sion in the k, direction, in reasonable agreement
with the Fermi surface in the two-dimensional
rigid-band model. Even though the metal band is
completely empty in our calculatioo, there is the
possibility of a third pocket of the Fermi surface
centered at the I point in the Brillouin zone result-
ing from the distortion of the m bands caused by
interaction with Ks band. To within the accuracy
of our calculation, the I +2 level is degenerate with
the Fermi level; therefore, our calculation is unable
to determine whether that portion of the Criband'
will contribute a Fermi-surface pocket, or how
large it will be. We can establish bounds on the
size of the sheet: Taking the overall accuracy of
our calculation to be 0.1 eV, this portion of the
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Fermi surface will be spheroidal and will contain
e present calcu-no more than 0.06 electrons. In th al

ation, it is unlikely that this pocket of the Fermi
su ace wiH connect to the other sheets centered at
the corners of the Brillouin zone. The presence or

have observable effects, as we shall discuss later

are two orbits in the k, =0 plane and two in the

,=n/c plane. These orbits do not have tri 1

s mmet
ave 11gona

y e ry as predicted by the rigid-band model be-

cause o the details of the three-dimensional stack-
ing of the K layers (i.e., the fact that the crystal

er an exagonal).structure is orthorhombic rathe th h
For each of these orbits, we can calculate the de

aas —van Alphen frequencies and masses. ~ 23 As

to e
shown in Table I, these frequencies are very 1very c ose
ogether, reflecting the two dimensionalit f h
ermi surface. These frequencies compare fairly

well with the single observed de Haas —van Alphen
frequency in KCs, 2.9X10i G.

FIG. 8. Extremal cross sections of the Fermi surfaces
in the (a) k, =0 plane and (1) in the k, =m/c plane.

The partly filled C n band makes an intraband
contribution to the dielectric tensor, which for in-

inite lifetime carriers is of the form

(~; )'
eij (e)= 1+

N
(4)

The plasma-frequency tensor is given by an in-

tegral over the Fermi surface. z5 Because of the
orthorhombic symmetry of KCs, the plasma fre-

quency has three independent components N

N~, and N~. Measurements on highly oriented py-
rolitic graphite (HOPG) intercalation compounds
are only capable of measuring two components:
N~=Nzz and N,=—,'m +co~ ). We have calculat-

ed all of these and show them in Table I. The an-

isotropy of the plasma frequency is very'large,

m, /m, =10 . Although the exact value of this ra-
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TABLE I. Calculated Fermi-level density of states, plasma frequencies, and de
Haas —van Alphen frequencies and masses for KC8.

Lower band Total

N(E~) (states/C atom eV)
(eV)

Nyy (eV)
~ =, (meV)

co, (eV)
dHvA frequencies (G)
k, =O plane

k, =m/e plane

d+vA masses (me)

k, =O plane

k, =m/c plane

3.0
3.2
0.27
3.1

3.7y 10'
3.7y 10'

0.58
0.58

3.0
3.5
0.10
3.3

4.7 &(10
4.7g 10

0.70
0.70

0.2

4.7
0.29
4.5

tio cannot be determined with great precision by
our LCAO fit, it is certainly much greater than the
value co, /co, =8 which Zanini and Fischer have
derived from polarized reflectance measurements.

Many recent experiments on Kcs have been in-
terpreted using the calculated band structure of
Inoshita et al. and Ohno et al. A comparison of
the results of the present study with their results
shows that although the positions of the bands
near the Fermi level generally agree to within
about 0.5 eV, nevertheless the Fermi surfaces are
topologically quite different. In particular, the ear-
lier work has a Fermi surface containing both
cylindrical pieces at the zone corners and spherical
pieces at the zone center, and these pieces are par-
tially connected. The present studying contains
cylindrical parts with at most a very small, isolated
pocket at I .

