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Critical properties of the random dipolar-coupled ferromagnet LiTbp Yt pF4
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The critical properties and the critical temperature T, versus concentration p phase di-

agram of a site-diluted long-range coupled magnet have been measured and compared
with renormalization group (RG) and T,(p) predictions. Zero-field magnetic-suscep-
tibility measurements for eight concentrations p of the randomized dipolar-coupled Ising

ferromagnet LiTb~Yi ~F4 have been found to be inconsistent with universal" RG pre-
dictions made for this system. The fact that subsequent "nonuniversal" RG theories have
been shown to agree with the data suggests that the asymptotic reduced temperature
range cannot be attained in this system. The effective susceptibility critical exponents y
are found to be p dependent. The T,-vs-p phase line has been found to be linear for the
entire concentration range measured with an extrapolated percolation concentration

p, =0.12. This behavior is in contrast to short-range coupled magnets.

I. INTRODUCTION

Whereas the critical behavior of the pure di-
polar-coupled Ising ferromagnet is one of the best
understood problems in critical phenomena, the in-
troduction of random impurities into this system
considerably complicates the problem. Owing to a
general argument by Harris, ' as well as subsequent
renormalization group (RG) calculations, a cross-
over to a new type of critical behavior is expected
in a randomized magnet if the specific heat diver-

ges at T, in the pure material. In this paper we re-
port on the critical properties of the magnetic sus-
ceptibility of the randomized dipolar-coupled Ising
ferromagnet LiTb& Y~ &F4. The properties have
been determined by measuring the zero-field mag-
netic susceptibility in the critical regions above

T,(p) for eight concentrations p in the range
0.155 &p &0.97. We find that the susceptibility
exhibits nonuniversal behavior with concentration-
dependent effective exponents y. The ferromag-
netic-paramagnetic T,(p) phase diagram for a
randomized dipolar-coupled Ising ferromagnet has
been mapped out and found to be linear in the
range p &0.155.

II. THEORETICAL MOTIVATION

A. Marginal dimensionality and random systems

Systems near their critical points are
characterized by a marginal dimensionality d'. If

the dimensionality d of the system is larger than
d*, the critical phenomena of the system is
described by mean-field theories with classical
critical-point exponents. However, d is greater
than d in few if any systems. If d &d the RG
recursion relations are solved for the critical
exponents in terms of a power series in the
parameter e=d*—d. These asymptotic series have
poor convergence properties. If d =d', the RG
recursion relations are solved "exactly" resulting in
prtxiictions for logarithmic corrections to the
mean-field behavior. Because of the well-defined
analytic behavior of these logarithmic expansions,
measurements in systems in which d =d* provide
more stringent tests for RG theories than systems
in which d &d*. The marginal dimensionality d*
depends upon the type of critical point and the
type and dimension of the ordering interactions.
One of the few systems which exhibits a physically
accessible d' is the long-range dipolar-coupled
Ising ferromagnet for which d*=d =3. Loosely
speaking, a dipolar Ising ferromagnet has d*=3
instead of d*=4, as is the case in most magnetic
systems, because the dipolar forces suppress
longitudinal fluctuations of the spin. The Ising
behavior does not allow the transverse spin
components to pick up the fluctuation strength,
fluctuations are suppressed, and hence d* is
reduced.

The behavior in the critical region of several
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thermodynamic functions has been calculated. The
magnetic susceptibility predicted at the marginal
dimensionality in the dipolar Ising magnet is given
b'
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X=n-'[ln(r, /r)]'",

X=I't 'expI [Dln(to/t)]'~ I, (2)

where B=0.11795. . . is a universal number, and
where to is inserted to account for the higher-order
corrections. This crossover occurs for reduced
temperatures much smaller than a crossover tem-
perature t„give bny ln(t„) a: —g(0)/[p(1 —p)g ],
where g (0) is the ratio of the dipolar to exchange
coupling, r1 is the shift in the mean-field critical
temperature, and p is the magnetic site occupation
probability. Since we cannot determine all of the

constants in this equation we are unable to esti-
mate the numerical value of t„.

Because of the uncertainty of the actual magni-
tude of the reduced temperature "crossover region"
separating the regions of the universal behavior
equations (1) and (2), Vause and Bruno" have tak-
en the "random"recursion relations and solved
them to a lower order obtaining a nonuniversal
susceptibility appropriate in the exterior region

where we have included the parameter to in Eq.
(lb) to account for the higher-order logarithmic
corrections in Eq. (la) and t =(T T, )/T—, is the

reduced temperature. Previous heat capacity, neu-

tron diffraction, light scattering, and magnetiza-

tion experiments with dipolar Ising magnets have

confirmed the validity of the logarithmic correc-
tions to mean-field behavior predicted by such RG
calculations.

