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Single-donor impurities and core excitons in many-valley semiconductors
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We discuss our previous results in the perspective of recent developments. We argue

that intervalley kinetic and overlap terms are artifacts of a different incorrect formalism,

and we thus maintain our prediction of deep interstitial and substitutional single donors

and core excitons in Si. We outline an experiment in which the intervalley effect, the
core-hole-electron interaction, and the shallow-deep instability may all be directly observ-

able in Si.

I. INTRODUCTION

In this paper (Sec. II) we discuss in more detail
the results of a previous paper. ' We then proceed
(Secs. III and IV) to discuss the objections which
have been recently raised by some authors. ' They
claim that a basic contribution, the so-called inter-

valley kinetic-energy term T;„„„hasbeen neglected
in the apporach which we propose' ' ' (I denoting
a reference to an equation or reference in our
preceding paper'). We show that such a term
should not exist in a correct formulation and we
thus maintain our prediction of deep interstitial
and substitutional donors and core excitons for the
screened point-charge potential Vd(r) of Eq. (Il 1)
and the intervalley constructive interference in Si.

It appears by now, proven experimentally, that
core excitons are deep in many-valley
semiconductors. ' ' It may be possible to obtain
definite experimental evidence that the responsible

mechanism is the one which we outline. We pro-

pose (Sec. V) one such possible experiment, namely

the optical study of deep core excitons in Si under

Qniaxial stress in the [100] direction.

II. COMMENTS TO THE RESULTS
OF THE PRECEDING PAPER

The preceding paper' may leave the following

questions unanswered. The basic point is that all

results fall in two regimes: one where the effects

are small and the results are close to the effective-

mass theory (EMT), and a second, where the bind-

ing is extremely different. In the first regime, it
may not be apparent what the importance is of the
small differences from EMT. In the second, it
may not be clear to which extent the lowest-band

approximation has broken down for all the cases
given and also for core excitons in Si, and then

how many bands are needed on the deep cases and

what are the extensions to multiple bands.
In the cases in which the differences from the

EMT are small we conclude that the approxima-
tions which we made are consistent and justifimi.
In particular, the single-band approximation is
valid, and Eqs. (IS) and (I15) give the same results.
This regime occurs when either the impurity po-
tential V(r) diverges slower than r ' around the

origin, or the intervalley interference is not con-
structive around the origin. In this regime the sig-
nificance of this new method is to provide a simple
and accurate generalization to the EMT, which

consistently includes the many-valley effect.
Therefore, the differences with respect to the EMT
must be regarded as physically meaningful. How-

ever, we have not yet performed a systematic study
of those differences or a detailed comparison with
the experimental data. We have shown that, in
order to do so, it is also necessary to introduce reli-
able first-principle impurity pseudopotentials V (r ),
other than those of Eqs. (I10) and (Ill). We dis-

cuss in further detail this last point in both Secs.
III and IV.

When the binding energies differ for orders of
magnitude from the EMT results, the single-band

4038 1982 The American Physical Society



25 SINGLE-DONOR IMPURITIES AND CORE EXCITONS IN MANY-. . . 4039

approximation has broken down. This is shown by
the quite different results of Eqs. (I8) and (I15).
The calculated binding energies are meaningless,
but the prediction of a deep state is correct. In
fact, if the state were shallow, its wave function
would have automatically been confined to the
lowest conduction band (CB) to begin with, the
single-band approximation would have been justi-
fied, and there would have not been any instability
in Eq. (I8) in the first place. We have shown that
the deep state regime occurs whenever the potential
V(r) diverges as r ' around the origin and the in-
tervalley interference is constructive therein, re-
gardless of whether that origin is interstitial or
substitutional.

If one attempts to calculate in detail the binding
energy of an intermediate or a deep state by means
of an expansion on energy bands, he must consider
an energy range approximately as large as twice
the binding energy of the deep state (Sec. III of
Ref. 1). Equations which include generalizations
to multiple bands have been introduced. Howev-
er, the real problem comes at the point when one
has to perform some actual calculations. So far, it
appears that nobody has attempted any detailed
calculation starting from the EMT point of view
and including multiple bands, with perhaps the ex-
ception of Mieher et al. , in Refs. I12 and I13 and
related papers. We discuss in more detail the
multiple-band expansion in Sec. III.

