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Two theoretical descriptions have been developed for the phase-boundary dynamics

during crystallization of amorphous films by scanning with the slit image of a cw energy

beam. The first reduces the problem to the solution of a one-dimensional integral equa-

tion, which allows a choice of initial conditions. Depending on the background tempera-

ture, numerical solutions yield either periodic or runaway motion of the amorphous-

crystalline (a-c) boundary, as observed in experiments on scanned laser crystallization of
thin films of a-Ge on fused-silica substrates. The calculations give a semiquantitative fit
to the experimental results for the spatial periodicity observed in the crystallized films as

a function of background temperature. Profiles of film temperature as a function of dis-

tance from the laser i~age at successive times have been computed for both the periodic

and runaway cases. The model qualitatively explains many of the effects observed during

scanned cw laser crystallization, including periodic fluctuations in light emission. The
second theoretical description is a more exact two-dimensional treatment applicable only

to cases of steady-state motion of the a-c boundary, which can rigorously handle heat

flow into the substrate. This treatment has been used to calculate the boundary velocity

during steady-state runaway. The dependence of this velocity on background temperature

and on film and substrate thermal properties and thickness has been determined from the

theory. At the minimum background temperature required for runaway the calculated

value of the steady-state velocity u is -140 cm/sec for the case of a Ge film 0.3-JMm

thick on a fused-silica substrate 1-mm thick. Experimental values for u lie in the range

100—300 cm/sec. However, comparison of the theory with experiment suggests the pres-

ence of a thermal barrier between substrate and film, which would modify the theoretical

results for u„.A class of laser-guided steady-state solutions has been obtained for which

the boundary velocity is equal to the laser scanning velocity but lower than the boundary

velocity for uncontrolled runaway.

I. INTRODUCTION

The study of the transformation of semiconduc-

tor films from the amorphous to the crystalline

state has become a matter of great interest in the
last few years. The time dependetice of the
transformation has been investigated as a function

of film temperature for Ge (Ref. l) and Si (Ref. 2),

and the latent heat of transformation and transfor-

mation temperature have been measured for Ge, '3,4

Si, and Ge-Si alloys. The so-called "explosive"

transformation of semiconductor films as well as

periodic features in films have been reported by a
number of workers, and the velocity of the
transformation has been measured.

We have recently reported the observation of a

number of unusual phenomena during a study of
the laser crystallization of amorphous Ge films.

These phenomena included the formation of
periodic structural features, pulsations of film tem-

perature during laser scanning, and runaway cry-
stallization of the entire film following momentary
contact with the laser image. To provide a qualita-
tive description of the laser-crystallization process,
we presented a one-dimensional integral-equation
description of the amorphous-crystalline (a-c)
phase-boundary motion, which takes into account
the latent heat emitted during the a-c transforma-
tion. Numerical solution of the integral equation
provides considerable insight into the dynamics of
the a-e boundary. The results were used to obtain
a semiquantitative fit of the temperature depen-
dence of the structural periodicity observed in cry-
stallization of amorphous Ge films on fused-silica
substrates.

In this paper we present a somewhat improved
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version of the one-dimensional integral-equation
description of laser crystallization which takes ac-
count of the loss of heat to the film substrate by
introducing into the equation an ad hoc exponen-
tial time-dependent damping factor. The results
obtained for the motion of the a-c boundary are
qualitatively very similar to those obtained earlier.
The solution of the integral equation is used to ob-
tain series of plots of temperature as a function of
lateral position in the film at fixed times after the
onset of the crystallization process. These plots
provide an understanding of the temperature pulsa-
tions during the formation of periodic structures in
film morphology, as well as a vivid picture of the
onset of a-c phase-boundary runaway. The general
features of the model are strongly supported by our
recent experimental study of a-c boundary dynam-
ics during laser crystallization.

The solutions of the one-dimensional integral
equation provide an approximate description of
transient as well as steady-state behavior of the a-c
phase boundary motion. On the other hand, we
have obtained a class of less approximate two-
dimensional solutions which are stationary in a
frame of reference moving with the a-c boundary.
These solutions are exact if the temperature depen-
dence of film and substrate properties as well as
differences in amorphous and crystalline properties
are neglected. The solutions allow a calculation of
the a-c runaway boundary velocity. The runaway
velocities calculated are in reasonable agreement
with observation. The existence of laser-guided
motion at a lower velocity is predicted by the two-
dimensional calculations.

In Sec. II of this paper we present the transient
and periodic steady-state solutions of the one-
dimensional integral equation description of laser
crystallization. The results of the model are com-
pared to experimental results for laser crystalliza-
tion of a-Ge. In Sec. III we obtain and compare
the steady-state runaway solutions of the integral-
equation approximation and the two-dimensional
model. In Sec. IV we consider steady-state laser-
guided solutions obtained from the integral-
equation approximation and the two-dimensional
model. Section V contains a discussion of possible
improvement of the theoretical descriptions, more
detailed considerations of film morphology pro-
duced by laser crystallization, and speculation on
the possibility of achieving laser-guided crystalliza-
tion at reduced scanning velocity. Some details of
the calculations are omitted and are included in an
unpublished work. '

II. TRANSIENT AND PERIODIC SOLUTIONS
OF THE INTEGRAL EQUATION

A. Derivation of the iategra1 equation

When the temperature of an amorphous sem-
iconductor film is raised, transformation to the
stable crystalline form takes place at a rate that in-
creases exponentially with temperature, ' so that
over a narrow temperature interval at a tempera-
ture —1, the ratio of the time required for
transformation to the time required for a laser scan
changes from »1 to «1. We therefore argue
that a reasonable description of the transformation
is given by assuming that it occurs when the amor-
phous film reaches a critical temperature 1,. Sup-
port for this point of view comes from the obser-
vation of a rather sharply defined transformation
temperature in latent-heat measurements. " It has
been suggested" that the transformation may in
fact correspond to the change from the amorphous
to the liquid state, followed by a transformation to
the crystalline state. In this case, the existence of a
well-defined critical temperature T, is expected.
Therefore the assumption of a transformation at a
constant temperature T, shouM be a reasonable ap-
proximation in either case, and is justified by the
good description of experiment that results. The
modification of this assumption and the detailed
nature of the transformation are considered further
in the discussion of Sec. V.