Several of the experiments on KCs suggest that
states at the Fermi energy have Ks character. We
caution, however, that having Ks states at the Fer-
mi level could result either from a partially filled
metal band or hybridization of metal s states with
the Cm bands near E~. Many experiments which
are capable of detecting deviations from rigid-band
behavior cannot distinguish between these possibili-
ties. With this in mind, we now review the experi-
mental data and their interpretation in light of the
present calculation.

The density of states at the Fermi energy as
determined by low-temperature specific-heat meas-
urements is, as mentioned earlier, substantially

higher that what we predict. Inoshita et al. 's cal-
culated result, iV(E~) =0.27 states/C atom eV is
significantly closer to the measured value, although
the discrepancy is still substantial. An attempt to
account for this discrepancy by a specific-heat
enhancement from the electron-phonon interaction
was unsuccessful. An estimate of N(Ez) may
also be made from magnetic susceptibility meas-
urements on KCS. The total susceptibility was
found to be X'=138&(10 cm /mole. An esti-
mate of the core diagmagnetic contribution to 7'
was given as X =—52)&10 cmi/mole, and the
orbital susceptibility as obtained from a tight-

inding-model calculation27 was g =73 y 10
cm~/mole for unit charge transfer. Using these es-
timates, the Pauli susceptibility may be extracted:
X~ =X'—X —X"= 117X 10 cmi/mole. This
corresponds to N(E~) =0.45 states/C atom eV, well
above the value obtained from specific-heat mea-
surements or from electronic structure calculations.
Recent spin-susceptibility measurements on Lic6
suggest that the problem is that the calculated X"
is too small by a iactor of 2. Although this leads
to a more reasonable prediction for N(Ez), it is
clear that susceptibility cannot presently provide a
reliable prediction for the density of states in KCs.

Measurements of the de Haas —van Alphen ef-
fect in KCs are quite difficult because of sample
quality and the high frequency of the predicted ex-
tremal orbits. The one successful experiment has
observed a single frequency at 2.9)&10' G. This is
in reasonable agreement with either the extremal
orbit frequencies reported here or the extremal or-
bit of the zone-edge piece of the Fermi surface of
Inoshita et aI. Their calculation, unlike ours,
predicts a number of lower frequencies which have
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not been reported.
Several measurements of the visible and near-

infrared reflectivity of KCs have been reported.
For Elc, a high (=95%o) reflectivity is observed up
to about 2.2 eV, then a sharp drop with a mini-
mum at 2.5 eV. This, of course, supports the ac-
cepted view of KCs as a metal, and the plasma fre-
quency obtained from a Drude fit to this reflectivi-
ty, co~ =3.5 eV, is in rough agreement with the Elc
plasma frequency calculated here, co, =4.5 eV.
However, it was also found that a much better fit
was obtained by including two Drude terms, sug-
gesting that there are two different types of car-
riers in the KC8 conduction bands. Similar Drude
fits to reflectance measurements with E~ ~c suggest
that one of these two types of carriers is rather iso-
tropic. These conclusions, although model depen-
dent, lead to a reasonable prediction of the small
anisotropy of the electrical conductivity in KCs
(o, /o, = 34). ' Therefore, reflectivity data lend
strong support to a partially filled Ks band as sug-
gested by Inoshita and Ohno and co-workers. We
believe that much more detailed and definitive in-
formation could be extracted from reflectivity
measurements if the dielectric function could be
obtained from Kramers-Kronig analysis.

The Hall coefficient is very small in KCs
(nH —1/——RHe =7.8 X 10 cm at room tern-
perature ), and it changes sign from n type to p
type between room temperature and 4 K. Since
the Fermi surface of Inoshita et al. contains both
hole and electron orbits from a free-elix;tron model,
it has been inferred that it is capable of explaining
the Hall data, and that the rigid-band Fermi sur-
face (or that of the present study), which contains
only electron orbits, is not. However, taking into
account the curvature of the Fermi surface, as is
important at low fields, within a simple model,
the small value of RH at low temperatures can be
explained. In fact, a much more sophisticated
analysis would be required to predict the T depen-
dence of the Hall data.

