
PHYSICAL REVIEW B VOLUME 25, NUMBER 6 15 MARCH 1982
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The lattice response near a vacancy in covalent systems is determined using a Green s-

function technique. The phonon Hamiltonian is taken from a valence-force-field descrip-
tion. The calculation is done by two different techniques, a fully numerical one and an

analytic approximate one. This last method is shown to lead to a clear understanding as
well as to a good precision. A first application is made to the vibration entropy of the va-

cancy in an undistorted environment, found to be of order 3k. Then the effective force
constants describing the response to forces applied on the neighbors of the vacancy are
determined. They are found to lie midway between those of two previous cluster calcula-

tions which were differing by a factor of 2 to 3. Finally the influence of local changes in

force constants is studied, and it is shown that they can lead to a dramatic increase in the

lattice response and in the formation entropy.

I. INTRODUCTION

Since the pioneering work by Coulson and
Kearsley, ' there has been almost continuous in-

terest concerning the properties of vacancies in
group-IV semiconductors. This is especially true
for silicon, where very precise EPR information
obtained by &atkins ' has demonstrated the
existence and given the symmetry of Jahn-Teller
distortions. These are charge-state dependent,
being tetragonal for V+ (the positive charge state)
and mixed tetragonal plus trigonal for V (the
negative charge state). Most of the older theory
has thus concentrated on the prediction of these
Jahn-Teller distortions, starting from the defect-
molecule model of Coulson and Kearsley and

trying to obtain, with limited success, the
amplitudes and energies of the distortions. ' In
this context one major problem was the relative
magnitude of many-electron effects (the multiplet
splitting of the one-electron levels) and Jahn-Teller
energies. which has received recent elements of
solution. 9

The theoretical understanding of the vacancy has
been greatly improved within the last years
through self-consistent one-electron calcula-
tions' ' using a pseudopotential plus local-den-
sity formalism. These calculations have provided
more accurate values for the energies and have led
to a prediction of the Jahn-Teller forces on the
nearest neighbors of the vacancy site. The results

have allowed BaraA; Kane, and Schliiter' ' to
propose that the three charge states V +, V+, and
V of the vacancy form a negative-U center, a con-

jecture which has then been confirmed experimen-

tally by %atkins and Troxell. ' The theoretical
model was based on two essential parameters: (i)
the forces on the nearest neighbors of the vacancy,
obtained from the self-consistent calculation and

(ii) the response of the neighboring lattice to these
forces, which can be described in terms of effective

response frequencies for the nearest neighbors.
Two sets of values were derived for these parame-
ters, a theoretical and an experimental set. Both
sets were found to be in fairly good agreement with
one another, but the effective frequencies were
found to be in disagreement with those obtained by
Larkins and Stoneham long ago, ' a discrepancy
which is diAicult to explain.

A final and apparently unrelated problem corre-
sponds to the very large ( —10—15k) measured
value for the high-temperature self-diffusion entro-

py in silicon. Apart from various hypotheses rang-
ing from extended defect' ' to divacancies '

and to the split vacancy, " the only theoretical pro-
posal due to Van Vechten and Thurmond ' was
that there is a large ionization entropy associated
with the vacancy in silicon. Another more recent
possible explanation was given by Lannoo and
Bourgoin, who showed, on the basis of an Ein-
stein model, that the vibrational contribution to the
vacancy entropy can undergo a large increase for
relatively small values of the changes in force con-

25 4089 1982 The American Physical Society



4090 M. LANNOO AND 6. ALLAN 25

stants in the neighborhood of the defect.
From the above analysis of the knowledge about

the vacancy in silicon it is apparent that a deeper
understanding of its vibrational properties is re-
quired. This is important in three respects: (i) the
response of the lattice to the Jahn-Teller forces or
to external forces such as those induced by a stress,
(ii) the vibrational contribution to the formation
entropy, and (iii) the possibility of a softening of
the vibration modes corresponding to local changes
in force constants induced by the atomic displace-
ments, which would correspond to an increase in
the vibrational entropy. The aim of this work is
thus to discuss in detail these problems. For this
we use a valence-force-field Hamiltonian and apply
a Green's-function approach to treat the pertur-
bation induced by the vacancy. This is in contrast
with two previous treatments' ' where the lattice
response to local forces was calculated using a clus-
ter approach. Our results for the.effective response
force constant are intermediate between those
found by Larkins and Stoneham' and those of
Baraff, Kane, and Schliiter' (the ratio of these two
sets of values being of order 2 to 3). This has some
implications on the actual values of their parame-
ters for the negative-U center formed by V +, V+,
and V since the Jahn-Teller energies are propor-
tional to the inverse of these effective force con-
stants.