III. THE INTERVALLEY
KINETIC-ENERGY TERM

Some authors ' have recently attributed the
differences between their results and ours to an
off-diagonal term allegedly produced by the unper-
turbed Hamiltonian Ho, the so-called intervalley
kinetic-energy term T;„„,. The absence of such a
term was previously deduced and pointed
out. ' ' "' Further discussion still appears to be
needed.

The Hamiltonian for the impurity problem is

H =T+ V,~„(r)+V(r),

where

is the true kinetic-energy term, which contains the
true electron mass m„V,»,(r ) is the perfect-
crystal periodic potential, and V(r) is the
potential-energy difference introduced by the de-

Hp-=E, (k),
which are (assumed to be) known. Similarly, in
the second case of a deep level, one considers

P'p T+ V——(r),

(4)

as the unperturbed Hamiltonian, and V,», (r ) as
the (small) perturbation. Likewise, one then ex-
pands 1((r) onto the eigenstates of 4 p, etc.

The EMT, as well as any other method which
attempts to describe shallow states to begin with,
must use the first approach, and eventually make
the further assumption that the expansion is local-
ized around the conduction-band (CB) minima. In
that case, one can retain the quadratic term only in
the expansion of Eq. (4):

$2~2
E,(kq+f )= 2'

However, it should remain understood that Ho can
be identified with the expression (6) only on the
basis of its own eigenstates, on which it is diago-
nal. Therefore, it is not possible to have off-
diagonal elements of the expression (6), the so-
called T;„„„unless one has chosen an incorrect set
for the eigenstates of Hp. In that case Eqs. (4) and
(6) cannot be assumed, and T+ V,~„(r) becomes
in fact an intractable operator, which has nothing
to do with the Hamiltonian of a free particle of
mass m*.

We have correctly assumed from the beginning
(Ref. IS) that 4(g, r ) as given in Eq. (I2) is an
orthonormal set of eigenstates of Hp, correct and
complete within the single-band approximation.
Therefore, whenever such approximation is justi-
fied, Eq. (I8) stands correct without any T;„„,or
"intervalley overlap term" 0;„„,. Consequently, all
the results which we derive from Eq. (I8) are also
correct, including the prediction of deep levels for
the screened point-charge potential V~(r) of Eq.
(Il 1) and the 2

~ symmetry, for both interstitial
and substitutional donors and core excitons in Si.

feet. Two basic approaches are possible, depending
on whether one is attempting to describe a shallow
or a deep state. In the first case one considers

Hp T——+ V,~ s(tr),

as the unperturbed Hamiltonian, and V(r) as the
(small) perturbation. One then expands the impur-
ity wave function f(r ) onto the eigenstates of Hp.
By doing so, the (complicated) operator Hp be-
comes diagonal and simply given by its (real num-

ber) eigenvalues
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Let us now determine how the basis (I2) should
be correctly enlarged in order to describe states
beyond the single-band approximation. One must
clearly assume (from an "extended zonelike" point
of view) that, whenever g exceeds g„as given by
Eq. (I13), the Bloch functions g, (kz+ f, r) au-

tomatically refer to the second (or eventually the
higher portion of the lowest) conduction band (see

Fig. I3). With this (obvious} understanding, the
set (I2) remains clearly an orthonormal basis of
eigenstates for Hp, correct and complete within the
second- (or higher) band approximation. Equation
(4) remains valid, no T;„„,or 0;„„,can ever appear
anywhere. Notice that Eq. (I8) should remain
valid far beyond the single-band expansion, as far
as the basis is concerned. The expressions which
can no longer be justified beyond the single-band

approximation are instead the expansion (6) and

the plane-wave-like approximation (15) in the cal-
culation of the matrix elements of V(r).