Several independent electron energy-loss mea-
surements have been performed on KC&. Hwang
and co-workers have measured the electron
energy-loss (EEL) spectrum up to 40 eV, and have
extracted the loss function and dielectric function.
The resulting ez(co) shows that the strong interband
transition at 4.5 eV at the M point still appears in
KC8, but is shifted down to about 3.8 eV and
broadened. As we have remarked previously, and
as shown in Table II, this structure at 3.8 eV can
be identified successfully with a set of interband

TABLE II. Optical selection rules and principle low-
energy critical-point transitions at the I point in KCq.

Optical selection rules at I

2+~1—
4+22—
4+4 1—
4+~3—
2+84-
2+43—

Transition at I ~ (eV)

4——+2+
1+

3——+2+
4+~1—
3+~1+
3+—+1—
4+~1—
3+~2—
4+ —+2—
3——+2+
4—~2+

3.4
3.5
3.S
3.8
3.9
4, 1

4.2
4.3
4.5
4.7
4.8

critical transitions at I in our KCS band structure.
Recent EEL measurements by Ritsko have also
provided loss function and dielectric constant data
for 0.2—300 eV. In these experiments the core ex-
citation spectrum of C ls electrons has been used
to probe the nature of states near the Ferini level.
These spectra are found to be much more complex
for KCs than for LiC6. Since LiC6 is agreed to
have only C~ states at the Fermi level, it has been

argued that KC8 must therefore have metal s states
at the Fermi level resulting either from a partially
occupied K band or m-s hybridization. This con-
clusion cannot be considered firm, however, until
the effect of the core exciton is accounted for. In
any case, the interpretation of both EEL experi-
ments ~ould be greatly aided by a theoretical cal-
culation of the dielectric function from the band
structure.

Oelhafen and co-workers have performed a care-
ful systematic study of ultraviolet photoemission
spectroscopy (UPS) spectra for the alkali-
metal —intercalation compounds. The shape of
their photoemission spectrum near the Fermi ener-

gy for KCs is similar to the density of states
presented here. However, their analysis of the
shape of the spectra as a function of the exciting
photon energy provides a strong indication that Ks
states lie below E+. They have also supported this
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view with positron annihilation studies. s9 Still, a
si11111ar UPS allalysis, wlllcll they have pcIfornlcd
on second-stage potassium graphite LCD, also in-
dicates that only partial charge transfer has oc-
curred. This is in disagreement with the interpre-
tation of a polarized reflectance measurement on

KC24, by Zanini and Fischer, which implies that
there has been full charge transfer from the K
layer.

So, it appears that, while the evidence provided

by experiments on KCs is not conclusive, it is
necessary to consider the possibility that charge
transfer from the potassium layers is not complete,
and that states with Ks character exist close to the
Fermi lcvcl. S111cct11c p1'cscllt calculatioil docs iiot
predict partial charge transfer we must understand

why it does not and whether our conclusions could
be affected by any of the approximations of our
calculation. In fact, there is evidence that if the
approximations made for the crystal potential in
the present calculation could be lifted, then the to-
pology of the Fermi surface and the nature of the
Fermi-level states could be modified. This evi-

dence is provided by a new calculation for LiCS
using a self-consistent potential and with the
Hedin-Lundqvist local approximation to the ex-
change and correlation potential. Previous theoret-
ical work ' ' on LiCs used a non-self-consistent po-
tential with Xa exchange and correlation as in the
present paper. Comparing the two different calcu-
lations on lithium graphite shows that the mini-
mum of the metal s band is about 1 CV lower in
the new work than in the original KKR calcula-
tion. Although a similar self-consistent-field cal-
culation for KCs has not been completed, presum-
ably the K4s band will also be lower when self-
consistency and different exchange and correlation
are used. If the metal band lies closer to the Fermi
level, it may be expected to hybridize morc with
states at the Fermi energy. Moreover, since the m

bands are very flat at Er, any distortions of the
bands due to hybridization could have large effects
on the shape of the Fermi surface. A further

lowering of the I +1 level lying at the Fermi level,
for example, could introduce a new portion of the
Fermi surface at I', changing the topology of the
Fermi surface.