We begin by defining the valence-force-field pho-
non Hamiltonian and its application to the perfect
crystal. We also describe an approximate analytic
solution, which will be very useful in the following,
whose predictions are compared to the numerical
results. In Sec. III we describe the perturbation in-

duced by the vacancy and its treatment by the
Green's-function method. Section IV presents the
similar treatment in the approximate analytic
model, showing very nice agreement with the exact
treatment. Both models are applied in Sec. V to
the calculation of the vibrational formation entropy
for the undistorted vacancy. They are used in Sec.
VI to determine the response of the lattice to forces
on the nearest-neighbors. In Sec. VII we investi-

gate the possibility of a softening of the phonon
modes induced by local changes in force constants
which can be due to the atomic displacements. We
show that there can be a dramatic increase in the
lattice response and in the formation entropy for
small changes in the back bond force constants.

II. THE PERFECT-CRYSTAL DESCRIPTION
In this section we present our perfect-crystal

phonon Hamiltonian. It is based on a valence-

force-field potential as was used by Larkins and
Stoneham' and contains Keating's model as a
particular case. The general form of the potential
energy for nuclear motion is taken to be

V= —,k„g(de )
l,j

+ g[ , ks(r—d8,p, ) +k d,&dp,
ijk

+k„s(rd8~1, )(d~ +djl, )] .

In this expression d,j is the change in length of the
bond between atoms i and j, and dL9,&k the change
in angle between two adjacent bonds ij and jk.
The sum over ij is performed on all distinct bonds
while the sum over ijk is made over all distinct
pairs of bonds. It is well known that such a
short-range phonon Hamiltonian leads to a poor
description of the transverse acoustical branches of
the silicon phonon spectrum. A description of
their characteristic flattening near the Brillouin-
zone limits requires the inclusion of long-range in-
teractions. However, the treatment of such interac-
tions for point defects is a very difficult problem
and for this reason we shall discard them here.

To discuss the phonon spectrum we proceed by
successive steps. The first one corresponds to a
fully analytic model incorporating the effect of k,
and the average effect of the other terms in expres-
sion (I). It provides a very useful zeroth order
description of the phonon density of states and al-
lows an analytic calculation of all the vacancy
parameters with a good accuracy. To illustrate the
model let us first consider the case where only the
stretching force constant k, is nonvanishing. This
simplified situation has already been discussed, '

but we rederive here the essential results in a dif-
ferent manner. The equations of motion are

MCi) U; =k„gd,J Il J;
j

where M is the atomic mass, nj;- the unit vector
from atom j to i, and the sum is performed over
the nearest neighbors of atom i. We can write the
same equation for a nearest neighbor k of atom i,
write the difference Mco (u; —ul, ), and project it
on the unit vector nk;, which leads to

;Jnj; nI,; —gd~tns, .nI,;
I

(3)

where l are the nearest neighbors of atom k. A11

scalar products nj nk; are equal to ——, except for
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nj,"nz, , which is unity, while the opposite is true
for the nik nki. This allows us to rewrite Eq. (3)
in the form

MCO dg =kp 3 dik —
3 g dij —

3 g dki

1

3

l

3

which can now be summed over k, leading to

Ma) 4 S;=——, QSk .k„3
This equation is equivalent to the tight-binding s-
band case on the same lattice, giving for the disper-

sion relation

Mco 4—P,
k, 3

(7)

where p is the dispersion relation for the tight-
binding s band with unit interactions between
nearest neighbors. General theorems show that P
is between —4 and 4 for the diamond lattice so
that (7) defines a broad band lying between co

equal to zero and a maximum value of —,k„/M.
This band corresponds to nonvanishing S; and thus
contains one state per atom. Other solutions can
be found, which now correspond to vanishing S;.
One of them is obtained for nonvanishing d;k (with
all S;, Si, equal to zero) which from Eq. (5) leads
to

(4)

Introducing new quantities S; equal to g.dij this

equation can be rewritten

Mco 8

k 3
——dk= ——(S+Sk)

T

8 kr
3 M

FIG. 1. Bulk phonon density of states for kq ——0
(schematic). The weight of each subband is given.