We assume that the temperature dependence of
the film properties and the difference in these pro-
perties between the amorphous and crystalline
states can be neglected. This is an acceptable ap-
proximation at temperatures in the range of the
amorphous-crystalline transformation
(-500—700'C for Ge). With these simplifying
assumptions, an integral-equation formalism can
be used to describe the motion of the phase boun-

dary. The geometry assumed for the laser-

crystallization calculation is shown schematically
in Fig. 1. The semiconductor film, which is depo-

sited on a thick substrate, is of infinite extent in
the y and z directions and so thin that its tempera-
ture is constant in the x direction. The laser-slit
image is of infinite length in the z direction and

moves at a velocity u in the positive y diI'ection.
At time t =O, the phase boundary is located at yo,
with the crystalline phase to the left (y &yo) and
the untransformed amorphous phase to the right
(y &yo). The laser image carries with it a steady-
state temperature profile To(y ut) At t =0—, the.
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FIG. 1. Schematic representation of laser-
crystallization experiment.

temperature at the phase boundary reaches T, and

the boundary begins to move irreversibly toward
the right, with heat being liberated at a rate per
boundary unit cross-section area of fLpF(t), where

I. is the latent heat of a-c transformation of the
semiconductor, p is the semiconductor density,
F(t) is the position of the boundary at time t, and
F(t) is its velocity. We have included a factor f
which is less than 1 and accounts in an approxi-
mate way for the loss of a fraction (1—f) of the
latent heat to the substrate as it is liberated. In the
present version, we will also include an exponential
damping factor y to represent the eventual dif-
fusion into the substrate of the fraction f of the
heat propagating in the film. We shall see that f
and y, which are introduced as ad Iioc parameters
in the one-dimensional integral equation, have their
counterparts in the two-dimensional steady-state
model (Sec. III 8), where they are determined in

the course of the calculation, leaving no adjustable
parameters. The effect of strain and other
mechanical forces is not explicitly included, al-

though I. could include a contribution due to
strain. Then the temperature T(y, t) at any point y
along the film at time t is given by the one-

dimensional integral relation'

T(y, t)= Tc(y —vt)+ f F(t') I exp[ —y(t —t')]
3 exp

fl t —[y —F(t')]'
0 4a(t t'). —(4trtt) '/'(t t'} '/'dt' —(1)

where C is the specific heat of the film, a =K/Cp defines its thermal diffusivity, It' is its thermal conduc-

tivity, and y is a phenomenological damping factor.
Equation (1) has a simple physical interpretation. It states that the temperature at a point y at time t is a

superposition of the contribution due to the moving laser, To(y ut), and t—he sum of contributions due to
soutces of heat fl.pF(t')dt', emitted at positions F(t') at earlier times t' The sourc. e function or Green's

function

—[y —F(t')]
4a(t t'). —

describes the one-dimensional diffusion of heat away from the source, and the factor exp[ —y{t—t')]
represents the decay of heat out of the film and into the substrate.

An integral equation for F(t) can be obtained by using the condition that the temperature at the phase

boundary is T~, or

T[F(t),t]=T, .

For purposes of calculation, it is convenient to rewrite Eq. (2} in the frame of reference moving with the
laser image. We introduce the position variable u (t)=y (t) —ut, where u (t) is measured from the center of
the laser image as origin. The temperature To(u) is modeled in the form To(u)=Ts+b, Tt exp[ —(u/a)t],
where Ts is a uniform, time-independent background temperature and the temperature contribution due to
the laser is described by a Gaussian of width tt and magnitude b Tt. Finally, introducing normalized quanti-

ties with a as the unit of length, we can write the integral equation for the motion of the phase boundary as

1=aexp[ —[S(r)] 3

+i}f [ [S(r')+ V]/(~ r')'
3 $ exp[ ——I'(~—r')]

3 {exp[ [S(r) S(r'}+V(r— ')]r'/—(~ r'))dr'— —
(3)



AMORPHOUS-CRYSTALLINE BOUNDARY DYNAMICS IN cw LASER. . .

where

a=A Ti/(T, Tb—),
ri=fri', rl'=L/Cn'~ (T, T—s),

(4a)
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FIG. 2. Normalized position of a-e phase boundarJJ
with respect to center of laser thermal image S(v }as a
function of normalized time v given by solutions of Eq.
{3}for three different values of q. The inset shows the
result of an experiment in which change of transmission
is proportional to S(w}.

4at/—a, V—:au/4»', S=Ula,
S(~'):dS—(~')/dr', I =(a2/4a)y, and U is the po-
sition of the phase boundary measured from the
center of the laser image.

Equation (3) is not in itself sufficient to give
physically acceptable solutions for the motion of
the phase boundary, since it allows negative values
of S(~')+ V, which imply the unphysical motion of
the phase boundary back toward the laser image,
with the reconversion of crystaHine material to the
amorphous state, accompanied by the reabsorption
of latent heat. To constrain Eq. (3) to physically
acceptable solutions, we require that when the nu-
merical solution of Eq. (3) yields S(r')+ V(0, this
quantity is to be set equal to zero, with the phase
boundary remaining stationary.

Equation (3) has bmn solved numerically'c to
obtain S as a function of r for representative
values of a~ ri, V, and 1, with the boundary condi-
tions that S(~)=0 at &=0 and that S(0) is given
by 1 =aexpj —[S(0)] I. The values of the
parameters have been chosen for convenience in
numerical solution of Eq. (3) rather than an op-
timal fit to experimental conditions. Figure 2
shows plots of S vs w for V=0.3, I =30 and three
increasing values of ri, with a increasing in propor-
tion to ri [which corresponds, from Eqs. (4a) and

(4b), to increasing Tb toward T, while holding hT&
fixed. ] For each value of ri, S initially increases
rapidly because the latent heat liberated by the
phase transformation raises the temperature ahead
of the boundary, accelerating its forward motion.
As the boundary moves away from the laser image,
the contribution of the laser to the temperature
ahead of the boundary decreases rapidly. For
g =0.3, the boundary motion soon decelerates, and
the boundary comes to rest, remaining fixed for a
time interval during which its temperature begins
to drop rapidly below T, and S decreases with
velocity S=—V. With the approach of the laser
image the boundary temperature gradually in-
creases to T„the boundary once more moves for-
ward, and S again increases. This cycle is repeated
indefinitely, resulting in the oscillations in S seen
for rl =0.3 in Fig. 2. The inset in Fig. 2 shows the
result of an experiment which measures the in-
frared light transmitted through a thin film of Ge
as the a-c boundary moves in a cw laser-
crystallization experiment. Since the transmission
of crystalline Ge is much greater than that of
amorphous Ge, the changes in transmitted light
signal with time are proportional to the a-e boun-
dary position with time. The similarity between
the oscillations observed in the experiment and
those shown in the curve for rt =0.3 is evident.