The authors of Refs. I10, 2, and 3 retain the ex-
pansion (6) and the approximation (I5). In addi-
tion, they perform an approximation on the matrix
elements of V(r), which is very questionable except
maybe for very small i} values (see Refs. I9 and 7}.
On the other hand, as far as Hp is concerned, they
let c (ri) extend beyond rj„and then perform a dif-
ferent choice of the basis set. That consists in tak-
ing always the P, (K&+ i},r) which are associated
to the lowest CB, no matter what g is. The result
is that the set (I2) is no longer orthonormal [see
Eq. (4) in Ref. 2], and it is certainly not a correct
set of eigenstates of Hp for the considered range of
ri values. Consequently, Eqs. (4) and (6) could no
longer be assumed. Equation (5) of Ref. 2 indeed
reads

2 2

(@(fr) ~Hp
~

@(f',r))= —,&(i}—i}')+g'a„aQ,(k„+f')5(k„+i) —k„—ri') .
7' p, v

(7)

The first term in the right-hand side is the only
one which should remain, if the definition of
4( ri, r ) was understood appropriately for i) p ik.
The second term is the one that originates T;„„„
and arises because 4(ri, r ) is forced into the lowest
CB also for g values larger than i},. In other
words, Eq. (7) implies an expansion which involves

(many) more states that those which are complete
for the lowest CB. However, the additional states
are always taken from the lowest CB. Each state
of the lowest CB is thus multiply counted with dif-
ferent matrix elements. On the other hand, any
other state of any higher band is disregarded.
Such a choice of the basis set is inconsistent. Ei-
ther the expansion requires only the states of the
lowest CB (i) & ik), in which case those states
must be counted once and no other state is con-
sidered; or the expansion requires more states than

just those of the lowest CB (ri pi), ), in which case

the states of the higher bands must be considered,
rather than counting more times again the states of
the lowest CB with different matrix elements.

Furthermore, Eq. (7) is inconsistent because the
expansion (6) is used in the first (diagonal) term,
but not in the second (intervalley) term. In princi-

ple, one cannot let E,(k„+f') in Eq. (7) to raise
quadratically beyond g & g„otherwise he is practi-
cally associating eigenvalues of higher bands to
eigenfunctions of the lowest CB. In such case, the
second term of Eq. (7} would also become com-

pletely meaningless, since E,(k&+ g) could be dif-
ferent from E,(k„+f ') [see Eqs. (8a) and (8b)].
Consequently [see, for example, Eqs. (22) and (23)]
and the corresponding discussion in Ref. 3,
E,(k„+f') is (partially) restricted to the lowest
CB, by means of a truncation. Suppose, for exam-

3
pie, f= —,(ki —k2) and i}'=—,(k2 —k, ). The
choices are:

or

9 A'
~
k, —ki

E,(ki+ ri')=E, (ki+ —,k2 ——,ki) =
2HZ

The second choice (Sb) must result for the second

term of Eq. (7), which should be achieved by
means of the truncation. However, no truncation
is performed for the first term of Eq. (7), and the

A' ~ki —ki~
E,(k)+ ri') =E,(k2+ —ki ——,k2) =E,(k2+ ri) =

2m'
(Sb)

I

first choice (Sa) is kept on that. From the numeri-

cal point of view, such inconsistency amounts to
the following. If one assumes the expansion (6}
with no truncation, that produces a sizeable intra-
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valley (diagonal} kinetic-energy term T;„„„but
then there cannot be any T;„«, at all. If one in-
cludes r;„«„the expansion (6) must be truncated
for T;„„,as well, which amounts to a severe reduc-
tion of T;„«, for a localized state in r space. Ei-
ther way, the numerical result should not differ
qualitatively from ours. However, the authors of
Refs. I10, 2, and 3 both introduce T;„„,and yet
leave total strength to T;„„„sincethey do not lim-
it the indefinite quadratic raise (6) associated to it.
That could well be the major reason for a huge
overestiinate of the kinetic-energy term. On the
other hand, no truncation whatsoever on the
potential-energy term is performed in Refs. I10, 2,
and 3. We must also notice that the truncation for
the second term of Eq. (7} is not performed at the
zone boundary g, =g, but midway between the
different minima in the first Brillouin zone. That
corresponds to q, much larger than g„which
boosts even more (incorrectly) T;„«,. The calcula-
tions of Refs. I10, 2, and 3 are complex and re-
quire further approximations for the calculation of
T;„«,. Therefore, we are not in any position to
reproduce and study quantitatively the various
(spurious) contributions which we mentioned.