stants chosen to obtain the correct Raman frequen-

cy mM and a good overall fit to the elastic con-
stants. Clearly, the elastic constants are correctly
obtained but the flattening of the transverse acoust-
ical modes is not described. The density of states
is given in Fig. 3. Its shape is reminiscent of what
we have obtained in our analytical model with

k~ ——0, the two flat bands being now shifted and
broadened. However, to have some interest for
what follows, the simplified model should produce
the flat bands at positions which are the bary-
centers of the corresponding broadened bands.
This can be made possible simply by adding to Eq.
(2) the diagonal contribution to the dynamical ma-

trix due to the bond bending terms in ke. This
contribution is equal to —,k~/M and simply shifts

the approximate density of states of Fig. 1. The
shifted density of states is compared in Fig. 3 to
the exact density of states, and one can see that

Ma) 8

k, 3

This gives a flat band containing again one state
per atom. Finally, there still exists another non-

trivial solution for which not only the S; but also
the d;J are zero. The condition that the u; them-
selves be nonzero imposes from Eq. (2) another flat
band, with one state per atom at co equal to zero.
The corresponding schematic density of states is
pictured in Fig. 1.

To test the usefulness of this simplified picture
let us now investigate the situation where both k,
and k~ are nonvanishing, which is the case for
which all numerical calculations of this work have
been performed. In Fig. 2 we give the phonon
dispersion curves obtained with the two force con-

= k/kg

FIG. 2. Phonon dispersion curves corresponding to
case (a) of Table I.
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created by the vacancy on the phonon Hamiltoni-

an. For this we can rewrite quite generally the
perfect-crystal potential energy V in the form

V= — A" (u —u )(u —u )
ap a a p p
lJ l J l J

1J
aP

+ —, g Bgg(u; u—
1 )(ug u—q~)

ijk
aP

(12)

in which u; is the uth component of the ith atom
displacement; the AJ~ and B,g are force constants
related in a simple manner to the k„kgdefined

previously. One possible choice for defining the
perturbation induced by the vacancy is to suppress
from expression (12) all terms involving the atom
which has been removed to create the vacancy.
This will be the case in this work and corresponds
in our valence-force-field description to removing
the stretching force constants between this atom
and its neighbors, but keeping the angular terms
between the backbonds and the broken bonds.
Another choice could have been to suppress these
angular terms but this does not affect much the
results as was discussed in Ref. 16.

With these conventions the perturbation matrix
extends up to second-nearest neighbors of the miss-

ing atom, i.e., its size is 51)&51. To treat it we use
the Green's-functions formalism and introduce the
resolvent operators G and G, respectively, for the
perfect and perturbed system, defined by

where No(co ) is the corresponding quantity for a
bulk atom, since putting the atom on a kink is
strictly equivalent to increasing the number of bulk
atoms by one. We give the numerical result for
5N(co ) in Fig. 4 versus the frequencies in units of
~M. This result will be discussed in detail in the
next section.

Other quantities of interest for the following are
the perturbed Green's functions (the matrix ele-

ments of G) in the vicinity of the defect, since they
give the lattice response. They are discussed in
Sec. VI. Finally, there is a possibility that local-
ized vibrational modes can appear. If so, they are
solutions of the equation

det(I —Go U) =0,
a determinant whose size is the same as the U ma-
trix, i.e., 51X51 in our case.

IV. ANALYTIC MODEL FOR THE VACANCY

We now describe an analytic calculation whose
principle is similar to that discussed for the perfect
crystal. The basis of this comes from the fact that
k, is much greater than k~, as shown in Table I.
The first step is then to consider k, alone, intro-
ducing the effect of k~ later on in some average
manner. In this limit the elements of the dynami-

Go ——lim (co —Do+i')
g—+0+

G= lim (co Do U+ir))— —
g —+0+

where D0 is the perfect-crystal dynamical matrix.
The first thing to do is to calculate the 51)&51 ma-
trix of G0 in the basis of the displacements of the
atom to be removed, its first-and second-nearest
neighbors. From this we then calculate the change
5N(co ) in the total number of states with squared
frequency smaller than co, as given by1,Im det(I GoU)—

5NU(co ) = ——tan (14)
Re det(I —GD U)

where Im and Re stand for the imaginary and real
part of the determinant of I—G0U. In practice,
we consider a system with a constant number of
atoms, where the missing atom is placed on a kink
at the surface. In this case the change 5N(co ) in
the total number of states can be written

1

0.5
I

1

M

5N(co') =N, (~')+5NU(~'), (15)
FIG. 4. Plot of 5%(co ) for case (a) of Table I. The

dashed line corresponds to the analytic description.
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cal matrix are

(17)

bors i =1—3. %'e can thus relate 6 to Gp through
Dyson's equation

6=Gp+Gp8'6,

Dff kp g XgjXfj
J

where i and j stand for the atoms, a and P the
components of the atomic displacements, and XJ is
the ath component of the unit vector n,j defined
above.