In 1976 Aharony used RG techniques to treat
the problem of randomization at d =d for a dipo-
lar Ising magnet. In the randomization problem,
a fraction 1 —p of the magnetic ions is replaced by
nonmagnetic ions. A crossover from the critical-
behavior equation (1) to a new type of critical
behavior given by '

8 =2/A, +(lnr, —2/A, )r "~',

where A, and to are nonuniversal parameters. A, is
predicted to depend on p as A, o: (1—p) . In the
limit A,~O (@~1),Eq. (3) and the pure universal
RG form Eq. (1) are the same, with I and to hav-
ing the same meanings in both forms. In the large
A, small t limit t &g 1, Eq. (3) has the same func-
tional form as the conventional critical exponent
power law given by

x=rt-~,
where the critical exponent y is related to k by

y —1=X/6 and the I"'s are trivially related using

to and A, .
For p =1 the "pure" universal susceptibility

equation (1) is strictly true for all r within the
"critical region " [the upper bound of the critical
region has generally been found to be about
r =10 ' in LiTbF~ (Refs. 5 —8)]. For p ( 1 the
magnetic susceptibility given by the nonuniversal
equation (3) describes the system. However, when
the reduced temperature becomes smaller than
some crossover temperature t„, the RG recursion
relations "flow" to a new fixed point, causing a
crossover to the new universal critical behavior
equation (2). A schematic representation of the
crossover region separating the universal random
behavior equation (2) from the nonuniversal ran-
dom behavior equation (3) is shown in Fig. 1.
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FIG. II. Schematic representation of the crossover re-
gion separating the universal random RG prediction
equation (2) and the nonuniversal random RG predictior
equation (3).
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B. T,-vs-p phase diagram

Ferromagnetic phase transition diagram mea-
surements T,(p) have not previously been made for
a randomized dipolar-coupled magnet. T, (p) of
the short-range exchange-coupled magnet has been
studied theoretically in quite some detail. ' ' In
the short-range case, the phase line is linear in p
near p =1, it then deviates from this linearity by
passing through T,(p, ) =0 at a finite percolation
concentration p, . A mean-field coupled magnet
(i.e., infinite range coupled) exhibits a linear phase
line for all p, with a slope dT, (p)/T, (1)dp of one,
which passes through T, (p, =0)=0. The 1/r di-

polar interactions might be expected to exhibit

p, =0 because of their long-range nature. Stephen
and Aharony' have studied the quenched bond di-
lute dipolar-coupled Ising model using a replica
trick method. They have concluded that indeed

p, =0 and that the T,(p) phase line should be
given to first order in p by the relation

1=p gtanh(J, J/kT, ), (5)

(7)

where cr—=Q,.JJ. and S is used as an adjustable

parameter. The range of applicability for the repli-
ca prediction equation (5) is small p and low tem-
peratures, whereas for the series expansion predic-
tion equation (7) this range is for large p and high
temperatures.

III. LiTbp Y) p F4

LiTbF4 is colorless and optically clear. It has
the crystal structure of mineral scheelite CaWO4
(space group C4s l4ila) '' Th-ere are .four Tb +

ions in each body-centered tetragonal unit cell with
c =10.87 A. and a =5.18 A. The ground confi-
guration of the free Tb + ion is 4f . The spin-

where the dipole interactions I,& are given by

2 2

Jgq
—— i [3(Z(/-/r J. ) 1]—

4r,.j
and where the summation is over the Tb or Y ion
sites. Beauvillain et al. ' have performed a series
expansion of (XT) ' in powers of T ' for a site
randomized dipolar-coupled Ising ferromagnet, ob-

taining

1 =p g tanh(I;; /kT, )+pS/kT, +o(p/kT, )',

orbit perturbation yields a I'6 ground term. Each
Tb + ion is located on a site of S4 crystal-field
symmetry which splits the I'6 term into ten levels.
The lowest states are two nearly degenerate I 2 lev-

els, and the first excited state is a I 3 4 doublet ly-

ing 150 K above the ground states. ' The I 2 levels

produce the eA'ective spin- —, Ising magnetic
behavior (with g~(/gi Ileally illfllilte) iii LITbpg.
The 4f electrons have very little exchange coupling
to the neighboring Tb + ions, which leads to the
predominance of dipolar over exchange coupling in
LiTbF4. The exchange contributions to T, are
measured to be only about 10%%uo of the dipolar con-
tributions. ' Thus, in LiTbF4 the Tb + ions pro-
duce Ising doublet magnetic moments which cou-
ple to each other primarily through their dipolar
rather than their exchange interactions. LiTbF4
has been used as a model system in which to study
the marginal dimensionality RG predictions made
for a long-range dipolar-coupled Ising ferromag-

p 5—8, 15,17
Lo

LiYF4 has the CaWO4 structure with a =10.74
A and c =5.18 A. The random mixture
LiTbp Y1 p F4 crystallizes for the entire 0 &p & 1

concentration range. Because Y + has the non-

magnetic, closed 4p ground configuration, these
mixed crystals represent a model system for the
randomized, dipolar-coupled, Ising ferromag-
net 9, 14, 18