In conclusion, T~„«, and 0;„„,are artifacts of an
incorrect formalism, and do not have any theoreti-
cal justification. The effect that they create, name-

ly a strong compensation of the deepening pro-
duced by Vz(r), is artificial. In reality, proper in-
clusion of higher bands can only stabilize the solu-
tion within their corresponding energy range. It
cannot reduce the binding energy within the range
of the lowest CB, when it has in fact been shown
that the solution is unstable in such a range. The
potential Vq(r) is unstable (regardless of its loca-
tion) and the binding energy of its ground state is
much larger than the energy range of the lowest
CB. The only way to correctly obtain shallow
ground states is to assume a short-range cutoff to
V~(r} (Refs. I8, I9, and 1}. In this respect, notice
in Table (Il) that even the shallow levels of Vq(r)
are anomalous for the A i symmetry, since they ap-
pear to be shallower than the corresponding ones
of V, (r), even though V~(r} is everywhere stronger
than V, (r). The reason is, of course, the presence
of the deep levels through the orthogonality condi-
tions. That is ultimately, again, a consequence of
the critical behavior of V~(r) at the origin.

It may be tempting to try to establish some
correspondence between the introduction of T;««
and 0;„„,and the "filter" of Eqs. (I13)—(I20).
They both force, in some sense, the solution within

IV. THE POTENTIAL-ENERGY TERMS

From the discussion of Sec. III it is clear that
the impurity potential V(r) may always have off-
diagonal elements V;„«„since 4( f, r ) has nothing
to do with its own eigenstates. For instance, Eqs.
(I14)—(I17) describe an impurity wave function
f(r ) rigorously localized within the lowest CB,
without any "spilling" of the tails of
c( g )H(q g, ) between dif—ferent neighboring val-
leys. And yet if we consider, say,

V(r) = —v05(r),

the second term of Eq. (I15) yields

—voh„(r)
~
@(0)

~
G(0),

(9)

(10)

which shows that V(r) produces intervalley cou-
pling between different neighboring valleys. Now,
if we make a proper extension to multiple bands,
V(r) can couple both different valleys and dif-
ferent bands, whereas Ho must always remain

the lowest CB. There is, however, a basic differ-
ence. The latter is a rigorous procedure of limiting
the expansion of g(r). One then knows that only
shallow states can result from that, and all Fourier
components of V(r)

~
4(0, r)

~

with i}y i), are el-
iminated. If one knows a posteriori, typically from
experimental data, that some levels are shallow,
Eq. (I15) or Eq. (I20) can predict them accurately,
regardless, to a large extent, of irregularities or un-

certainties in the potential V(r) Sh.allow donors in
Si and Ge are in fact correctly reproduced by Eqs.
(I15) and (I20), using quite simple and flexible [and
yet unstable for Eq. (8)] model potentials V(r)
(Refs. 8 and 9). On the other hand, the introduc-
tion of T;„„,and 0;„„,does not provide a justifi-
able and rigorous restriction to the lowest CB and
to shallow levels. The possibility of a shallow-deep
instability can always be present. The authors of
Refs. I10 and 2 experience that, depending on the
location of the defect. The basic reason is that the
potential-energy term can always be large (and
overestimated} for a localized state in r space, if
the expansion of g(r) is not limited to the lowest
CB. Indeed, since the 4(iI, r)'s are approximated
as in Eq. (I5) for the potential-energy term, they
cannot be orthogonal when g extends beyond g, .
That produces an overestimate as it is easily seen
in the limit of a constant potential. '
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rigorously diagonal with respect to both. Therefore,
we do not agree with the multiple-band extension
of Ref. 6, since those equations again contain inter-
valley kinetic-energy terms.

