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We solve with high accuracy a previously derived equation in real space for single-

donor impurities and core excitons in many-valley semiconductors. That indudes, beyond

the effective-mass theory, both effects due to the intervalley scattering and to the short-

range behavior of the impurity potential. As we previously reported, we obtain in Si a
shallow-deep instability for the A l singlets and the dispersively screened point-charge po-
tential, at both the substitutional and the interstitial sites. Our prediction of such deep
levels appears to be substantially confirmed by the most recent experimental data. We
also introduce a direct test on the localization and convergence of the envelope function
in k space. We show that in most cases there is no shallow-deep instability and the en-

velope function involves only a single band. In these cases this method should in fact
provide accurate values for the binding energies.

I. INTRODUCTION

The problem of the donor levels in many-valley
semiconductors is of fundamental importance in
semiconductor physics. Very accurate and exten-

sive experimental information has been gathered on
the subject. ' The theoretical effort to fully ac-
count for the experimental information has also
been quite substantial. However, basic questions
remain unsolved.

Faulkner has shown that the effective-mass
theory (EMT) can predict very accurately all excit-
ed single-donor levels in Si and Ge. However, the

structures of the corresponding ground states
remain unexplained. We clearly understand from
the experimental data that two basic effects beyond
the EMT have to be included in order to explain
these ground-state structures. The first effect is

the intervalley scattering. It is indeed experimen-

tally observed' 3 that the donor ground states are
split in multiplets which are composed of a num-

ber of states exactly equal to the number of
equivalent minima of the conduction band (CB);

this characteristic is revealed by performing optical
experiments in samples under uniaxial stress. The
second effect is the short-range behavior of the im-

purity potential. The experiments indeed show
the dependence of the donor ground-state struc-
tures on the chemical species with which the sem-
iconductors are doped —this characteristic is called
the chemical shift.

Another puzzling aspect of this problem ori-
ginates from the experimental observation that the
same kind of (single) donor impurities in the same
kind of many-valley semiconductors may also exhi-
bit deep levels. Furthermore, it is observed that
core excitons are deep. These features very well

may have been produced by a combination of the
two effects that we have just indicated.

%e have recently derived an equation in real
space which generalizes the EMT and includes
both these basic effects. ' In the next section of
this paper we provide accurate numerical solutions
to that equation. As we previously reported, we
show that an impurity potential, which diverges
like r ' at short distances, exhibits deep levels at
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both interstitial and substitutional sites in Si be-
cause of the intervalley scattering among the
lowest CB six equivalent minima along the [100]
directions. Typically, effective-mass calculations
do not predict deep levels. Recently, a theory
which includes the intervalley scattering predicted
deep levels to occur only for interstitial donors. '

However, deep substitutional donor levels in Si ap-
pear to have been recently detected, "and the ex-
perimental evidence that the core excitons can be
deep is mounting. ' This seems to be quite in

agreement with our results.
As we previously remarked, ' we can meaning-

fully predict the occurrence of a shallow-deep in-

stability, even though the calculated binding energy
cannot, of course, be directly related to the experi-
mental value. The envelope function becomes of
course quite localized in r space for a dix:p level,
and therefore it involves several bands in k space.
We can directly introduce within our formalism
(Sec. III of this paper) a rigorous test on the locali-
zation and the convergence of the envelope func-
tion in k space. In most cases, there will be no
shallow-deep instability, and this method should
then provide accurate binding energies.

II. REAL-SPACE EQUATION BEYOND
THE EFFECTIVE-MASS THEORY

The Schrodinger equation for the impurity-wave
function f( r ) is

where IIO is the Hamiltonian of the unperturbed
crystal and V(r ) is the potential-energy difference
introduced by the impurity. Following Refs. 8 and
9 we introduce the basis set

4( il, r ) = g a„p, ( k„+f, r ), (2)

where l(t, are the Bloch functions corresponding «
the lowest CB around the equivalent minima k&,
and the coefficients a„are solely determined by the

symmetry around the impurity site. %e then ex-

pand P(r) as

f( r )= (2ir) f d ri c( ri )4(f, r ) .

Assuming isotropy arid parabolicity of the CB
around. the equivalent minima k„, Eq. (1) is
transformed into

2

Ec(i))+(—2ir) f d ri'c(ri') f d r 4(ri, r)*V(r)4(il ', r)=0.