In this model we first attempt to calculate the
Green's-function matrix 6 on the atom 0 of Fig. 5,
which is connected to a Bethe lattice which has the
same coordination as the diamond lattice but with
no closed loops of atoms. The situation of this
atom is similar to the one for the nearest neighbors
of the vacancy in this model, and for the quantities
to be calculated later the replacement of the true
lattice by a Bethe lattice is not a serious approxi-
mation. To calculate G we use the following tech-
nique: We define an unperturbed system with
resolvent Go corresponding to broken bonds (i.e.,
k„=0)between the atom 0 and its nearest neigh-

(19)

G o=(Go)-(W-G o+ WoGoo) (20)

where all the matrices are 3)&3. To get Gpp we
can thus extract 6;o from (20) and injectlit into
(19) to get the matrix relation

where 8' is the perturbation, i.e., the part of the
dynamical matrix corresponding to the stretching
force constants of the bonds 0—i. We intend to
calculate the 3 && 3 submatrix (G)oo of G in the
basis of the displacements of atom 0, knowing from
(17) that W has only elements on 0, between 0 and

i, and finally on atoms i. It is also clear. that

(Go)oo is disconnected from the other matrix ele-

ments of Gp.
We can then write in matrix form

Goo=(Go)oo+(Go)oo WooGoo+ g Wo G o

3

«)oo= (Go)oo —Woo —$ Woi[«o)it' WN]—'W(o (21)

If we choose a local system of coordinates on each
atom defined in the same manner, it is clear that
the matrix (G)oo must be identical to each matrix
(Go);;. Equation (21) thus defines a nonlinear sys-
tem of equations for the unknown elements of
(G)oo. Its general solution is numerical but for-
tunately, in our case, the C3„localsymmetry al-
lows us to separate it into three quadratic indepen-
dent equations. For this we use the local coordi-
nates of Fig. 5, where x is along the symmetry axis
and y and z are perpendicular to it. With such lo-

x Q

FIG. 5. Local system of axes on the nearest neigh-
bors of the vacancy.

r

cal axes of coordinates, the system of equations
(21) is diagonal and separates into two equations

1 —6
co — —co 63 XX

(22)

and

(24)

G =—+ — [——(a) ——) ]
1 1 l 4 2 4 2 i/2

xx 2 3 2 2 2 3 3

4 2 2 4 2for ——~ &co & —+ ~3 3 3 3
'

1 —6
co(1—G ) ——,

where, for simplicity, the squared frequencies are
expressed in units of k„/M and G in units of
M/k„. Equation (22) is quadratic in G~: and can
be solved to give

=—+ + [(o~ ——) ——]
1 1 0 2 4 2 4 &/2

3' 2co

8= —1 forgo & +—,2 4
3 3

'

8=+1 for co &— 2 4
3 3 '
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which then allows the determination of G~
through Eq. (23). Both Green's functions are plot-
ted in Fig. 6. They exhibit delta functions at
co =0 and co = —, (in units of k„/M) whose weight

is explicitly given in Fig. 6.
Once 6 and G~~ are known, it is possible to

calculate AU simply by connecting one atom to
four Bethe lattices. In our simple description
5NU(co } is simply a function of G~ which takes
the form

5NU(co ) =—3 tan 1 —G„—4

3N

(25)

in which the determination of tan ' has to be
properly chosen. Once this is done it is possible to
determine the total change 5N(aP) defined in (15)
by realizing that the bulk diagonal matrix element
of the Green's function, in this model, is equal to

G~~. This gives for No(co )

2

No(oi )= — — ImGyy(o) )dc@
4/3

5N'(co )= ——tan

kg
4 I

4k'
1+ Ryy

(27)

28
by an amount equal to —, ks/M) where it is com-

pared to the exact curve. The agreement is very

good showing that the dominant part of 5N(co )

corresponds to gaining two states in the lower flat
band (coi=28/3Mks) and losing them in the upper
one (co = , k„/—M+, ke—/M).