In Ref. 2 Altarelli disregards the criticism which
we made (Ref. I9) to their approximation (Refs.
I10 and 7) on the matrix elements of Vd(r) H.e
warns "that a function with exponential localiza-
tion in r space, E(r)-e r, corresponds to a func-
tion with algebraic localization in k space, c ( ri )

-(y +il ) ." That is apparently too weak of a
localization with respect to the quadratic raise of
E,(ri), and allows for the large effects of T;„„,.
However, their approximation on the matrix ele-
ments of V&(r) [see for instance Eq. (4) in Ref. 7]
essentially consists of multiplying by

/
k„+ri —k„—i)'

i

/
kq+ri —k„—il'/

and then set g= g'=0 in the numerator, invoking
the localization of c(i) ). This also produces a
quadratically increasing error on V;„„,. Our re-
sults in Table I1 show a dramatic reduction in the
potential-energy term due to such an approxima-
tion for the substitutional case, and in fact a result-

ing shallow state rather than a deep one. Unfor-
tunately, all the results of Table Il appear to be
quite different from those of Table I in Ref. 2, re-

gardless of whether Tinter and Ointer are included or
not, and even though all the parameters are taken
to be essentially the same.

The screened point-charge potential Vd(r) is crit-
ical, since it can effectively couple at any location,
different valleys and different bands. Therefore,

V~(r) is unstable and it has the capability of pro-
ducing deep levels. This is confirmed by the ex-

perimental evidence concerning interstitial hydro-

gen and muoniuin in Si (Ref. I4). We have no
reason to believe that the same effect should not
take place for a substitutional defect as we11.'s' '
Hence, we must conclude that Vd(r) by itself is not

appropriate to describe any of the well-known shal-

low donors, including the isocoric substitutional
donors such as P in Si. A clear justification for
that is given in the concluding remarks of Refs.
(IS) and (I9). The same argument has been in-

dependently provided in Ref. 6. On the other
hand, other authors" claim that V~(r) is, in fact,
appropriate for the isocoric substitutional donors.
At the same tiine, they also claim that V~(r) "ap-
pears to be an upper limit of short-range strength
for the group-V donors in Si." These two state-

ments contradict each other in view of the experi-
mental evidence ' that the ground state of As in
Si has a larger binding energy than P. In Ref. 3
the opposite is then assumed, that is, Vz(r) is attri-
buted to As, rather than to P. It is also not very
clear why a potential stronger than V~(r) around
the origin should be attributed to N, as implied in
Ref. 2, to take care of the fact that N appears to
be a deep substitutional donor. "'

In conclusion, there is substantial disagreement
about the attributions to specific impurities of par-
ticular pseudopotentials V(r), and their relative
parameters. In this respect we agree with the con-
clusion of Ref. 6 that the task of meaningfully per-
forming those attributions will be very sensitive.
This should perhaps suggest that one should check
the approximations of his equations more carefully
before proceeding with his choices of impurity
pseudopotentials, since he may easily reach superb
agreement with most experimental data and still
have an incorrect theory.

V. A POSSIBLE EXPERIMENT
ON CORE EXITONS

Core excitons in semiconductors are at present
not really understood. Several models and theories
have been proposed, invoking electronic polaron ef-
fects, nonlocality of the electron-hole interaction
(local-field effects), time dependence in the dielec-
tric screening, hole lifetime effects, interaction with

phonons, and other mechanisms. ' All these
models and theories conclude that there cannot be
any large binding energy far beyond the EMT
range. However, the experimental evidence seems
to indicate definitely the opposite. ' ' Other
models introduce large binding energies as an
"ad hoc assumption", or invoke surface effects in
the interpretation of the experimental data. ' It
appears that the mechanism which we propose is
the simplest and yet the only one which predicts
large binding energies quite consistently and natur-
ally. ' The basic assumptions are the screened
point-charge potential Vd(r) to represent the
electron-core-hole interaction and the intervalley
constructive interference. Altarelli still concludes
that "the present understanding is that intervalley
effects cannot be invoked to predict deep core exci-
ton levels in Si". That is not our present under-
standing. In any case, the reality may or may not
correspond to these (quite simplified) models. The
electron-core-hole interaction is a complex many-
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body problem, not quite understood even in free
atoms. The intervalley effect is a model picture a
long way from first principles. Therefore, only the
experimental evidence may indicate whether or not

there is a real physical meaning to be given to the
formalisms which we make. We thus propose the
experimental study of core excitons in Si under

uniaxial stress in the [100] direction. Such uniaxi-

al stress produces a removal of the degeneracy of
the six equivalent minima of the conduction
band ri, r2, ii They split into a pair and a quadruplet,
and the latter moves towards higher energies. The
splitting is about 9 meV/kbar, " and compressions