When q is increased by increasing T~, less heat
is required to raise the temperature of the film to
T, ahead of the laser image, and the phase bound-
ary moves farther beyond the laser before it de-
celerates and comes to rest. This trend is illustrat-
ed by the calculated curve for il =0.6 in Fig. 2 and
leads to motion with a longer period. When g be-
comes large enough, the heat liberated during crys-
tallization is sufficient to sustain the transforma-
tion, causing the boundary to "run away" from the
laser image. This situation, which is illustrated by
the curve for rI =0.8 in Fig. 2, accounts for the ob-
servation that for high enough background tem-
perature the entire film is crystallized following
momentary contact with the laser image.

In addition to explaining runaway crystalliza-
tion, the proposed model can also explain our other
qualitative observations on laser crystallization.
The model does not directly predict observable
structural changes in the laser-treated films. How-
ever, different regions of such films can be exp~t-
ed to differ in microstructure depending on their
rates of transformation and therefore on their ther-
mal history. This suggests that the periodic struc-
tural features observed on laser-crystallized films



(see Figs. 3 and 4) can be attributed to oscillations
in S like those implied by the curves for q =0.3
and 0.6 in Fig. 2. Furthermore, for sufficiently
high values of i) these oscillations produce large
fluctuations in the rate of heat liberation and
therefore in temperature. This can explain the
periodic fluctuations in light emission observed

during some laser-crystallization experiments (see
Sec. II C).

8. Comparison arith experiment

In order to carry out a semiquantitative test of
the model, we have measured the spatial period of
the structural features of laser-crystallized Ge
films as a function of Tb Exp.eriments were per-

forrned on amorphous films 0.3-pm thick, deposit-

ed on fused-silica substrates and scanned at u =0.5
cm/sec with a slit image of a cw Nd: YAG (yttri-

um aluminum garnet) laser. Initially, a film at
room temperature was irradiated at a laser power

level just high enough to produce crystallization,
which yielded structure in the transformed film

with a spatial period of -50 pm. In the following

experiments each film was heated to a successively

higher value of Ts, the laser scanned at the same

power level, and the spacing measured after cry-

stallization. This procedure was continued until

Tb approached the value resulting in runaway.
The periodic features obtained by crystallization

of a film with Tq of room temperature are shown

in Fig. 3, an optical transmission micrograph.
These features are shown at higher magnification

by the left side of Fig. 4, which is a bright-field
micrograph obtained by transmission electron mi-

croscopy (TEM) using 125-keV electrons. Each
feature consists of four different regions: first a
narrrow amorphous region, than a region contain-

ing a mixture of amorphous material and fine
grains, next a broad region of fine grains, and fi-
nally another broad region of much larger, elongat-
ed crystallites aligned parallel to each other. The
fine-grained region yields transmission-electron dif-
fraction patterns like the one shown at the upper
right of Fig. 4, with the rings typical of polycry-
stalline material. The large crystallites of the final

region are clearly visible as ribbonlike structures in
the lower left corner of the TEM micrograph, and

yield characteristic single-crystal transmission elec-
tron diffraction patterns, as illustrated at the lower
right of Fig. 4. It should be emphasized that these
large ahgned crystallites are produced without the
presence of a relief structure in the amorphous-
silica substrate. ' The nature of the crystalline
structure within each period is discussed further in
Sec. V.

To use the model to calculate the spatial period

LASER SCAN
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pj,j',
,

'

100 m

FIQ. 3, Qptical transmission micrograph of a laser-crystallized Ge film showing periodic structural features. Inset

is expanded view illustrating four different microstructure regions.
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FIG. 4. Left: Bright-field transmission-electron micrograph of a laser-crystallized Ge film, illustrating four different
microstructure regions. Right: Transmission-electron diffraction patterns for fine-grained and large-grained regions
(upper and lower, respectively).

in the film, we assume that this period is equal to
the distance 5Y traversed by the a-c phase boun-
dary during each of its successive jumps, from the
point where crystallization is initiated by the ap-
proaching laser to the point where the boundary
comes to rest ahead of the laser. This distance is
just equal to a Vh~, where V is the normalized
laser-scanning velocity and h~ is the normalized
time interval between the beginnings of two succes-
sive jumps, i.e., the period of the oscillations in S
illustrated by the curves for il =0.3 and 0.6 in Fig.
2.

To obtain a relationship between 6Y and Tb, we
first used Eq. (3) to calculate Vb, v as a function of
il for representative values of a, V, and 1 . Be-
cause of the introduction of the new damping
parameter I, the results obtained are numerically
somewhat different from those reported earher, '

but are qualitatively unchanged. The calculated
curve for a =6' (corresponding to fixed ETi,
V =0.3, and I'=30 is shown in Fig. 5. %'ith in-
creasing g, hv and therefore Vhw increase rapidly,

leading to boundary runaway by g =0.69. For a
given value of i), Vb,r is found to be quite insensi-
tive to either a or V, showing that the boundary-
jump distance is determined primarily by the pro-
perties of the film and by Tb, and does not depend
strongly on either the power or velocity of the
laser.

In order to compare theory with experiment, the
curve of Vhr vs il shown in Fig. S was used to ob-
tain curves relating the ratios EF/b &0 and Ts/T„
where 5Fo is the spatial period in the film (i.e., the
boundary-jump distance) for Tb of room tempera-
ture. To calculate these curves, Eq. (4b) was
rewritten in the lumped-parameter form
g =i)0/(1 Ts/T, ), where F—lo=fL/n'~ CT, .
When Tb and T, are expressed in 'C, room tem-
perature is much less than T„sothat go-g at
room temperature, and AYO corresponds to qo.
Curves of EF/EFO vs Tb/T, =1 qolrl were cal-—
culated by adopting pairs of numerical values of Flo
and T„then compared with the experimental
points (for each point, the adopted value of T, was
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FIG. 5. Vh~ vs q from solutions of Eq. (3).

used to determine Ts/T, ). A reasonable overall fit
has been obtained, as shown in Fig. 6, for i10=0.22
and T, =680'C. The abrupt increase in AF/A1'o
when Ts/T, exceah about 0.6 is associated with

the approach of Ts to the value T, above which
laser irradiation results in boundary runaway.
From Fig. 6~ wc note that Tp 0.7T~~ and using

T, -680'C we find T,=—500 C. It is interesting to
note that Bagley and Chen predict a transforma-
tion of a-Ge to the liquid state at a temperature of
696 C, well below the crystalline-to-liquid transi-

tion temperature (937'C), and close to the value of
-680'C obtained from our analysis.