The Tb + ground-state I 2 levels are actually
split by 5=1.3 K by a crystal field which is for-
mally equivalent to a magnetic field applied trans-
verse to the spin axis. ' ' RG as well as series ex-
pansion methods have predicted that for sphttings
less than some critical value the critical exponents
should be unaffected. ' Because of these results,
the splitting will not be considered further with re-
gard to the critical region susceptibilities. A
mean-field calculation ' for the Curie-Weiss tem-
perature in a random magnet with a split ground
state indicates that T, (p) will be affected by the
splitting. The 1.3-K splitting in LiTbF4 is calcu-
lated to increase the slope dT, (p)/T, (1)dp by ap-
proximately 5% for p & 0.4 and then to cause
T, (p) to fall to zero at p =0.23.

IV. EXPERIMENTAL

A. Crystal preparation

Eight single crystals of LiTbp Y1 pF4 with dif-
ferent concentrations p were used in these experi-
ments. The crystals were grown in an inert argon
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TABLE I. Results from the least-square fits of the critical-behavior predictions to the magnetic susceptibility of
LiTb~ Yi ~F4. The susceptibilities are in cm /g and have been corrected for demagnetizing efkcts. All of the fits had

the same number of adjustable parameters.

Concentration p
Density (g/cm )

Temperature range

0.97+0.015
5.42+0.02
9X10 &t &10 '

0.90+0.015
5.31+0.02
9)& 10 & t & 10

0.79+0.02
5.16+0.05
4/10 &t &10

Equation (2)
Random RG
I t ' exp[ [D 1n(to/t)]'~']

T, (K)

tp

I (10 cm /g)
x'

2.7682
+0.0004
3.0+1.0
3.28+0.15
1.4

2.5552
+0.0004
2.5+1.0
3.52+0.15
1.3

2.2108
+0.0006
0.47+0.20
4.68+0.20
23

Equation (1)
Pure RG
n-'[ln(t, /t)]'"

T, (K)

tp
I" (10 cm'/g)
x'

2.7686
+0.0004
3.0+1.0
4.09+0.10
1.5

2.5556
+0.0005
2.9+1.0
4.34+0.10
1.7

2.2112
0.0006
1.0+0.2
5.39+0.16
2.8

Equation (3)
Crossover region
rt (1+~/6)R 1/3

X exp I
——(A, /2)'~'

X[lt' ' —(into)' '] ]

T, (k)

tp

I (10 2cm3/g)
X2

2.7681
+0.0006

0.34+0.08
4
4.15+0.06
1.4

2.5551
+0.0006

0.36+0.08
4
4.37+0.06
1.3

2.2101
+0.0009

0.65+0.10

4.58+0.10
2.2

Equation (4)

Power law
I t-~

T, (K)

y
I (10 cm /g)
X2

2.7677

+0.0005
1.089+0.015
5.04+0.07
1.7

2.5547

+0.0005
1.092+0.010
5.29+0.06
1.2

2.2098

+0.0007
1.126+0.015
5.41+0.12
2.5

atmosphere from the melt using the Czochralski
top-seeded solution technique. This yields large,
optically clear, single-crystal boules from which we
cut the crystals. To obtain a constant demagneti-
zation factor within each sample, the crystals were
ground into sphere with diameters of 4—5 mm
+0.1%%uo. The Tb concentrations p were measured
using three techniques: density measurements
(comparing our measured crystal densities against
the known densities of LiTbF4 and LiYF4), atomic
absorption fluorescence spectroscopy, and Faraday
rotation. The room-temperature Faraday-rotation
measurements were made at a wavelength
(A, =514.5 nm) at which LiTb~ Yi &F4 is trans-
parent. A laser beam was passed through an opti-
cally polished disk of each crystal placed in a mag-
netic field. The Faraday-rotation of each crystal,

which is proportional to the number of magnetic
ions, was then compared with that of the pure
LiTbF4 to obtain p. The measured p's for the
eight crystals, along with their associated errors
and their measured densities, are shown in Table I.