as high as 15-20 kbar are attainable. On the oth-

er hand, the secondary minima at L are about 1 eV

higher in energy and they should never enter the

picture (by producing some appreciable mixing}.
Therefore, it is possible, by means of a (high)
uniaxial stress, to practically reduce the number of
equivalent minima in Si from six to two. Accord-
ing to our calculations such a reduction should ra-

pidly push the deep core excitons back into the
shallow regime, and a strong nonlinear decrease in
the binding energy of those levels should be ob-
served with increasing stress. In other words, such
an experiment may constitute the actual observa-
tion of the deep-shallow instability produced by the
(critical} potential V~(r) and the intervalley in-

terference.
Optical experiments on core excitons in

GaAs~ „P„under uniaxial stress have already been
performmi recently. ' That has further contribut-
ed to a consistent picture and analysis of those lev-

els. The deep character is confirmed, as well as
the identification of the components of the levels
in terms of the minima of the conduction bands.
There is however no evidence of any steep decrease
in the core-exciton binding energies, such as that
which we predict in Si. On the other hand, we do
not know whether or not there should be any, since
we have not performed any detailed calculations on
those materials. The theory which is provided in
Refs. (I7), 4, and 12 appears to be similar but not
equivalent to our model. The basic parameters are
fitted from the experimental data, and it is not
clear whether or not the deep character of the lev-
els comes as a direct consequence of the intervalley
interference. We must also point out that the si-
tuation in those materials is much less favorable
than in Si from our perspective. In both GaAs
and GaP the minima at X and L are not much
separated (about 300 meV or less). Therefore,
there is substantial mixing among those in-

equivalent minima already at zero stress. In gen-
eral, the stress is not likely to remove such a mix-

ing, even though it may considerably split (some
of) the equivalent minima. The experiment in Si
appears to be much more favorable in that respect,
since the (inequivalent) minima at b, and L are too
separated to significantly interfere, either with or
without stress. Therefore, stress can reveal the in-

stability associated to the degeneracy of the mini-
ma at 6 alone. Such an experiment in Si, even
though quite delicate, also appears to be feasible up
to the necessary intensity and stress levels, in view
of the present techniques. 'i

It is also possible to conceive experiments in
which the deep-shallow instability of interstitial
single donors may be directly observable. One pos-

sibility is the measurement of the muon spin
rotation' in Si under high uniaxial stress in the
[100] direction. At the moment we have no infor-
mation on whether or not such an experiment may
be practically feasible. The other possibility is to
look for the donor levels of interstitial hydrogen.
These levels have never been revealed by any exper-
iment or technique, and for that reason they are
thought to be deep. However, a high uniaxial
compression in the [100] direction should rapidly
push them back into the shallow regime (we are, of
course, assuming that even though the equivalent
minima are significantly split, the corresponding
wave functions are not dramatically changed). The
hydrogen levels should then become accessible to
the very refined infrared spectroscopy tech-
niques. " '" If either one of these experiments
can be performed, as well as the one on core exci-
tons mentioned above, one may be able to draw a
definite conclusion about the so-called site depen-
dence of the shallow-deep instability.

In conclusion, if the experimental result will be
the one which we predict, one should hold it as a
strong evidence for the presence of intervalley ef-
fects and specifically for the mechanism of inter-
valley interference in the formation of deep core
excitons. One should also gain more confidence
that Vd(r) can be a good representation for the
core-hole-electron interaction, which is a basic
piece of information for the whole present theory
and understanding of core excitations. We are at
the moment perhaps mostly interested in the first
point. If

~

4(0, r)
~

proves to have a direct physi-
cal meaning as the factor which renormalizes the
potential at short distances due to the intervalley
scattering, that is a very simple tool to account for
the intervalley effects in a large number of prob-
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lems in semiconductors. For instance: ionized im-
purity scattering and mobility of electrons; binding
energies of single donors as a function of the im-

purity concentration up to the insulator-metal tran-
sition; donor-bound multiexciton complexes
field ionization of impurity levels' '" and fraction-
al charge impurities. '
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