From the definition of i)0, fL =n'~ CT,go.
Taking C =0.08 cal/g'C for amorphous Ge (Ref.
3) and the values of T, and rlo used for Fig. 6, we

obtain fL =21.4 cal/g. In calorimetric measure-

ments made during the rapid heating of amor-

phous Ge films, Fan and Anderson observed a
sharp transition at -501'C and measured I. =39.8
cal/g. Using this value for L yields the result

f-0.54. The value of f obtained seems large, un-

less a thermal barrier impedes transfer of heat
from the film to the substrate (see Sec. III B).

FIG. 6. Theoretical curve and experimerital points
for AF/5Ã0 vs temperature ratio T~/T, . Curve is cal-

culated using Fig. 5 with go ——0.22 and T, =680'C.

The values of S(r) plotted in Fig. 2 for the re-

gions in which the phase boundary moves away
from the laser image are not quantitatively correct,
since the calculated values of S in this region in-

crease more steeply as the size of the interval &
chosen for the numerical integration of Eq. (3) is
decreased. An examination of the integral equa-
tion indicates that in the beginning of these regions
its solutions is singular and the initial velocity is
infinite. This represents a limitation of the model
since we have implicitly assumed that growth of
the crystalline phase can follow at all times the re-

quirements of the solution of the heat-Aow prob-
lem. In fact, the failure of this assumption may
account for the presence of amorphous and fine-

grained material in the initial portion of each
periodic feature of the laser-crystallized films.
However, since the calculated values of S at which
the boundary comes to iest apploach a limit as 5g
dccI'cases, thc coIQputcd spatial periods arc icason-
ably reliable.

The Gaussian width of the temperature profile
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due to the laser can be determined from the rela-

tionship a =hF/Vb, r. From the measured

AFO ——50 pm at room temperature and VA~=O. 3

corresponding to go ——0.22 in Fig. 5, a is -170
pm, a reasonable value. The scanning velocity u

corresponding to the normalized velocity V in our
calculation can be obtained by using the relation
v =4KV/a. A value for a of -0.09 cm /sec is es-

timated by taking E =0.035 cal/cm sec C (Ref.
14), p-5 g/cm, and C =0.08 cal/g'C. The value
of normalized laser-scan velocity used in our calcu-

lations, which was chosen for convenience in nu-

merical integration, was V=0.3. This corresponds

to a laser-scan velocity v of -6 cm/sec, much

higher than the actual value of 0.5 cm/sec used in

our experiments. As indicated above, the results of
our analysis of periodic a-c boundary motion are
insensitive to the value of v assumed for the calcu-

lation as long as u is much less than the boundary

velocity u„.For both runaway and periodic mo-

tion of the boundary, experimental values of v«
lie in the range of 100—300 cm/sec.

C. Temperature distribution during periodic boundary motion

Once the a-c boundary position as a function of time, S(r), is known, Eq. (1) can be used to calculate the

temperature at an arbitrary point S in the film at time ~. The resulting expression for the reduced tempera-

ture in terms of normalized quantities in the frame of reference moving with the laser is

T'(S', r)=aexp[ —(S') ]+i)I I [S(r )+ V]/(T —r )'

X [ exp[ —1(r—r')] ](expI —[S'—S(r')+ V(r r')] /(—r r') J)d—r', (5)

where the reduced temperature is

T(S',r) Tb-
T'(S', r) =

c b

It can be seen that when S' is the position of the
a-c boundary, S(r), T(S',r)=T„T'(S',r)=1, and

Eq. (5) becomes the integral equation (3). The nu-

merical evaluation of Eq. (5) is discussed in Ref.
10.

To illustrate the fluctuations occurring in tem-

perature and light emission during periodic boun-

dary motion, we have used Eq. (5) to calculate
T'(S', r) as a function of S' for several fixed values

of r, for the case a=1.2, rl =0.6, V=0.3, and

I =30. The results are shown in Fig. 7. It can be
seen that during the forward motion of the a-c
phase boundary, a temperature pulse develops and

propagates away from the center of the tempera-
ture profile due to the laser. Before the pulse can
escape, however, its motion stalls and it decays. In
this case the laser temperature contribution is just
barely large enough to initiate a-c boundary mo-

tion, and the latent heat released is enough to cause
a sharp rise in temperature accompanied by the
emission of black-body visible radiation. The peak
temperature T~ reached can be calculated for this
example by noting that

Tp Tb+Tp(T, Tb), —— —

a = ).2
q = 0.6
V =0.3
I" =so

h

CO

UJ

K
LLI

O
LLJ

0.055

0.015

0.001

0.5 1.0

= 0
1.5 2.0 2.5

FIG. 7. Normalized temperature distribution T'(S', ~)
as a function of S' for several values of v, illustrating
periodic fluctuations in temperature and light emission.
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where T& is the peak value reached in Fig. 7.
Equation (6) can be rewritten

Using T, =680'C, go ——0.22, g=0.6, and Tz -2.2,
we have T& -986'C. Although the numerical re-
sult is only approximate (since the computed velo-

city of the a-c boundary depends on the time inter-
val 5r chosen for numerical integration), the calcu-
lation indicates that a large rise in temperature,
and therefore light emission, can occur during a-c
boundary IDotlon.

erf{x)= f e 'dz2

is the error function. The error function ap-
proaches 1 for x )2. Therefore, for

(I.+V')'"r'" 2

Eq. (8) reduces to

Vae

(I + V2 )1/2

Equation (9) can be usual to determine the runaway
a-e boundary velocity V„from the values of ri andI.

III. STEADY-STATE RUNAWAY SOLUTIONS

A. Integral-equation model

As we have seen in Sec. II A, for large enough
values of ll and relatively small values of normal-
ized laser-scan vdocity V, the solutions of Eq. (3)
are of the runaway type with the a-c boundary es-

caping from the region of the laser image and
moving far ahead of it. In this case, Eq. (3) can be
solved exactly without the need for numerical in-

tegration, by making the assumption that a
steady-state, constant-velocity solution exists after
the passage of a long enough time 1p. Fol' tile
boundary far ahead of the laser image the laser
contribution to Eq. (3) is negligible. We rewrite

Eq. (3) at time ro in the frame of reference moving
with the boundary at the normalized velocity

V~ && V, with V~, to be determined. In this
frame of reference, V is replaced by V«,
S(r)=S(1 ), alld S(7 )=0 (slllce tile solutloll 18

stationary). Equation (3) then becomes

TO

1 =ri f [V„/( r8)'/ [ exp[ —I'{r—r')] ]

X {expI —[V«(r —r')]2/(r —r') I )dr'.