Previous experiments have shown that Tb + ions
enter LiYF4 substitutionally for the Y + ions with
negligible lattice distortion. Low-temperature EPR
measurements' on the dilute LiTbp p]Yp 99F4 have
resulted in narrow linewidths and have been able to
measure the g factor of the Tb +. This indicates
that there is no rare-earth clustering in these very
dilute crystals. Our own light scattering and
Faraday-rotation measurements have proven that
there is no rare-earth ion clustering on a macros-
copic scale in our samples.
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TABLE I. (Continued. )

0.63+0.015
4.92+0.01
8)(10 4&t &10

0.46+0.015
4.66+0.02
8)& 10 "

& t & 10

0.375+0.015
4.53+0.03
10 &t &6X10

0.24+0.015
4.32+0.05
10 &t &6y10

0.155+0.020
4.19+0.05

1.6645

+0.0004
0.30+0.07
6.13+0.16
3.9

1.1397

+0.0007
0.13+0.07
11.2+0.7
13.0

0.8186

+0.0009
0.06+0.01
25+2
11.7

1.6648
0.0004
0.73+0.20
7.0+0;2
6.2

1.1397
0.0006
0.32+0.10
12.9+0.7
10.8

0.8181
0.0007
0.12+0.03
31+3
6.5

1.6637
+0.0003
0.81+0.04
4
5.42+0.06
1.0

1.1379
+0.0003
1.40+0.08
4
7.28+0.14
1.1

0.8158
+0.0007
2.52+0.24
4
8.8+0.9
1.2

0.365
+0.003
6.0+1.2
4
14.5+4.0
1.0

1.6635
+0.0002
1.147+0.010
6.32+0.08
1.1

1.1379
+0.0004
1.233+0.015
8.1+0.2
1.1

0.8158
+0.0007
1.415+0.040
9.2+1.0
1.2

0.365
+0.003
2.0+0.2
14.5+4.0
1.0

0.135
+0.025

B. ac susceptibility measurements

The magnetic ac susceptibility measurements
were made using a mutual inductance bridge.
The sample is placed in an external time varying
homogeneous magnetic field. The susceptibility is
then found with the bridge by measuring the vol-

tage induced in a pickup coil by the time depen-
dent magnetic moment of the sample. The bridge
was calibrated to better than +0.6% with a super-
conducting lead sphere. The bridge zero was ob-
tained either by sample extraction or from a high-
temperature Curie extrapolation of the susceptibili-
ty. Between extractions of the sample the bridge
was stable to within +0.001/o and between runs
the reproducibility was +0.3%. The crystals were
oriented with x rays and glued to the sample hold-
ers with their c axis oriented within two degrees of
the direction of the applied magnetic field.

C. Cryogenics

To achieve the necessary temperatures, the five

samples with p &0.46 were immersed in pumped

liquid He. The p =0.38 crystal was immersed in

pumped He and the p=0.24 and 0.155 crystals
were thermally anchored to a copper block in con-
tact with the mixing chamber of a He dilution re-

frigerator. The best experimental temperature re-

gulation was achieved in the 0.46 and 0.63 crystals
where the immersion He liquid is a superfluid and

the temperature could be controlled typically to
better than 10 K using an ac resistance bridge
and an electrical heater. In the 3He and the nor-
mal He the temperature was regulated by varying
the pumping speed of the liquid bath. Unfor-

tunately, the critical temperature of the p =0.79
crystal fell in the temperature range just above the
He lambda point, making it difficult to stabilize

the temperature. Except in the refrigerator, the
temperature of the sample was measured using a
33-Hz Kelvin bridge and a commercially calibrated
carbon glass resistance thermometer. The ther-
mometer calibration was checked against the He
lambda point and the vapor pressure above the
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FIG. 2. The measured magnetic susceptibility g,„, vs

temperature of LiTb~Yl ~F4 for the concentration

p =0.63. The susceptibility has been divided by the den-

sity giving units of cm /g.

magnetic field. Some of the experiments were re-
peated at lower and higher field amplitudes in or-
der to verify that there is no magnetic field depen-
dence to our results. The experiments were also re-
peated at several frequencies. For each crystal the
susceptibility at all temperatures above the tem-
perature of the peak susceptibility is found to be
independent of the frequencies used. Thus there is
no frequency dependence to our critical phenomena
results. Below the temperature of the peak suscep-
tibility, the susceptibility decreases with decreasing
temperature (see Fig. 2). For a given crystal this
reduction with decreasing temperature is less severe
at lower frequencies. Static (zero-frequency) sus-
ceptibility superconducting quantum-interference
device (SQUID) measurements on LiTbo 9Yo iF4
show no falloff in susceptibility with tempera-
ture. For any given frequency the falloff is more
severe as p becomes smaller. We attribute this
frequency- and temperature-dependent behavior to
the formation of magnetic domains below T,
which have a resistance to movement on the time

He. The thermometer, which was held about 4
cm from the sample and out of the pickup coils,
was thermally anchored to the sample with a bun-
dle of 40 AWG copper wires. In the dilution refri-
gerator, located at the Naval Research Laborato-
ry, the temperature was measured with a Speer car-
bon resistor thermally anchored to the copper
block and calibrated during the run using the su-
perconducting fixed point transitions of three NBS
(National Bureau of Standards) calibrated super-
conductors.