28
The reason for this sluft of —,ks/M of the whole

band comes, as for the perfect crystal, from the
contribution of the angular term to the diagonal
elements of the dynamical matrix. If these are as-
sumed to be identical in the perturbed and unper-
turbed system, then 5N (oi ) is rigorously shifted by

3 ks/M. However, this is not strictly correct
since the diagonal terms on the nearest neighbors
of the vacancy are found to be different from those
in the bulk: For the x displacement it is still
28 16

3
k ~ /M, but becomes —,k ~ /M for the y and z

displacements. This induces extra contribution
5N'(cg ) to the change in total number of states,
given by

All these expressions are analytic but will not be
reproduced here. They allow a simple calculation
of 5N(co ) which is reproduced in Fig. 4 (shifted

The major feature of 5N'(oi ) comes from the ex-

istence of a pole in the denominator of (27)
corresponding to a shift of the lower flat band to
lower co by an amount given by —,ks/M to an ex-

cellent approximation (this is exact to first order).

(a)

V. THE VIBRATIONAL ENTROPY
OF THE VACANCY

In this section we calculate the change in entro-

py SF induced by the formation of the vacancy.
The high temperature expression of SF is given
b 32' 33

ii n„„
0.2-

0.1-

I

3

1

(b)

SF —k g 1——neo~ —g Into~
a'

where the ~ ~ and co are the vibration frequencies
of the perturbed and perfect crystal, respectively.
This expression can be written in integral form as

SF ———— inca g 5(o~ —~~ )
2

0 3

FIG. 6. Densities of states n and n~ corresponding
to the Green's functions G and G~. All quantities are
in reduced units of k, /M. or equivalently
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SF————I 1nro 5n(co )des
2

(30)

where 5n(co } is the change in density of states for
the eigenvalues ~ of the dynamical matrix. For
numerical use with the Green's-functions method,

it is convenient to integrate this expression by

parts, which gives

f 5N(coi)

k Q)

(31)

where in our case 5N (cu ) is defined by Eq. (15)
and can be expressed in terms of Green's functions

through (14).
The numerical value of SF can be calculated

readily from the change in total number of states
5N(co ) pictured in Fig. 4 and determined from our

complete Green's-functions calculations. We ob-

tain for SF values of 2.8k and 3.3k [corresponding
to case (a) and (b) of Table I], much larger than the
usually expected value of 1.5k deduced from sim-

ple Einstein models. To understand the origin of
this difference we now explore diAerent approxima-
tions to the calculation of SF.

Let us first consider the Einstein model
which corresponds to the replacement of the
dynamical matrix by its diagonal part. In this

description S~ is given by

Sf t g iaia

l ~ die ia
(32)

in the local atomic basis of Fig. 5. This gives for
the entropy SF a value

T

Sp 4k„+28k@ 4k„+28k@=2 ln +21n
k k„+28ke 4k, + 16kg

(34)
which using the numerical values of Table I leads

where d;; and d; are the unperturbed and per-

turbed diagonal elements for atom i and for the
ath component of the displacement. In the gerfect
crystal d;a; is simply equal to —,k„/M+ —,ks/
M for any couple i,a. Only the nearest neighbors

of the vacancy contribute to (32), for which d a;a
is given by

k„+28k'
do ~

lx, lx 3M

(33)

4k„+16kg
lg, lg

'
lS, lZ

to SF/k equal to 2.07 [case (a)] and 2.27 [case (b)],
which are not too bad when compared to the exact
numbers.

To do better requires the use of the analytical
approximation to the Green's function which we
developed in the preceding section, giving approxi-
mate forms of 5N(co ) or 5n(co ) to be used in ex-

pression (31) or (30). For this we proceed by steps,
incorporating different contributions to S~ by de-

creasing order of magnitude. As we discussed in
the last section the main contribution to the
5N (aP) given in Fig. 4 corresponds for 5n (co } to a
delta function of weight 2 at co equal to —,kq/M
and another one of weight —2 at (8k„+28k&)/3M.
Injecting this into (30) gives a contribution to SF/k
given by ln(8k„+28ks)/28ks, numerically equal to
1.83 [case (a)] and 2.44 [case (b)]. This contribu-
tion only concerns displacements of the neighbors
of the vacancy along the local axes x. It thus
gives an improved value of the first term in (34)
whose contribution was 1.56 in case (a). If we keep
an Einstein model for the y and z displacements,
then the total entropy would be increased in case
(a} by 0.27, giving 2.34.