It can be seen that Eq. (10) has no solution for any
value of V„,no matter how large, unless 2)m'/ & 1,
or q&0.56.

In the runaway case, Eq. (5) for the reduced
temperature distribution can also be evaluated ex-
actly for large ro In the .same frame of reference
moving with normalized velocity V„,Eq. (5) be-

T'(S') =ri f [V«/-(r 7')'/ ] I exp—[—I (r—r')] I

X {exp[ —[S'+V„(r—r')]

X 1(r—r') ] )dr',

where S' is measured from the position of the a-c
phase boundary. Equation (11) can be written

T'(S') = ri 2 1/2
2 exp( —2S'V«)

(I + V' )'"
(I + y2 )1/2 1/2

e 'e s /'dz, (12)
Q

where q =S' (I'+ V„).Using the known definite
integral,

Introducing the new variable z =(I +V„)(r—r'),
Eq. (7) can be rewritten as

(p+ y2 )1/2 1/2

(I +V')'"

2,2 2/, 2 V lrf e 1''e e /'dz= e 2~ (p,q)0)0 2p

T'(S') = rid'/2 2,/ exp( 2S'V«)—
(I + V2 )1/2

(P+ V2 )1/2
x-p[-2(l.+ V.'.)'" I

S'
I ]

For S'=0, corresponding to the position of the a-e
boundary, T'(S')=1, and Eq. (13) reduces to Eq.
(9), as it should.
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The expressions for the steady-state boundary

velocity, Eq. (10), and the steady-state temperature
distribution, Eq. (13), come from exact solutions of
Eqs. (7) and (11), respectively. However, the ap-

.proach to the steady state after excitation by a cw
laser can only be studied by numerical integration
of Eqs. (3) and (5). To explore the approach to the
steady-state runaway temperature distribution, we
have used the values of S(r) obtained from numer-

ical integration of Eq. (3) for a=2.0, r) =0.8,
V =0.3, and I'=30, to calculate T'(S', r) from Eq.
(5) for several values of r. The results are shown
in Fig. 8. In contrast to the periodic solution case
shown in Fig. 7, the a-e boundary in the runaway
case develops a well-defined peak structure in
T'(S', r), which propagates away from the laser
image as r increases. The velocity of propagation
of the a-c boundary and the amplitude and shape
of the propagating temperature pulse shown in Fig.
8 are in qualitative agreement with the exact limit-
ing results given by Eqs. (10) and (13), respectively.
However, the quantitative agreement is not good.
Thus, from Eq. (10) with I =30 and i)=0.8 we
have the exact result V~ =S.4S, much less than the
velocity obtained from Fig. 8. The discrepancy
may in part be due to computational problems, but
may also be due to a slow approach to the steady
state. [It should be noted that at the maximum
S(r) shown, the a-c boundary has moved only a
few times the Gaussian width, —170 pm, from the
laser beam. ]

Thc exact sollltloil fol' 'thc steady-state velocity
V, given by Eq. (10), decreases as the value of g
increases. Similar behavior for the steady-state
boundary velocity is found from the solution of a
two-dimensional heat-flow problem discussed in
the following subsection.

0.55

0.008

2.5
I

5.0
s'

FIG. 8. Normalized temperature distribution T'(S', v)
as a function of S' for several values of ~. The parame-
ter values a=2.0, g=0.8, V=0.3, I =30 have been
chosen to illustrate the case of runaway.

B. Two-dimensional solution

We have obtained expressions for the tempera-
ture distribution in the steady-state a-e boundary
runaway condition for a semiconductor film as a
function of normalized distance S' from the boun-

dary by the solution of a two-dimensional boun-

dary value problem. ' In this treatment the flow
of heat into the substrate is handled exactly, and it
is not necessary to introduce ad hoc parameters
equivalent to f and y of the one-dimensional
integral-equation model. The results give the tem-
perature distribution in the semiconductor film of
thickness bi supported on a substrate of thickness
b2 as a function of steady-state normalized velocity
V„ofthe a-c boundary. If the a-e boundary is at
the temperature T„then the expression obtained is

f„+(V„)(S'(0), (14a)

2& S. —2[1. +V,', )'~2~S'~

T(s)=~ v„~'"g'
(r„+v.', )'"

where

Ti(S') Tb-
T'(S') =

f„(V,.) (S'»),

p
' cotg

2 Q+

(14c)
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where P=Kibz/Ki bi and M =~i/ir2, and S' is the normalized distance from the a-c boundary, with nor-
malization unit of length equal to b2. Subscripts 1 and 2 refer to laser-crystallized film and substrate,
respectively. The I + and I are roots of a transcendental equation, and the Q + are given by expressions

which are functions of I evaluated for I
One case for which the solution of Eqs. (14a) and (14b) can be readily evaluated is a thin amorphous film

on a thick substrate with identical thermal properties (M =1, @=bi/b»& 1). For this case, f + f-—
=2/P; I „+——I„=(2n + 1) ir /16.

The general condition determining the steady-state a-c boundary velocity V„is that at S'=0, T'(0) =1 or,

f„+(V„), f„(V„)
(I +V2 )1/2 « ~ (I +V2 )i/2

(15)

It is interesting to compare the results of Eqs. (14a}, (14b), and (15) with the one-dimensional integral-

equation results of Eqs. (13) and (9), respectively. Noting that rj=fg', it can be seen that Eqs. (13) and (9)
represent approximations in which single average terms have replaced sums of terms of the same form in

the two-dimensional result.
We define the functions in the summation in Eqs. (14a} and (14b) as

{16)

F+(S', V) is p-roportional to the steady-state tem-

perature distribution due to a slit-image source of
heat scanned with normalized velocity V along the
surface of a semiconductor film. When evaluated

for V =V„,it yields the shape of the distribution
for a-c boundary runaway. We have evaluated Eq.
(16) as a function of S' for a number of values of
V for the case of a thin film of Ge on a fused-

silica substrate, since the experimental results re-

ported in Sec. II8 were obtained for this case.
The values of Ki ——0.035 cal/cm sec'C, s'i =0.09
cm /sec, and Ki ——0.0025 cal/cm sec'C, s2 ——0.005
cm /sec were those for Ge (1), and fused silica (2).
The thicknesses used in the calculation, appropriate
to our experiments ' were b, =0.3 p, m for Ge and

b2 ——1 mm for fused silica. With these values,

P=240, and M=-18.
Figure 9 shows F(S', V) as a function of S' for

several values of V. For V&0. 1, the leading edge

of the temperature distribution begins to sharpen,
and the peak value begins to drop. This is an indi-

cation that V has reached a value at which diffu-

sion of heat can no longer restore the static tem-

perature distribution as the heat source moves. It
should also be noted that the fact the two portions

of the curves of E+(S', V) meet at S'=-0 is a signi-

fjtcant check on the correctness of the numerical

calculation, since the formal expressions for
[F+(S ~ V)]s'=0 and [F (S ~ V)]s'=o are not
identical.