F000

100—

I I I I [ I I
I

MAGNETIC SUSCEPTI BILITY
OF

LITbp Y, pF4

V. ANALYSIS
X l0-

In all eight of the crystals the measured peak
magnetic susceptibility reached, within the pre-
cision of the inductance bridge, the value 1/Xp
(where E=4m/3 is the demag. netization factor for
the shperical samples and p is the density in g/cm
for each sample). This value of the external sus-
ceptibility corresponds to an infinite internal sus-
ceptibility which occurs at a ferromagnetic phase
transition. We conclude that the randomized
LiTb&T~ &F4 exhibits a ferromagnetic transition at
least for p & 0.155. Figure 2 shows the measured
magnetic susceptibility g,„, in the critical region
for the concentration p =0.63.

The susceptibility measurem. ents presented here
were made with the inductance bridge operating at
100 Hz and with a 4-Oe peak modulated external

lo-3 10-2
' '

10-1

T-T
C

Tc

FIG. 3. Magnetic susceptibility P vs reduced tem-
perature t on logarithmic scales for four concentrations p
of LiTb~ Yl ~F4. The solid lines are the fits to the
power law Eq. (4). The close agreement between the
data and the lines is illustrative of the low g values ob-
tained from the Eq. (4) fits. The p =0.38 fit extends
only to t =6&(10 . The susceptibilities have been
corrected for demagnetizing effects according to Eq. (8).
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scale of our driving frequencies. This resistance
becomes more severe for the lower concentration
crystals.

In order to analyze the data, the experimentally

measured externa1 susceptibility J',„,was correlated

for demagnetization effects to obtain the internal

susceptibilites 7 by using the decomposition formu-

la

(8)

Figure 3 shows our data for the four concentra-
tions p =0.97, 0.63, 0.46, and 0.38, and plots the
internal susceptibility [corrected by Eq. (8)] versus

t on logarithmic scales. Since the absolute calibra-
tion of the bridge is only accurate to +0.6%, we

must scale the measured susceptibilities so that the

peak value corresponds to exactly 1/Ep and to
'=0. If we allow this scale factor to vary as an

adjustable parameter of the fits to the functional

forms, the quality of the fit to each form is not af-

fected. When this is done the adjustable parameter
T, becomes correlated with the scale factor. None
of the other adjustable parameters is affected.

In order to test the appropriateness of each of
the four functional forms Eqs. (1)—(4) to the data
[Eq. (lb) is used in all of the fits], we have per-
formed a nonlinear least-squares fit of each form to
the data. The fitting procedure minimizes the
parameter 7 given by

X'=, - g [X,„,(&;)—Xih.„(&i)]',
o (n f—1)—

where n is the number of data points, f is the
number of fitted parameters (f=3 for all fits), cr is
the estimated uncertainty in each measurement,
and X,h„, is the theoretical functional form correct-
ed by Eq. (8).

The measured magnetic susceptibility data for
the seven crystals p )0.24 were fitted to the four
functional forms Eqs. (lb) —(4) and the results are
given in Table I. The p =0.24 concentration was
only fitted to Eqs. (3) and (4). Temperature stabili-
zation problems in the very low T„p=0.155 crys-
tal, presumably a result of the high heat capacity
and a low heat conductivity of the samples near
T„made it impossible to make high-resolution
quantitative measurements. For this crystal we
were only able to determine T, (p=0.155)
= 0.135+0.025 K.

Owing to our finite experimental temperature
resolution and to imperfections in the crystals, a

minimum practical limit in the measured reduced
temperature used in the fits of the data ranged be-

tween 5&10 "and 10 . The upper limit on the
temperature range over which we fit was chosen by
fitting the functional forms with an upper bound
constrained so that it would not have a significant
effect on the 7 of the fits; .The reduced tempera-
ture range used for each concentration is shown in

Table I. For each crystal the same range was used
for each of the four fits in order to facilitate com-

parisons between the fits.
When comparing the 7 's of the fits in Table I,

it should be realized that for each concentration
the 7 's are normalized by the experimental uncer-

tainty ~. Because the o's are not identical in all

runs, it is difficult to compare the X 's for each
concentration with those of another concentration.
We can compare the 7 's for different functional
forms for each concentration.