That the effective-mass anistropy does not substantially influence the donor ground states (not even the

wave functions) in Si has been shown by detailed calculations in connection with electron-nuclear double

resonance (ENDOR) experiments. ' 'i
If we further assume in the potential-energy term that

4( i), r )=e' " ' ' 4(0, r ),
Eq. (4) reduces to

" —E c(ri)+(2~)-' f d'ri'c(g ') f d're" &
' —

& '"'~ C(o, r)
~

'V(r)=0.
2m~

(6)

Defining the impurity envelope function Ii (r ) as

+(r)=(2ir) ' f d'qe'7''c(ri),

and Fourier antitransforming Eq. (6) in real space, we obtains 9:

Isotropy implies that spherical averages must be taken. The spherical averages
~

4(r )
~

of the renormaliza-2

tion factors
~

@(0,r)
~

are
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slun k~ —k —G~r
~@(r)

~

=1+ g' a&a~&„(G)cos(G Fz)
i
k„—k„—G fr

We have calculated
~
4(r)

~

in Si using form
factors from pseudopotential band-structure calcu-
lations. ' We display them in Figs. 1 and 2 for the
singlets A ~ and the doublets E, respectively. The
number nG of plane waves (PW) used in the expan-
sions are also indicated. Convergence, as a func-
tion of nG, is sufficiently fast, except at very short
distances; we show in Fig. 1 the situation in the
substitutional case for the singlet A, .

In this work we are still mostly concerned with
the two basic cases of impurity potentials which
we must study first in order to understand the
whole nature of this problem. Namely, ' '

V(r)= —(~or) ',
V,(r) =—[e(r)r]-' .

(10)

In Eq. (10) V, (r ) is the potential as in the EMT
(Ref. 3). In Eq. (1.1) V~(r) should properly
describe physical systems such as interstitial hydro-
gen and core excitons. In order to calculate the
actual cheniical shift of the various donor ground
states, suitable impurity pseudopotentials must be
used, other than V, (r) or Vd(r) (Refs. 8 and 9).

In Table I we show accurate solutions of Eq. (8)
for the cases (10) and (11) in Si. Notice that if we

consider either V,(r) or
~
4(r)

~
=1, the deviations

from the EMT are relatively small. However, if
we consider Vd(r ) and

~
4(r )

~
+1, a shallow-deep

instability occurs for the A
&

levels. Furthermore,
the characteristics of the solutions do not substan-

tially depend on whether we consider the intersti-
tial or the substitutional cases. These characteris-
tics do not substantially depend even on the num-

ber nG of PW's used in the expansions of
~
4(r )

~

.
Notice, in fact, that a single PW in each minimum

(nG ——1) already produces all the correct structures
of the solutions, including the shallow-deep insta-
bility for the A i singlet with Vd(r). The
corresponding

~

4(r)
~

is simply (for both intersti-
tial and substitutional cases):

sin
~

k„—k„) r
[ 4 (r )

I pw
——1+g 'a„a„

[k„—k„fr
(12)

%e point out that this result docs not imply that
the present method may not differ too much from
the traditional many-valley EMT, which neglects
all terms with 6+0 (Ref. 17). Actually, the same
intervalley scattering effect is incorrectly present
on both kinetic- and potential-energy terms in the

5. 1.5.-

2

r (o.u. )

IO 5 IO

FIG. 1. Spherical
~
4(r )

~

2 in Si for the A ~ singlets
(a„=1iv 6). Form factors from Ref. 15. The dashed
line represents interstitial (n~ ——137). The solid line
represents single PW (nG ——1). The dotted line
represents substitutional (curves 1 and 2 are for ng ——259
and n~ ——59, respectively).

FIG. 2. Spherical
~
4(r )

~

~ in Si for the E doublets
(ai= a2= —a3= —a4, = 1/2 as=a6= 0), Form fac
tors from Ref. 15. The dashed line represents intersti-
tial (no ——137). The solid line represents single PW
(nG ——1). The dotted line represents substitutional
(nG ——259).
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TABLE I. Solutions of Eq. (8) for various cases in Si. Binding energies (in meV) and ef-
fective principal quantum numbers n* are reported. We use m*=0.2987, which yields (first
row) the EMT ground state calculated by Faulkner (Ref. 3).