To obtain quantitative results for V«, we make

use of Eq. {15)and assume that T, is a fixed tran-
sition temperature (modification of this assumption
is discussed in Sec. V). The relation to be solved

for V can be written,

m'/ q'V« =[F(0,V„)] (17a)

We plot log[F(0, V)] ' vs log V and log(n'/ 7I'V)

vs log V on the same graph. The solution for V«
will be given by the intersection of the two curves.
Figure 10 shows [F(O, V)] ' for M =18
(corresponding to our experiments with a-Ge films
on fused silica), and for several values of P. We

0.03—

0.02
M

U

0.25
0 —

l I

-0.50 -0.25 0 0.50
s/

FIG. 9. I' (S', V) as a function of S' for several values

of V.
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M=18, P=2

Iog V

FIG. 10. Plots of log[F(0, V)] ' vs log V for P=240,
120, and 60, and plpts pf 1pg(m' g'P) vs 1pg V fpr
g'=9.0 and g'=2. 2.

first consider the curve for P=240, corresponding
to our experiment. One of the straight lines shown

gives log(n'~ r)'V) for rl'=2. 2, and we see that
there is no solution for this value of rl'. The
minimum value of rl' for a steady-state solution,
t)';„,corresponds to the lowest temperature (T„)at
which runaway can occur. This solution is ob-
tained when the two curves first cross, and is
found to occur at rl';„-=6.1. For values of rl'

greater than 6.1, there are steady-state runaway
solutions for V„which decrease with increasing
rl'. It should be noted that the two curves first
make contact tangentially as i)' increases to rl';„.
This is similar to the integral-equation result, Eq.
(10).

It is difficult to identify the first true "crossing"
point for two curves that approach each other
tangentially. Roughly, for rl'—=6.1 the two curves
cease to run parallel for log V-1.6. Using the re-
lation u 41', V-/b2, with xi ——0.09 cm /sec, and

bi 10 ' c——m, we find, u~ =—140 cm/sec. Larger
values of i)' should lead to smaller values of u„,
consistent with the integral-equation result, Eq.
(10).

From the relation (14c), we can calculate the
value of T, if we equate i)' with rl';„=6.l and Tb

with the experimental value of T„,-500'C. This
leads to T, -550'C, much lower than the value of

-680'C obtained from the fit of the periodicity
data to the theoretical results obtained from the
integral-equation model. As we shall see shortly,
the discrepancy can be explained qualitatively by
the presence of a thermal barrier between film and
substrate. The thermal barrier would not modify
the form of solution of the integral equation, but
only the values of the empirical parameters re-
quired to fit the results. On the other hand, the
thermal barrier would make its presence felt expli-
citly in solving the two-dimensional heat-fiow
problem.

We can attempt to approximate the calculated
E(O, V) in the form

F(0, V) =f/(I'+ V')'i' (17b)

where f and I are to be determined for the best
fit. Equation (17a) would then be precisely of the
form Eq. (9), obtained from the integral equation,
where r)=fq'. The open circles in Fig. 10,
representing Eq. (17b) with I'=7.95 and f=0.093,
fit the calculated curve of log[F(0, V)] ' with
P=240 and M =18 for small V and large V, but
fit poorly in between. This value of f is much
lower than that obtained from the integral equation
fit to the periodicity data, f-0.58. As we shall
see, this discrepancy can also be qualitatively ex-
plained by the presence of a thermal barrier be-
tween film and substrate.

We have examined the effect of changing bi and
b2 on the values of a number of properties of a-c
boundary runaway. Figure 10 shows plots of
log[F(0, V)] ' vs log V for M =18 and P= 120 and
60, in addition to the curve for P=240, which
corresponds to our experiment. We can interpret
the reduction in P as due to either a decrease in b2
or an increase in bi. The results obtained for V„
and u„for i)'=9.0 (corresponding to fixed Tb, and
well above i)';„for all three values of P), are listed
in Table I. It can be seen that for bi held fixed at
0.3 pm, v decreases only slightly as b2 decreases.
On the other hand, for b2 held fixed at 10 pm, u~
decreases almost inversely with increasing bi.
However, in most cases it might be difficult to see
this striking drop in v, since at temperatures
above T„spontaneous fluctuations can cause the
a-c transformation (see Sec. V).

Also shown in Table I are values of g';„,with
corresponding values for V and v„,as w'ell as ap-
proximate values of f and I . It can be seen that f
increases nearly inversely as P decreases, while I'
increases slowly. It should also be noted that g';„
decreases as b] increases. This means that the
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minimum value of Tb for runaway, T„decreases
as film thickness increases. As the film thickness

bi increases, the velocity v« for il';„increases, but
remains in the range of 100—300 cm/sec.

The small values obtained for T, and f by ap-

plying the present theory directly to experiment
can be understood if we postulate the presence of a
thermal barrier between the fused-silica substrate
and the amorphous Ge film in our laser-

crystallization experiments. 7 The presence of a
thermal barrier is not at all unreasonable, and
could be readily included in the derivation of
modified Eqs. (14a) and (14b). The effect of a
thermal barrier is approximately equivalent to de-

creasing the thermal conductivity of the substrate,
and is therefore qualitatively described by decreas-

ing P. (Although the thermal conductivity ratio
appears in M, this describes the way heat diffuses
once it is transferred, and should therefore be kept
fixed for this crude argument. ) To obtain a rough
idea of the effect of such a barrier, we examine the
effect of decreasing P by comparing the results for
P=240 with those obtained for P=60. Referring
to Table I, we see that for P=60, f has increased
to 0.331, much closer to the empirical value of
0.54 determined from the experimental data by fit-

ting the one-dimensional integral solution. Furth-
ermore, g' I has dropped from 6.1 to 1.7, yielding
a value of T, -=665'C determined from Eq. (14c).
This is close to the value of 680'C obtained from
the fit of experimental data to the integral-equation
model. Venule this argument is very crude, it does
suggest that the presence of a thermal barrier can
eliminate the discrepancy between experimentally
determined parameters and the results of a first-
principles calculation. The presence of such a bar-
rier would also modify the values of steady-state
boundary velocity, tending to make V„less depen-
dent on bi and b2.