A good fit of the data would result in a X value
of 1. If we fit a function to the data and obtain a

near 1 we have not proven that this functional
2

form is the true physical description of the data,
but that over the fitted range the fit is consistent
with the data. For example, previous susceptibility
measurements in the pure crystals LiTbFq (Ref. 27)
and LiHoFq (Ref. 28) testing Eq. (1) against Eq. (4)
resulted in 7 =1 for both functional forms and
were unable to distinguish between these forms.
Other experiments, however, show with certain-
ty that Eq. (1) was the proper description of the
data.

VI. RESULTS

A.. Critical phenomena

The 7 values for the fits of the p =0.97 and

0.90 crystals shown in Table I are a11 between 1.2
and 1.7. Hence it is best to conclude that all of the
four functional form equations (1)—(4) are possible

candidates for the "appropriate" description of the

susceptibility at these concentrations. We cannot

conclusively distinguish between them. The p
= 0.79 crystal has a slightly larger g (probably

due to the awkward temperature range previously

mentioned), but here again the relative X values

for the four forms are not significantly different

and we are unable to conclusively choose the ap-

propriate form.

Examining the three concentrations p =0.63,
0.46, and 0.38 in Table I, we see that there is a
marked difference in the relative 7 's for these fits.
In particular, the X for the fits of both the non-
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universal form equation (3) and the power-law
equation (4) ranges between 1.0 and 1.2. This indi-
cates an excellent agreement with the data. ' The
X 's for the asymptotic random form equation (2)
for these three concentrations are 3.9, 13.0, and
11.7, respectively. These are all very poor fits to
the data. Similarly, the pure form equation (1) re-

sults in X 's of 6.2, 10.8, and 6.5, which also shows

very poor agreement with the data. In these three
medium concentration crystals the power-law and

nonuniversal random susceptibility fits were quite
insensitive to the portion of the reduced tempera-
ture range selected, and the fits always resulted in

values between 1.0 and 1.2. In contrast to this
behavior, the fairly large 7 's obtained when fitting
Eqs. (1) and (2) can be varied considerably by
changing the reduced temperature range over
which we fit. For example, for p =0.63 or 0.46, if
the maximum value of t is reduced from 10 ' to
3 X 10, the X values are reduced but still con-
clusively show that form (1) and (2) are poor repre-
sentations for the data. It is only for reduced tem-
perature ranges smaller than one decade that the
X values for the various functions become com-
parable. We conclude, therefore, that in the con-
centration regime 0.38 &p &0.63, neither the
asymptotic random susceptibility equation (2) nor
the pure RG susceptibility equation (1) can be con-
sidered to be an adequate description of the experi-
mentally measured susceptibility.

A refinement has been proposed by Shalaev'" to
the universal asymptotic random form equation (2)
of Aharony. This refinement consists of multiply-
ing Eq. (2) by the slowly varying logarithmic fac-
tor (lnt) . For the four-dimensional short-range
Ising model w =0.37, but m has not been calculat-
ed for the three-dimensional dipolar case studied
here. Fitting with this correction term included in

Eq. (2) in the p =0.63 and 0.46 concentrations re-

sulted in even poorer fits than with the uncorrected

Eq. (2) for all w & 0. We conclude then that the
corrected asymptotic form cannot adequately
describe the data for p &0.63.

Forms (1) and (2) were also shown to be poor fits
for the p =0.24 concentration crystal. The fits are
not shown in Table I because the statistics were

fairly poor. In measuring the susceptibility of a
crystal with p =0.32 Beauvillain et a/. ' have ob-

tained results similar to ours. ' In the lowest con-
centration crystals, especially p =0.46 and 0.38, the

to adjustable parameter in the random form equa-
tion (2) fit becomes dependent on the upper boundt,„ofthe reduced temperature range over which

it is fit. In each fit, to adjusts to just larger than

the t,„chosen and is thus not a property of the
crystal. Without the adjustable parameter to in the

Eq. (2) fits (i.e., if we set to 1),——the X rises drasti-

cally, showing a large discrepancy between Eq. (2)

and the data for all seven concentrations.
In fitting the nonuniversal crossover region sus-

ceptibility equation (3) predicted to be appropriate
in the region t„«t «1, we have allowed the am-

plitude I to vary in each fit but we have kept the

parameter to fixed at the measured pure value of
4.0. All four of our functional forms then have ex-

actly three adjustable parameters (I, T„and either
)', ro, or I, ).

In Table I we see that Eq. (3) fits all of the con-

centrations with a 7 equal to or better than the
best fit for any of the other three forms and that

X is always close to 1 (except the anomalous

p =0.79 previously discussed). As mentioned be-

fore, this is due to the similarity between Eq. (3)
and the pure RG form equation (1) near p =1 and

between Eq. {3)and the power-Iaw equation {4) for

p &0.63. These agreements provide evidence for
the appropriateness of this nonuniversal form
equation (3) in describing our data.