Despite these possible difficulties, our calcula-
tion should be judged successful on several points.
The validity of the rigid-band model as a global
description of the filled valence bands of first-stage
potassium graphite has been estabhshed. At the
same time, it has been demonstrated that small de-
viations from the rigid-band model near the Fermi
level can lead to both qualitative and quantitative
deviation from the rigid-band predictions. The
present calculation predicts for the first time the
position of the K3p core states with respect to the
Fermi level, and confirins the picture of the K4s
band as isotropic and free-electron-like. For the
theoretician, our calculation provides another
demonstration that modified muffin-tin techniques
of band calculation can be used successfully for
highly anisotropic materials.¹teadded in proof. Recent work on KCs by
Ritsko and Brucker combining EEL and UPS
measurements suggest a peak in the Ks density of
states of 2.0—2.5 eV above Ez, in good agreement
with the present calculation.
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APPENDIX A: MODIFIED KKR FORMALISM

(Al)

In this appendix we present the expressions used to evaluate the KKR secular matrix, Eq. (1). The Ham-
iltonian matrix elements 4 and M are straightforward extensions of what has appeared in the litera-
ture, 's 41 generalized for many atoms per unit cell and for nonspherical muffin-tin potentials.

(E), the KKR scattering or reaction matrix, measures the strength of scattering of partial waves of
energy E at the muffin-tin boundary. It is given by the expression

(E)lml'm' . g 4 )IM, lmgP~m', ll ~
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and

dni(ar) dRLMlm (E,r )
RL'M lm(E, r) nL(ar) ar

dp dp '=~MT
(A2)

djL(iver) dRl'm LM(E, r) .
gl'mLM= Rl'mLM«r) ,.(~'r) a»2

dP dP r =rMT
(A3)

ni(ar) is the Neuman function, jl(ar) is the spherical Bessel function, and Ri LM(E, r ) is the solution to the
radial Schrodinger equation at site ~:

ll' mm'

l, m

fP d
) Ry (E~)) f21(1+1) E R-, (E )

2m dp2 T

+»Rimpm (E,r) f Yl m (r)V,~st(r)Yim(r)d» =0. (A4)

dr indicates an angular integral about site r. We solve (A4) for 1 &2 by the Noumerov technique. ' Full
use of group theory is made, so that (A4) is evaluated for the minimum number of different sites r, and for
the minimal set I,m, l', m' (see Appendix C).

The structure matrix M(k, E) is a purely geometrical quantity which describes the projection of a partial
wave at site v onto another partial wave at another site ~ '. It is given by

(AS)Mimi m (k E)=g'&' ' '+
Nlml m (& r' T—), —

T

where T is a real lattice vector, and the Prime indicates the exclusion of the T =0 term. Nlm»m is given by

Niml m (r)=4ni' ' 'gi nL(ar)YLM(r) f Fim(r ')YLM(r ')Yl m (r ')dr' .
LM

a is the scalar wave vector (2m
~
E

~

/fi )'/ and nL is again the Neumann function. In practice, the real
space sum in (AS) converges too slowly for practical calculations. We therefore apply the Ewald pro-
cedure' to (AS), transferring part of the sum into reciprocal space. The result is

(A6)

where

4 (i —P) ~ .~ —L(@r r '( )+)@r 7'(2)+@7r '(3))ELM
lml'm' = ~ ~ ~ LM LM LM lml'm' ~

L,M
(A7)

~«()) ~ hei(k+6)(r r')ye k+—0
VUcH+ o ~

k+Q
~

(k+G)2e[E —( k + 0 )2]/v

(k+G)' —E

V V'(2)
~LM

~g ~T~ Ye 7—r +T
f
r —7'+T

f

L+—
X

E
+

—3/2 —Leu —E( g ' —w+ T ) /4ud
v~ 4 0

4 Y '(3) WY/ 1
~LM g 5 g ~ '5L05MO &

2@a „on!(2n —1)