IV. STEADY-STATE
LASER-GUIDED SOLUTIONS

An intriguing class of steady-state solutions ex-

ists in which the a-c boundary proceeds at a con-
stant velocity on the leading edge of the scanning-
laser image. Solutions of this type will be obtained
for both the integral-equation model and the two-
dimensional model of the a-c boundary motion.
The laser-guided mode of a-c transformation could
have important implications for the controlled
growth of semiconductor films.

A. Integral-equation model

To find laser-guided solutions, we rewrite Eq. (3) in the frame of reference, moving at normalized velocity
V, in which the laser and a-c boundary temperature distributions are stationary. The result is

7 0
1=Ti (0)+rl I [V/(r ~')'~ ]I exp[ —I"(r—r')] J(exp[ [V(r r')]—/(r r—' [)dr', — (18)

TABLE I. Values of a number of quantities calculated from solutions of a two-dimensional model of laser crystalli-

zation, as obtained from Fig. 10. For three values of the parameter P, effective parameters f and 1, and r)';„(the

minimum value of g' for runaway) are given. With g'=g';„and q'=9.0, normalized velocities V„for a-c boundary

runaway are obtained. For combinations of substrate (b2) and film (b&) thicknesses given, these values of V lead to
the a-c boundary runaway velocities v„that are shown.

P f
240 0.093

120 0.178

7.95

8.72

/min

6.1

3.2

Vac

('g ='@min)

39

Vac

(g'=9.0)

10

4.07

b2

(pm)

10

10
5X10'

bl
(pm)

0.3

0.6
0.3

v„{cm/sec)
{g'=q';„)

170

v„(cm/sec)
(~'=9.0)

36

14.7
29.3

60 0.331 10.15 1.7 1.9
10

2.5X10'
1.2
0.3

6.8
27.4
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where Tt (0) is the reduced temperature due to the
scanning-laser image at the position of the a-c
boundary,

As in Sec. III A, the integral in Eq. (18) can be
evaluated exactly for large enough ~0, and we find

1 = T' (0)+rj Vn' /(I'+ V )
'~ . (19)

According to Eq. (19), for values of i) and V such
that rIVn'~ /(I + V )'~ (1, there is a value of
T/ (0) which will satisfy the condition for a laser-

guided solution. For given values of V (determined

by laser-scan velocity} and i), and a given reduced
temperature profile due to the laser, the (a-c)
boundary will ride at a distance in front of the
laser image such that Eq. (19}is satisfied. It
should be noted that solutions of Eq. (19) exist for
arbitrarily small values of V.

We may think of i)'/[I T/—(0)] as an effective
value, gruff R. eferring to Sec. III B and Fig. 10, it
can then be seen that by decreasing 1 —T/ (0) the
normalized laser-scan velocity V for laser-guided
steady-state solutions can be reduced greatly. For
a given reduced temperature distribution due to the
laser scanning at velocity V, the a-c boundary rides
at a point in front of the laser image satisfying Eq.
(21).

Both the integral-equation solution and the two-
dimensional solution yield steady-state laser-guided
modes of motion of the a-c boundary, at velocities
lower than those for unguided runaway. However,
attempts to find such solutions by numerical in-

tegration of Eq. (3) have thus far failed. The diffi-
culty may be associated with the singular initial-
velocity characteristic of Eq. (3). Elimination of
this unphysical initial singularity could lead to
solutions yielding stable laser-guided motion (see
discussion in Sec. V).

B. Two-dimensional mode1

It is a straightforward matter to show that the
two-dimensional solution of the laser-
crystallization problem also leads to laser-guided
stationary solutions. The solution of the steady-
state temperature distribution for the boundary-
value problem in the presence of several heat
sources is the superposition of the solutions in the
presence of the individual heat sources. ' In the
presence of both a laser source of heat and the heat
source due to the moving a-c boundary, the exact
solution for steady-state runaway, Eq. (15), be-
comes

1 Ti (0') +Y/ Vir
(I +V )'

(20)

where T/ (0}is the reduced temperature due to the
scanning-laser image at the position of the a-c
boundary. The close correspondence between the
exact solution Eq. (20) and the integral equation
solution Eq. (19) should be noted.

Using the definition of F+(S', V), Eq. (16), w-e

obtain for the laser-guided problem an expression
analogous to Eq. (17a), which was solved to deter-
mine V~ for runaway. The result is

(21)

V. DISCUSSION

rj,g(S)=fL (S)/[T, (S)—Tb], (22)

where T,(S) is the critical temperature appropriate
to the value of S, and L (S) is an effective latent
heat which is that portion emitted when partial

One of the important assumptions made in cal-
culating the motion of the a-c boundary for both
the one-dimensional integral equation and two-
dimensional solution was the existence of a sharply
defined transition temperature T, . In fact, the
velocity of growth of crystalline material directly
from the amorphous state S(T) is a function of
temperature, increasing rapidly as the temperature
is raised. This could be interpreted as determining
the temperature T,(S) at which the transition can
take place at a value of S demanded by the heat-
flow calculation. From this simplistic point of
view, over a wide range of values of S, T, varies
relatively little and can be taken as constant. As
already pointed out in Sec. II8, the model solution
of the integral equation at the beginning of each
period of boundary motion requires infinite veloci-
ty, and the presence of amorphous and fine-grained
material in the initial portion of each period may
be related to the limits on the rate at which cry-
stalline growth can occur.

%e could attempt to improve the approximate
description of the boundary motion using the in-
tegral Eq. (3) by replacing i) by the quantity



ZEIGER, FAN, PALM, CHAPMAN, AND GALE

conversion to crystalline material takes place ai
boundary velocity S. %C now interpret 5 as the
velocity of a "heat-flow boundary, " which is ident-
ical to the a-c boundary when that boundary is
well deflned. We can see that at large S, il,ri(S) is
reduced because L (S) is reduced and T, (S) is in-

creased. At lower values of S, I.(S)~L, and

T,(S)-T,. The introduction of an il,ri(S) of this
form could eliminate the unphysical singularity in
the initial motion present in Eq. (3), while still

yielding a very high initial value of S, consistent
with the initial amorphous and fine-grained po-
lycrystalline material in each period. The intro-
duction of an rj,'rg V„)in Eq. (17a) would also
modify the exact solutions obtained for V„from
the two-dimensional boundary-value problem.