For small 1 —p, the I amplitude in Eq. (3)
should not have any explicit p dependence. Table I
shows that for 0.79&p &0.97 there is a slight p
dependence and that for p &0.63 there is a fairly

large p dependence in I . The calculation for Eq.
(3) also predicts for small 1 —p a dependence

A, cc (1—p) . This relationship is not found to be

consistent with our data. It is possible, however,

that if these relationships are true that they only

hold for p )0.9 where our data cannot conclusively

test them.
Since the crossover temperature has the func-

tional dependence Int, ~ —Ln (1—p)], we expect

that if we were near the asymptotic temperature re-

gime, the rise in t„would cause the universal ran-

dom equation (2) to fit the data better rather than

worse as p decreases from one. Our experimental

results indicate that with the more dilute crystals
0.24 &p &0.63, we have a poor agreement between

Eq. (2) and the data in the experimentally accessi-

ble temperature range 10 &t &10 '. We con-

clude that our experimental temperatures are not in

the asymptotic temperature range for any concen-

tration of LiTbz Y»F4.
The crossover behavior of random dipolar-

coupled Ising ferromagnets has recently been stu-

died by Liebmann et al. ' using numerical tech-

niques. They have concluded that the crossover re-
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FIG. 4. Effective exponent y vs magnetic concentra-
tion p in LiTb~ Y& ~F4. y is obtained by fitting Eq. (4)

to the data for each concentration. The p =1, y=1.06
value is from Refs. 26 and 30.

gion separating the "pure" behavior equation (1)
from the "random" behavior equation (2) is actual-

ly extremely broad and extends over many decades
in reduced temperature. Thus the numerical work
of Liebmann et al. is in complete agreement with
our conclusion that the experimentally accessible
temperature range is not near the asymptotic re-
gion of the universal random form equation (2).

B. yvsp

The solid lines in Fig. 3, which represent the
power-law fits [Eq. (4)], indicate that there is a
good agreement between the data and a simple

power law. In Fig. 4 the effective critical ex-

ponents y obtained from fitting Eq. (4) are plotted
as a function ofp. The pure p =1 exponent has

been measured at 1.06, ' which is close to the
classical result, y=1. The small discrepancy of
0.06 between these values occurs because our mea-

surements are not made in the asymptotic tempera-
ture range. The In(to/t)'~ correction term in Eq.
(lb) causes the exponent y in Eq. (4) to be tempera-

ture dependent, and in the range 10 & t ~ 10
with to ——4 we can calculate @=1.060.

From Fig. 4 we see that y is concentration
dependent. For lower concentrations y rises rapid-

ly reaching 2.0 at p=0.24 and giving the appear-
ance of diverging at some low concentration. Pre-
vious high-temperature series-expansion studies ' of
the short-range Ising magnet have shown a concen-
tration dependent y which qualitatively is similar

to the behavior shown in Fig. 4. An RG calcula-
tion by Kawasaki for the short-range case has
found that critical exponents may change due to
the existence of a correlation in the random occu-
pation of sites. Stephen and Aharony' have sug-
gested that the short-range percolation critical re-
gion is broadened by the presence of the long-range
forces and that the increase in y is a manifestation
of finite temperature precolation exponents.

In order to characterize the y(p) dependence, the
phenomenological equation y(p) =1.06pT, (1)/
T, (p) has been proposed. ' ' The 1.06 factor is in-
cluded to correct for the nonasymptotic tempera-
ture range of the measurements. The y(p) values
predicted from this formula are in excellent agree-
ment with our y(p) measurements.

T, (p)/T, (1)=1—(1.137+0.025)(1—p) . (10)

By extrapolating this line to zero temperature we
obtain an "apparent" percolation concentration of
p, = 0.12+0.02. We do not know whether the
T, (p) phase line remains linear below the lowest
data point T, (0.155)/T, (1)=0.05 and if there is a

2.5—

LLJ

cl= 2O—
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1.5—
LLI
I—

1.O-
C3
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C3
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0 0.2 0.4 0.6 0.8 1.0
P

FIG. 5. Critical temperature T, vs magnetic concen-

tration p in LiTb~ Yl ~F4. The solid line is a least-

squares fit to the data. The p =1, T, =2.88 K value is

from Refs. 4—9 and 26.

C. T,-vs-p phase diagram

The T, 's for each of our eight concentrations are
plotted in Fig. 5. Figure 5 also includes the pure
point T,(p=1) = 2.88 K. ' ' ' The T,(p)
data appears quite straight and has been least-
squares fit with a linear line constructed to pass
through the pure T, . This line is shown in Fig. 5
and can be represented with the equation
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The T,(p) phase line of LiTb~ Y, F4. The
dashed line is T,(p) calculated using Eq. (5). The solid
line is a linear fit to our data.

true percolation. Short-range site dilution calcula-
tions for dT, (p)/T, (1)dp near @=1 give values be-

tween 1.02 and 1.20 (Ref. 12) (which are close to
our measured dipolar value). Short-range calcula-
tions for p, of a four nearest-neighbor crystal lat-
tice range between 0.33 and 0.59.' This is much
larger than our extrapolated p, .