V(r ) /4(r) /~ —E (meV)

E
—E (meV)

V,

(EMT)
31.27
7.82

1.000
2.000

31.27
7.82

1.000
2.000

V, PW
34.15

8.17
0.957
1.957

30.88
7.77

1.006
2.006

V, sub
31.68
7.86

0,994
1.994

31.10
7.80

1.003
2.003

V, int
35.23
8.29

0.942
1.943

30.86
7.77

1.007
2.007

Vd
32.52
7.97

0.981
1.981

32.52
7.97

0.981
1.981

PW
28 351.52

27.02
0.033
1.076

30.90
7.77

1.006
2.006

Vd
2220.93

22.81
0.119
1.171

31.30
7.80

0.999
2.003

. Vd int
36 502.57

27.46
0.029
1.067

30.90
7.77

1.006
2.006

Vd AH-sub
59.59
10.43

0.724
1.732

31.76
7.88

0.992
1.992

AH-int
39 874.45

27.47
0.028
1.067

30.80
7.76

1.008
2.008

traditional many-valley EMT (Ref. 18).
In contrast with our results, Altarelli and Hsu

(AH) have obtained a site dependence of the
shallow-deep instability. ' They claim that V~(r)
exhibits deep levels only if centered at an intersti-
tial site. We have shown that the AH calculations
involve an additional approximation with respect
to ours, which is directly responsible for that
anomalous result. In fact, by transforming the AH
potential-energy term in real space, we can see
how that additional approximation produces a
corresponding

~

4(r)
~ zH which is rather correct in

the interstitial case [ ~

4(0)
~ zH;„, ——6.512], but

strongly reduced at short distances in the substitu-
tional case [ ~

4(0)
~ &H,„b

——2.78]. If we multiply
the summation in Eq. (12) by 5.512 and 1.78,
respectively, we can see that the shallow-deep in-

stability artificia11y disappears in the substitutional
case only (ninth and tenth rows of Table I).

As a matter of fact, deep donor levels (-580
meV) of substitutional N in Si have been recently
experimentally observed. " In that case, a substan-
tial lattice distortion also takes place. We do not
know at present how much that may contribute to
the formation of the deep levels, in addition to the
mechanism that we describe. On the other hand,
no lattice relaxation occurs for core excitons, and
yet they are experimentally found to be deep.

III. CONSISTENCY CONDITIONS

Equation (8) contains various approximations,
and we have to check their consistency. Essential-
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ly, it is possible to expand P(r) as in Eq. (3), in-

cluding only the lowest CB, if and only if both the
following conditions are satisfied: (a) the binding

energy of the impurity level cannot exceed approxi-
mately half of the width E, of the lowest CB
corresponding to g, (k&+ i), r); and (b) the value
of rl cannot exceed rl„ where'

hv (r)=(2n) f 1 qe'&''H(rl, —i)) .

The function b,„(r)has been used in the past in

connection with short-range interactions in exciton
levels. ' It represents a filter that eliminates (spa-
tial) frequencies higher than the cutoff i), . Clear-
ly, in the limit g, ~00, we have

6,„(r)~5(r) . (18)

In Fig; 3 we sketch the situation for Si, where

E, -100 MeV and ik -0.09 a.u. Clearly, if either
one of conditions (a) and (b) is not satisfied, the ex-

pansion of g(r) must also contain the contribution
of higher conduction bands.

In all calculations in the literature so far, it has
always been assumed that the c( i) )'s in the expan-
sion (3) are strongly peaked around the origin.
However, condition (b) was never verified "a pos-
teriori. "Within our framework we can satisfy con-
condition (b) "a prion" by simply limiting the ex-
pansion of f(r) as

In that limit, Eqs. (15) and (16) reduce to Eq. (8).
It is instructive to study the limiting case of an

arbitrary, large (negative) constant impurity poten-
tial. The problem with that potential is of course
that it still has a great infiuence at infinity. There-
fore, such a potential is certainly not a weak per-
turbation to Ho in Eq. (1): Conditions (a) and (b)
cannot be satisfied for Eq. (8), which indeed may
exhibit unphysical arbitrary localized solutions.
On the other hand, Eq. (15) satisfies conditions (a)
and (b) by construction. It is easy to see that no
irregular solutions appear in Eq. (15) even for such
a potential. Notice in fact that

t/i(r)=(2') f d rlc(rl)4(i), r) (19)

where H(rk —i)) is the usual step function. If we
proceed as in the preceding section, we arrive at
the more complex integro-differential equation

p2 EG(r)+ f d3r—'bz (r —r')

holds exactly for all r because of Eq. (13).
Equation (15) can be solved iteratively. Actual-

ly, the first step

2

EG(r)+G—(r) f d r'b ),i(r —r')
2m*

X
i
4(r')

i
V(r')G(r ') =0,

(15)

where

G(r)=(2ir) f d ale'"''c(iI)H(g, —i)), (16)

FIG. 3. Lowest conduction-band structure in Si along
the [100) direction.