The next contribution comes from 5N'(cu ) given

by Eq. (27), i.e., from the diagonal perturbation
—4k~/M on the y and z displacements of the
nearest neighbors of vacancy. This gives the
second term in (34) when using the Einstein model.
To go beyond we should use the detailed form
given by (27). However, as we have seen, the main
feature of the change in density of states 5n'(coi)

[(equal to (d/dco )5N'(co )] is a delta function of
weight 8 at 24k~/3M and another one of weight

28—8 at —,ks/M (position of the perfect-crystal flat

band). To complete this picture of 5n'(co ) we use
an Einstein approximation for the remaining con-
tribution, i.e., we add two other delta functions of
weight + 8 and —8 at positions determined in
such a way that the first moments of the local den-

sity of states (i.e., the sum of the diagonal terms)
are preserved. The total first moment of 5n'(co ) is
—32ks/M (eight times the diagonal perturbation
—4ks/M) to which the two delta functions dis-
cussed above contribute by an amount equal to
—32ke/3M. This leaves —64k~/3M for the two
other delta functions. We position the one with

weight —8 at the barycenter of the broad band and
the upper flat band of Fig. 8, i.e., (6k„+28ks)/3M.
Then the delta function with weight +8 must lie
at (6k„+20ks)/3M. Summing all the contribu-
tions, we obtain for S~/k in this redefined model a
value of
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Sp 8k, +28k'
=ln

k 28k'

6k„+28k'
+4 ln24+ln

6k +20k
(35)

which is equal to 2.68 in case (a) and to 3.19 in
case (b) of Table I. This is within a few percent of
the exact values and shows that our simple descrip-
tion contains the essential contributions.

VI. RESPONSE OF THE LATTICE TO FORCES

E= —gF; u; + —, QK;J~u; uj (36)
i,a lJ

aP

to second order in the atomic displacements. The
KIJ~ is the matrix of force constants for the system
containing a vacancy. To find the stable atomic
positions we must minimize E with respect to all

u;, which gives for the stable positions

u = g(K ') '~F~
jp

and minimum energy

(37)

(38)

Then the response of the lattice is completely
determined by the knowledge of the inverse force-
constant matrix E ' which for a system of identi-
cal atoms with mass M is related to the dynamical
matrix D by (MD) ' This can be .expressed in
terms of the Green's functions defined in (13) by

K '= — G(co =0) .
M

(39)

The calculation of the lattice response reduces to
the determination of the Green's functions at zero
frequency. Under matrix form, this gives

u= — G(co =0) F,

E~= — F G(co =0) F .
2M

(40)

In this section we want to determine the effect of
forces applied on the atoms in the vicinity of the
vacancy site. These forces can be of electronic ori-

gin, i.e., due to the creation of the vacancy, or also
to externally applied stresses. If we call E; the ath
component of the force on the ith atom, then the
lattice energy becomes

In many cases one can find a suitable basis such
that F has only one nonvanishing component Fp.

Using the same basis set for the displacements
we obtain

uo= — Goo(co =0)FD
1

M

Goo(co =0)FD,
2M

(41)

which is the same formal answer as for a system
with only one degree of freedom, in which case the

energy would be

EpE=—Fpup+ u p2

leading after minimization, to

~p
uP= E 1.= ——&P~P

Kp

(42)

(43)

Ep has the meaning of an effective force constant
for the displacement up, which from the compar-
ison of (41) and (43) can be defined as

M
Kp ———

Goo(co =0)
(44)

This concept of effective force constant describing
the lattice response to local forces in terms of the
corresponding local displacements is very interest-

ing in practice. It can be used for the vacancy in
silicon for instance. In this case one can define

symmetry displacements which are combinations
of the nearest neighbor's atomic displacements.
Usually, one considers the breathing mode Qq and
the tetragonal mode Q@ pictured in Fig. 7 (their
detailed expression is given in Refs. 4, 18, and 34;
note that these definitions differ by a factor of 2
from that used in Ref. 16). We can define in the
same way symmetry forces Eq and FE which have
been calculated by different authors. ' ' '