According to the mean-field ground-state split-

ting calculation, the T,(p) phase line should bend

over and go to a p, =0.23. ' The data are not in

agreement with this prediction; the data clearly in-

dicate ferromagnetism for p & 0.155+0.020. The
mean-field splitting calculation predicts nonlinear

behavior for T, (p) at low concentrations, whereas

our T,(p) data appear to be quite linear. The dilute
dipolar-coupled T,(p) prediction equations (5) and

(7) do not take the splitting into account.
In order to compare the predictions Eqs. (5) and

(7) with our data it is necessary to calculate a lat-

tice sum of tanh(J/kT). The sum is performed by
using the Lorentz approximation where we exactly
sum all of the Tb or Y sites within a small sphere
(diameter =350 A.) and then integrate over the
remaining volume. The summation is performed
in an infinitely long cylinder so that the demagnet-

izing field is zero (i.e., h;„,=Ii,„,). To match the

condition that T, (p= 1)=2.88 K in Eq. (7) the

parameter S was varied, and in Eq. (5) the entire

sum was multiplied by a constant. Unfortunately,

performing these sums and calculating the T, (p)
phase line with both Eqs. (5) and (7) we find that
these predictions do not vary significantly from the

linear mean-field behavior T, (p) =pT, (1). In Fig.
6 the low p results of the calculation of the replica

method prediction Eq. (6) are shown (dashed line}

along with our data and the least-squares fit to our

data (solid line). As can be seen in Fig. 6, al-

though the low-p T, predictions do vary slightly

from a mean™field behavior, it is not nearly enough
so that we could say that either of these predictions
can adequately describe our data.

Stephen and Aharony' also predicted that when

the condition

g(tanhJ~/kT) & g(tanhJ~/kT)

holds, that there might be a transition to a spin-

glass state. %e calculate that this condition is met
in the LiTbF4 crystal structure for p &0.10. It is
not clear how to interpret this in light of the
failure of the theory to predict T, (p) and the some-

what interesting coincidence that our extrapolated

p, is close to this value.

VII. CONCLUSIONS

This paper has presented measurements of the
magnetic susceptibility and T, (p) phase diagram in

the random dipolar-coupled Ising ferromagnet

LiTb& Y~ &F4 in the range 0.97 &p & 0.155. The
magnetic susceptibility has been compared to the

pure susceptibility function equation (lb), the ran-

dom susceptibility equation (2), the "nonuniversal"
random function equation (3), and to the conven-

tional power-law form equation (4). In the p
= 0.97 and p = 0.90 crystals it is not possible to
quantitatively distinguish between these four forms.
In the p=0.63, 0.46, and 0.38 crystals, Eqs. (3) and

(4) yield lower X values than Eqs. (lb) or (2). The
efFective nonuniversal critical-point exponents ob-
tained by fitting Eq. (4) are concentration depen-
dent and appear to diverge at small values ofp.

'
The above results, in conjunction with the numeri-
cal calculations of Liebmann et al. , indicate that
the asymptotic temperature range in which Eq. (2)
is valid has not been attained in LiTb& Y~ &F4.

The T, (p) phase line was determined to be linear
in p with a slope dT, (p)/T, (1)dp=1.137+0.025 K,
which extrapolates to a percolation concentration

p, = 0.12+0.02. This nonzero p, is not predicted
using either of the calculations for dipolar-coupled
magnets, Eqs. (5}or (7). A mean-field non-Ising
split ground-state calculation predicts a

p, =0.23. ' lt is possible that the existence of
ferromagnetism below the p, =0.23 percolation
concentration predicted by the ground-state split-
ting calculation is due to a cooperative nuclear
electronic spin interaction. ' This "enhanced"
nuclear spin ordering is predicted to occur at the
approximate temperature

—1

T, =p g J(A/5) 1 —2+J/4
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where 2 /b, is the ratio of the hyperfine interaction
to the ground-state splitting. The large hyperfine
interaction in LiTb~ Y~ ~F4 [2 =0.3 K (Ref. 19}]
results in a predicted p =0.15 transition tempera-
ture of 0.08—0.10 K for the nuclear ferromagne-
tism. This is not far from our measured

Tc =0.135 K
Additional experiments with p &0.15 would be

helpful in establishing the existence of this
nuclear-electronic spin ordering, to look for any
possible percolation transition, or to look for a
spin-glass state.
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