(A9)

(A10)

~l I' '= d» Yl (» )YLM(» )Yl' (Al 1)

VUc is the volume of the real-space unit cell. For ri =0.22, the sums converge in a few hundred terms,
which is quite practical for actual calculations. The KKR eigenvalues are given by the roots of the equation
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(A12}det [4 '(E„s)+M {k,E„s)]=0 .
We show the resulting E„s(k) in Fig. 9. This 82X82 determinant can often be blocked diagonalized by us-

ing symmetry (see Appendix C).
The eigenvectors of the secular matrix at the energies E„s, w(, give the KKR wave functions within the

interstitial region:

@KKR(k ~) y r y ik (r+ T) r —7 —T

i
r —7- —T]

Again, a more rapidly convergent expression is obtained using a Ewald decomposition:

4m ~;(k+G).-, expI [« —{k+0) ]jgI~8 e
VUc«' o (k+G)z —«z

( 4+6
~

k+G
[k+Gf

~1m &num

+ e exp Q—1 ;k.(-, + r)
4n. 0 4uT, F,l, m

'I
«~r —r —T}

X FI
2

r —v —T
[r—7—T[

An Ewald parameter of ~=0 8 was found to give the bmt results. Equation (A14) providm a sta~lng
point for the calculation of the matrix elements of b V (Appendix B).

APPENDIX 8: CALCULATION
OF NON-MUFFIN-TIN CORRECTIONS

In this appendix we give the details of the eval-
uation of the matrix element of the residual crystal
potential kV(P') betweell KKR wave functions
%(„"(k,r). The calculation of the KKR wave
functions is outlined in Appendix A, and EV(r) is
determined by subtracting the constant muffin-tin
potential VMY from the model crystal potential

V,»,(r) in the interstitial region. Because of the
symmetry of the wave vectors, ' we were able to
do the integral of Eq. (3) in —, or at most —,

' of the
umt ceB (see Appendix C). Also, since b, V(r ) is
zero within the muffin tins, the integral is restrict-
ed to the interstitial region. This is not much of
an advantage, because, as Fig. 10 shows, this in-
tegration region is highly irregular.

We adopted a very straightforward procedure for
evaluating 6„„;we approximated Eq. (3) by

h„„(k)=gw;q(„(k, r;)b, V(r)%'„"(k,r;),

where w; are the weights of the integration points
r;. These points are chosen using a one-

dimensional Gaussian quadrature algorithm ap-
plied successively in the three coordinate direc-
tions; that is,

I'

If(r)dr=gw gw" gwkf(x;, yjzk)
l k

w; ' ' ls tile oile-dlnlensioilal Gaussian weigllt, . Tile
one-dimensional integration regions of {82)were
chosen carefully so as to avoid discontinuities re-

sulting from the irregular geometry of the integra-
tion region. The interested reader should see Ref.
43 for details. Grids containing up to 6000 points
were tested, and from these tests it was determined
that a grid of 1675 points provides adequate con-
vergence for all the relevant matrix elements

lL„, (k).

APPENDIX C: SYMMETRIZATION

In this appendix we discuss the uses of symme-
try in our calculation. Symmetry naturally is in-
dispensible in sorting out our results and in reveal-
ing their physical significance. On a more practi-
cal level, it helps to reduce the extremely lengthy
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on a sphere of radius
I
r -, I

for every site r.
First, the symmetry of the crystal is such that
there are only three inequivalent sites in the crys-
tal, two C sites and one K site; therefore, (Cl)
needs to be evaluated for just three values of P..
Further simplifications result from the point-group
symmetry about each site ~. In KCS, C sites are
not at centers of symmetry, so no further reduction
is possible. The point-group symmetry at K is D2,
which is of considerable value in doing the in-

tegral. Since D2 has four group elements, the
1

spherical integral needs to be evaluated only on 4

of the surface of the sphere. Other properties of
D2 permit us to reduce the number of integrals cal-
culated. Since we consider partial wave scattering
up to1=2, Eq. (Cl) represents

FIG. 10. The irreducible sector (—,) of the KC8 unit

cell. The carbon and potassium muffin tins are shown.
Note the irregularity of the interstitial volume, in which
the integral for h„(k) must be performed.