Such forces and displacements being of different
symmetry can be treated independently and the
problem reduces to the previous formulation lead-
ing to Eqs. (41)—(44). We have then to calculate
two different effective force constants kz and kE,
given by Eq. (44) in terms of the corresponding
Green's functions G& &„(ro = 0) and

G& & (x@2=0). We have calculated these Green's

functions numerically, and the results for kq and
kE are reproduced in Table II, where they are com-
pared to those of previous calculations (for this we
have taken the same convention as in Ref. 16,
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placed by co —28k~/3M. This leads for kq to

Q

k,
2 28kg

k,
2 14k@

k„
28kg

'2 1/2

(46)

PIG. 7. Symmetry modes Qq and QE around the va-

cancy.

k„=—4M/Gq(co =0), (45)

where Gq(c02) is given by Eq. (24) where ei is re-

TABLE II. Values of the effective force constants k&

and kq (defined in the text) in eV/A2.

where kz and kE are given by the ratio of the total
force to the displacement of one neighbor of the
vacancy). The main conclusion is that kq and kE
are practically proportional to co&A(X) (this was
also noted in Ref. 16). In case (b) where coTA(X) is

given the same value as in both cluster calcula-
tions, we find efFective force constants lying be-

tween those found by Larkins and Stoneham and
BarafF, Kane, and Schluter. '

To have a little more insight into that result let

us again use the analytical version of our Green's-

function treatment. In this approximation there is

no interaction between the nearest neighbors of the

vacancy. For each of these neighbors the Green's

function involved in the Qz mode is simply

G~(co ) (since x is the radial displacement of this

atom towards the vacancy), but where co has been2

shifted by the diagonal part of the angular term.
28

This one is equal to —,k~/M, the same value as in

the perfect crystal [see Eq. (33)]. The correspond-

ing density of states is given in Fig. 6(a). In this

model we can estimate kq to be given by

With the numerical values taken from Table I, this
gives 18.71 eV/A for kz in case (a) and 9.92
eV/A in case (b), both values being about a factor
of 2 too high, when compared to the numerical
results of Table II.

We can understand the reason for this discrepan-

cy by noticing that the main contribution to
Gq (co ) near co =0 comes from the delta function
of weight —, at co = —, ks/M (i.e., the pole co2=0

in G~). Retaining only this contribution would
lead for Gz(co ) to a value equal to

(47)

This expression injected into (45) leads for kq to

values equal to 22.37 eV/A and 11.18 eV/A close
to the values obtained by Eq. (46), showing that
(47) contains the essential term. However,
broadening effects will enhance this contribution.
A reasonable estimate of this can be obtained by
replacing the delta function by an elliptical density
of states extending from ~ =0 to ~ =

3 kg/~.
In such a case the contribution to Gz (co =0) is
enhanced by a factor of 2. If we use (47) multi-
plied by this factor we obtain for kq given by (45)
the very simple expression

(48)

which gives 11.18 eV/A for case (a) and 5.6
eV/A for case (b), explaining very nicely the order
of magnitude obtained in Table II.

We can do the same sort of treatment for kE,
the effective force constant for tetragonal modes.
The basic Green's function for such a displacement
perpendicular to the broken bonds is now G~~(co )

defined by Eqs. (23) and (24). To obtain the
correct G'reen's function Gz(co ) entering the defin-
ition of kE through

Larkins and Stoneharn, Ref. 18
Baraff, Kane, and Schluter, Ref. 16
This work (a)
(b)

3.72
7.47

10.24
4.69

5.08
14.81
17.2
9.34

kE —— 4M/GE(co =0—), (49)

we have first to shift the whole spectrum for m by
28

3 k ~ /M, as usual . However, we have al so to ac-
count for the change in diagonal term on the



25 GREEN'S-FUNCTION CALCULATION OF THE LATTICE. . .

neighbors of the vacancy from this value to
—,kg/M [see Eq. (33)].
This allows us to write

Gyy(co ——,kg/M)
GE(co') =

28
1+4(kg/M)Gyy(co ——,kg/M)

(50)

The imaginary part of G~(co ) (corresponding to
the bulk density of states) has been given in Fig.

1

6(b). There is now a flat band of weight —, at

co =0 which will give the main contribution to
GE(co ). In this approximation, GE(co ) is given

near m =0 by

GE(co }=—2 1 1

3 co —8k'/M
(51}

Again this will be increased by broadening sects,
for which we take the same enhancement factor of
two as before for GE(co =0) Usin.g twice the
value given by (51) into (49) finally gives

kE 48k' . (52)

This gives numerical values of 19.17 and 9.6 eV in

cases (a) and (b}, respectively, again in very good
agreement with the exact values of Table II.