(20)

already produces a quite accurate solution.
It could be erroneously guessed that Eq. (20)

should yield essentially the same results as the
EMT because of Eq. (19). Not so, since high-
frequency components in both V(r) and

~

4(r)
~

~

can beat against each other and pass through the
filter. A well-resolved structure for the ground
state can thus be produced, due to the intervalley
scattering and the short-range behavior of the im-
purity potential.

In Table II we show some solutions of Eq. (20)
1n 51. The numerical solution 1s tiI11e consuming
and poses some problems with precision and
round-off errors. These problems are essentially
due to the slowly decaying oscillatory contributions
produced by bz (r ). For practical reasons we have

C
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TABLE II. Solutions of Hq. QO) for various cases in Si

V,
27.4
7.3

1.07
2.07

27.4
7.3

1.07
2.07

V,
27.5
7.3

1.07
2.07

1.06
2.06

27.6
7.3

1.06
2.07

Vg
27.6
7.3

1.06
2.07

27.6
7.3

1.06
2.07

Vg
28.1
7.4

1.07
2.07

Vg
1.04
2.04

27.3
7.3

1.07
2.07

1.02
2.04

29.8
7.6

1.02
2.04

simplified our job by assuming that

I d r'hz (r —r ')
i
4(r')

i
2V(r') =V(r),

exactly holds for r & r =28.5. The first and the

last row of Table II show that, for the EMT poten-

tial, if we increase the radius r beyond which Eq,
(21) is assumed, the EMT results are better repro-

duced. The effect of increasing r from 28.5 to 57.5
should similarly be represented for all the other

lowest levels by a rigid blue shift of -2 meV.

Actually, a better procedure for the numerical

solution of Eq. (20) would have involved to obtain

the Fourier transform 3"(q) of ~C(r)
~

V(r) and

then the Fourier antitransform of H(g, —g)W(q).
The superiority of the fast-Fourier-transform rou-

tines over the numerical integration routines in this

kind of problems has been previously experiment-

~ 20

We notice from Table II that, within the numer-

ical approximation (21), the results of Eq. (20) are

close to the EMT for all levels, except for the A ~

singlets with Vd(r) and ~4(r)
~
+1. It appears by

comparison with Table I that in all cases in which

the solutions are relatively close to the EMT
values, Eqs. (8) and (20) substantially yield the

same results [within the numerical approximations

performed in solving Eq. (20)]. We thus conclude

that Eq. (8) can describe reliably the douMets E
and the triplets T&, and that conditions (a) and (b)

are satisfied in those cases.
The situation is quite different for thc singlets

A~, with V~(r) and ~4(r)
~

+1. In those cases,

Eqs. (8) and (20) yield totally different results. The

strong dependence of the solutions on the cutoff g,
shows that the solutions do not intrinsically stabil-

ize within g~. If wc lct g, increase continuously,

we move continuously from the unstable solutions

of Eq. (20) to the deep solutions of Eq. (8). As we

remarked earlier, ' the prediction of the shallow-

deep instability by Eq, (8) remains quite valid.

However, the calculated values of the binding ener-

gy are in fact much larger than the experimental

values —the experimental value corresponding to
the singlet A~ with Vd(r) and 14(r) I,„b (core exci

ton) is E'"~-300 meV.
Except for interstitial hydrogen and core cxci-

tons, Vd(r) can hardly be an accurate potential in

most cases (not even for isocoric single donors, say

P in Si or As in Ge, as we also noticed earher ).
In general, the pseudopotential V(r) in Eq. (1) will

exhibit some cutoff around the origin. ' There
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should not be any shallow-deep instability in all
those cases, and Eq. (8) should then provide accu-
rate values for the binding energies.
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