81= g (21+1)
l=O

'2

(Cl)

numerical calculations required for our work.
Most of the computer time is spent in the evalua-
tion of matrix elements. Group theory tells us the
smallest possible set of matrix elements which
must be evaluated. When the matrix element is
given by a sum or integral, group theory also gives
us the smallest possible domain over which that
sum or integral must be performed. These two ap-
plications of group theory make the KC8 band-
structure calculation tractible.

We now give several specific uses of symmetry
properties in our work. The determination of the
KKR scattering matrix (see Appendix A) requires
the evaluation of the integral [see Eq. (A4)]

+I'm'(" )l cryst(" )~inl(r, )«,

integrals. Because of symmetry, many of these 81
are zero, and many are related to others. We
proceed by replacing the spherical harmonics by
spherical polynomials which transform according
to the irreducible representations of D2. These
polynomials are exhaustively catalogued by Bell.
Using this procedure, we reduce the number of in-
tegrals required from 81 to 9, and we block diago-
nalize the 9)&9 matrix into four blocks of dimen-
sions 2, 2, 2, and 3. These simplifications improve
the accuracy and speed of the calculation of the
KKR scattering matrix considerably.

An application of the space-group symmetry
leads to a block diagonalization of the KKR secu-
lar matrix. The terms of Eq. (1) may be looked
upon as matrix elements of the KKR Hamiltonian
between KKR basis functions:

KKR V KKR Y'
(E)lygl'~'~+g'+~(k~E)lml'm' ~01'm' I HKKR I 4l~

where the KKR basis functions are those implicit in Eqs. (A13):

(C2)

(C3)

This treatment is somewhat schematic; although
(C3) is not actually the basis function used for the
KKR matrix elements, it displays all the symmetry
properties necessary for this discussion.

For high-symmetry points, we can block diago-
nalize (C2) by applying to the wave functions

KKR 1' a projection operator for an irreducible
representation of the group of k (Ref. 43):
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I,.(k)
P,s' (r)=

(Pi b )eG( k )

[(P I b)l

+ [(P
~

b )yKKR r
( k ~)]

(C4)

FI(k)
where D ' (P

~
b) is the rntn element of the ma-

trix representing crystal symmetry operation (P
~
b)

in irreducible representation I';( k); these are all
given in Ref. 18. Details of the actual projection
on the functions (C3) are given in Ref. 43. When
the KKR Hamiltonian is expressed in the sym-
metrized basis (C3), the matrix is block diagonal-
ized, making the diagonalization more rapid, and
eigenvalues and eigenvectors more reliable.

As a final example of the application of symme-

try to our calculation, we mention the simplifica-

tions which can be made in the matrix elements of
b V, the non-muffin-tin part of the potential [see
Eq. (3)]. First, because EV(r) transforms accord-
ing to the identity representation of the crystal
group, there are nonzero matrix elements only be-
tween those KKR wave functions n and n', which
transform according to the same irreducible repre-
sentations. This property of b V also tells us that
degenerate KKR eigenvalues are not split by the
perturbation.

In addition to these selection rules, symmetry al-
lows us to reduce the region of integration in (Bl).
The integrand is invariant under every symmetry
operation of the group of k. Consequently, if the
order of the group is gq, then the integral need

only be done over 1/gk of the unit cell. For KC„
thrs means s of the unit cell for wave vectors I,
X, F, Z, X, 5, and A, and —, of the unit cell for
wave vectors A and 8 (see Fig. 3).
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