We have thus obtained a very simple and accu-
rate description of the response of the lattice which

directly relates the eAective force constants to the
bond-bending force constant kg. This clearly illus-

trates the sensitivity of kq and kE to the descrip-
tion of the transverse acoustic phonon branch.

VII. THE INFLUENCE OF LOCAL CHANGES

IN FORCE CONSTANTS

Forces applied on the nearest neighbors of the
vacancy change the equilibrium positions of the
atoms. Such forces can be internal, e.g., due to
electronic redistribution (such as the Jahn-Teller
forces), or externally applied forces. In all cases
they induce changes in bond lengths in the vicinity
of the defect. This results in local modifications of
the force constants. When these force constants
are lowered, the response of the lattice becomes
softer and at the same time the vibration entropy
increases. It is thus interesting to know the
behavior of the phonon frequencies for such local
changes in force constants and to study quantita-
tively the corresponding increase in the formation
entropy.

To investigate this problem, we consider here a
simple case where the three backbonds of each
neighbor of the vacancy are affected in the same

way, the change in the force constant matrix be-

tween each first nearest and second-nearest neigh-
bors being taken as

100
5Ei2 ——+5k 0 1 0001 (53)

Gq(co =0)=- M
35k,

(54)

since the most important part of the perturbation
corresponds to the diagonal term on the nearest
neighbors. If we use for Gz (co ) the approximate
form (47) with an enhancement factor of 2, we ob-
tain for (54)

5k, = —,kg, (55)

which gives for k, /k„12.7% in case (a) and 6.3%
in case (b), in good agreement with the exact value.
The minor differences are due to the neglect of the
other terms in the perturbation.

The corresponding curve for the formation en-

tropy SF, in case (a}, is plotted in Fig. 8. The en-

tropy first increases linearly and then diverges at a
value 5k equal to 5k, . An important conclusion is
thus that the entropy can take high values, much
larger than the currently observed one which is
about 1.5k. This is still more true in case (b), and
there is no reason that the vacancy could not ac-

The translational invariance imposes diagonal
force-constant matrices 5E&& on the nearest neigh-
bors and 5Eq2 on the second-nearest neighbors,
respectively, equal to —35k and —5k times the
3&(3 unit matrix. The effective force constant kz
and the formation entropy SF can be calculated as
functions of 5k. For 5k & 0 (which corresponds to
a decrease of the backbond force constants), it is
found that kq tends to decrease with increasing 5k,
while the reverse is true for SF. At a critical value

5k„kzvanishes and SF tends to infinity, which
obviously corresponds to the appearance of local-
ized states at co &0. The numerical calculation of
this effect shows that 5k, is equal to about 15%%uo of
the radial force constant k, in case (a) and only to
4% of this value in case (b), which obviously is a
condition which can be very easily fulfilled.

We can again understand very simply the values
obtained for 5k, using arguments similar to those
developed in the preceding section. The critical
value 5k, is obtained when a localized state ap-
pears, i.e., in the case considered, when
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10-

The response to forces could then be analyzed as
before but with position-dependent force constants.
Such a calculation is not simple and is beyond the
scope of the present work. However, one can anti-

cipate that for some applied forces there will be an
enhancement of the displacements with respect to
these of the linear theory (e.g., a reduction in the
efrective response). This would result in an in-

crease of the formation entropy Sz which can be
quite important as we have just shown.

VII. CONCLUSION

0.05 0.1
I

0.15 5yk

kr

count for the observed high-temperature value of
10—15k.

A definite proof of this effect would require a
much deeper analysis of the local changes in force
constants. This could be done, for instance, by in-

cluding the anharmonic terms in the radial poten-
tial of the twelve nearest neighbors' backbonds.

FIG. 8. Formation entropy SF vs the relative change
in force constant 5k/k„.

%e have shown in this paper that the lattice
response near the vacancy in silicon is very soft.
This means that the effective force constants
describing the response to applied forces are low

and that the vibration entropy is larger than usual.
The reason for this comes from the low-lying

transverse acoustical branches which are fairly
sensitive to perturbations. A good example of this
behavior is provided by the influence of local
changes in force constants which are found to be
capable of producing important increases in the
response and in the formation entropy.
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