As mentioned in Sec. II B, the value of T, ob-
tained by fitting the results of the integral-equation
solution to our experimental data was T, =680'C,
very close to the value of 696'C predicted by Bag-
ley and Chen" for the transition temperature from
the amorphous to liquid state of Ge. It has been
suggested' ' that "explosive" crystallization (or
runaway) may correspond to the occurrence of this
transition, and some experimental evidence sup-

porting this point of view has been obtained. ' If,
in fact, T, does correspond to the amorphous-to-
liquid transition, the assumption of a fixed T, over
a range of S is reasonable. Once the transition
from amorphous to hquid state had occurred, the
unstable liquid would rapidly transform to the cry-
stalline state. " For small temperature differences
across a thin liquid layer, thc treatment we have

presented would require no major modification.
Throughout this paper, we have treated the

amorphous and crystalline regions of the semicon-
ductor film undergoing laser crystallization as iso-
tropic and homogeneous regions, with the transfor-
mation from the amorphous to the crystalline state
governed by macroscopic heat-flow equations. An
important ingredient absent from this description,
and essential for even a qualitative understanding
of crystallized-film morphology, is the role of nu-

cleation centers' and nucleation events. " Because
the exact nature of the a-c transformation in laser
crystallization is not yet certain, we will not at-
tempt a detailed description of nucleation. We re-

gard a nucleation event as a spontaneous, localized
fluctuation which initiates a transformation from
the amorphous to the crystalline state and pro-
duces a small increase in local temperature above

thc background determined by macroscopic heat
flow. A nucleation event has a probability of oc-

currence which increases with thc density of nu-
cleation centers (which depends on film perfection)
and with increasing temperature. For T~ just
below T„(thelowest temperature for runaway), nu-
cleation events can produce transformation from
the amorphous to crystalline state in small regions
of finite range about nucleation centers. ' For
Ts —T„and 111 tile abselice of ail exterllal distur-
bance such as a laser beam, multiple nucleation
events can occur, overlapping and spontaneously
transforming the entire film to the crystalline state
in a short time if the probability of such events is
high enough. From the discussion of Sec. III B,
the minimum value of T~ for runaway T, is higher
for thinner film, decreasing as the films become
thicker. Since the probability of nucleation events
increases with increasing temperature, spontaneous
transformation to the crystalline state should occur
most readily at T~ —T, for thin amorphous films.
This is consistent with our observation of laser-

induced runaway for films of thickness greater
than 1 pm, while only spontalleolls trailsforlliatloll

is observed for films 03-pm thick.
The occurrence of nucleation events appears to

play a major role in the morphology of laser-
crystailized films. In the films that we have exam-
ined in detail, the elongated crystallites within each
periodic feature form a roughly chevronhke pat-
tern, with the two halves of the pattern symmetri-
cal about an axis that is parallel to the laser-scan
direction and located near the center of the laser
image. The elongated crystallites on each side of
the pattern have their long axes aligned along [100]
directions. A blown-up picture of a crystallized
film near the center axis of the chevron pattern is
shown in Fig. 11. The "origin" of the chevron
pattern within each periodic feature is a small re-
gion located somewhere near the center axis. The
exact lateral position of the origin varies from one
period to the next over a distance of perhaps 100
p,m (-10% of the slit-image length). This sug-

gests that the origin represents the position of the
first nucleation event within a periodic feature
where the heat-flow boundary is moving slowly

enough for large crystallites to form. The first nu-

cleation event mould be likely to occur near the
center axis, since the laser-sht image is an ellipse
of high-aspect ratio and the temperature should
therefore first reach T, near this axis. Once nu-

cleation and growth of large crystallitcs began,
heat would Aow forward, but also laterally, raising
thc temperature and inciting the nucleation of ncw
growth centers laterally. The direction of growth
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FIG. I1. Bloom-up view of periodic features in a Ge film crystallized by the slit image of a laser. Picture taken
near the center axis of the slit image shows the origins of chevron pattern.

from these centers would tend to be channeled by
such factors as interaction with neighboring crys-
talhtes already formed, 0 strong anisotropy in the
directional dependence of growth rate, and perhaps
stresses in the film. The result of all of these in-
fluences would combine in a statistical way, but it
can be argued that the outcome would be largely
determined by the tendency of growth to occur
along the direction of the temperature gradient at
the a-c boundary, combined with the high rate of
growth along a [100] direction compared to other
crystallographic directions. Motion of the a-c
boundary mould occur laterally as mell as along the
laser-scan direction, but a periodic morphological
pattern would still result. This description is con-
sistent with the observed chevron pattern, and
could serve as the basis for a more complete
analysj, s.

In Sec. IV we discussed a class of laser-guided
stationary solutions of both the integral equation
formulation and the two-dimensional formulation
of a-c boundary motion. The problem remains of
identifying spatial and temporal initial conditions
mhich allom the boundary motion to settle into
such a constant-velocity stationary state. The solu-
tion of this problem could have important implica-
tions for the possibility of producing uniformly

aligned, laser-crystaBized semiconductor films. In
studying solutions of the integral Eq. (3), we found
that for, say, g =0.6 and a given value of V, no
matter how large, S(~) would always exhibit
periodic motion of the type shown in Pig. 2 when
a small enough value of 5t was used in numerical
integration (see Sec. IIA). We believe this
behavior of the solutions is due to the unphysical
singularity in 'tile iilitlal velocity given by Eq. (3)
so that the u-c boundary is always predicted to
outrun the laser and stop for Tb & T„.As we have
suggested, this singular behavior might be eliminat-
ed from the mathematical description by replacing

g in Eq. (3) by a velocity dependent q,fr given by
Eq. (22). This would imply that the initial motion
of the a-c boundary is characterized by some finite
velocity Vo. For laseI-scan velocity V ~ Vo, me
would then expect a damped oscillatory behavior
of S(~), with the motion settling into a laser-
guided stationary state. A slom decrease in V
could perhaps then lead the a-c boundary motion
into a laser-gmded stationary state at a lomcr velo-
city, mith the a-e boundary riding close to the ther-
mal image of the scanning laser. However, the sta-
bility of such motion remains questionable. A.ll of
these points are highly speculative, and require
further exploration.
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