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A general method for calculating the complex band structures of solids is presented.
This method is adaptable to the pseudopotential, full-zone Ef{, and tight-binding formal-
isms. The basic idea is to express the total Hamiltonian of the bulk material as a polyno-
mial in a simple analytic function of the wave vector perpendicular to a given plane. A
companion matrix associated with this polynomial is constructed, and then diagonalized.
The resulting eigenvalues and eigenvectors give rise to the complex band structure and the
evanescent Bloch states. Using these evanescent states, the bulk Green’s function for
fixed k (wave vector parallel to the given plane) can be obtained from a simple analytic
expression; thus the study of electronic properties associated with a planar defect in the
solid is facilitated. For illustrative purposes, we present the complex band structure of Si
calculated within the three different schemes and compare them. We also compute the
bulk Green’s function (with fixed k) and find the surface states for the ideal Si (100),
(111), and (110) faces within the tight-binding formalism.

I. INTRODUCTION

Bulk evanescent states (Bloch states associated
with complex values of the wave vector, k) play a
significant role in determining the electronic prop-
erties of solids with planar defects (e.g., surfaces,
interfaces, stacking faults, and superlattices).

There have been several theoretical studies on solid
surfaces,! ~3 interfaces,* and superlattices® using the
matching method in which the total wave function
is expanded in terms of bulk propagating and
evanescent states on both sides of a matching
plane. The coefficients of expansion are deter-
mined by solving the Schrodinger equation with
appropriate boundary conditions. This method has
considerable advantage over the other theoretical
techniques, including the slab method® and
Koster-Slater method,”? in its simplicity and nu-
merical efficiency. In fact, knowing the evanescent
states for each fixed energy E and wave vector
parallel to the matching plane k is equivalent to
knowing the Green’s function for the bulk materi-
als. Using the evanescent states, the bulk Green’s
function with fixed k can be evaluated more pre-
cisely and efficiently.’

In a previous paper, one of us (Y.C.C.) reported
on calculations of the complex band structures of
14 zinc-blende materials.'® In Ref. 10, the com-
plex k, values for each fixed E and k are obtained
by finding the zeros of the polynomial obtained

from the determinant of (H-E) (H is the Hamil-
tonian of the solid). Although this method is quite
simple and efficient, it has numerical difficulties
when the order of the polynomial becomes large.
In the present paper, we introduce a more general
method for obtaining the evanescent states. In this
method the complex wave vectors for fixed E and
k are obtained by diagonalizing a “companion ma-
trix” constructed from the Hamiltonian, H. This
method is applicable for the pseudopotential and
full zone E'f)’ schemes as well as the tight-binding
scheme. The tight-binding version of this method
was used in Ref. 5.

The basic idea of our method is simple. In all
three schemes the Schrodinger equation for the
solid can be converted into a polynomial equation
in a variable which is some simple analytic func-
tion of k,. The coefficients of this polynomial are
finite-dimensional matrices for a Bloch function
expanded in a finite basis set. The roots of the
polynomial, which contain the information about
the evanescent states, can be obtained by diagonal-
izing an associated “companion matrix.”

This paper is organized as follows: In Sec. II,
we present the general method for obtaining the
complex band structures of solids. All three com-
monly used schemes, including tight-binding, f-f)',
and pseudopotential, are discussed. In Sec. III, we
illustrate the use of the present method by calculat-
ing the complex band structure of Si in the three
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different schemes and comparing them. In Sec.
IV, we discuss one application of the complex band
structures to solid surfaces. We use the evanescent
states to calculate the bulk Green’s function with
fixed k and then calculate the surface states of the
ideal Si (100), (111) and (110) surfaces according to
the expression given by Allen,” within the tight-
binding formalism. In Sec. V a summary is
presented.

II. GENERAL THEORY

To find the evanescent states associated with a
given planar defect (surface or interface) in a solid,
we seek the complex wave vectors, E, which satisfy
the Schrodinger equation with energy E,

HY(k,D=E¥(K,7), (1)

where H is the total Hamiltonian and ¢(k,T) is
the Bloch function for the perfect solid. The
method for finding the evanescent states can be
descnbed in tight-binding, pseudopotential, and
kP P schemes, which we shall discuss separately in
the following sections.

A. Tight-binding scheme

To study the problem associated with a planar
defect in a tight-binding scheme, we first introduce
the basic terminology to be used in this section: A
layer is defined to be a collection of atomic planes
parallel to the defect plane (DP) which form a unit
cell when the solid is viewed as a linear chain per-
pendicular to the DP. A planar orbital is defined
as the sum of atomic orbitals (labeled a) in the i*®
atomic plane of a given layer, weighted by the
phase factor e’k j.e.,

|ai;kl,) =S e® k| ai;R) , )
R

where I? and R are the wave vector and lattice po-
sitions (R) projected on the DP, I, denotes the
layer position, and |ai; R) is the atomic orbital
centered at R.

In the present scheme, the Bloch state
| ¥(k,k,)) is expanded in terms of a linear combi-
nation of the planar orbitals,

T S aiskL)
lz

(3)

where the C,; are the expansion coefficients and N
is a normalization constant. In the planar orbital
basis, the Schrodinger equation [Eq. (1)] is written
as

S(a'i’skl, | H |aik,)Cpi=0, 4
ai

where |ai;k,) denotes the states in the large
parentheses of Eq. (3) including the summation
over /,, and

<a,i’;i<_lz Iﬁlai;kz >E<a’il;k_lz | H lai;kz)

—E(ai;kl, |aik,) .

To keep the theory general, we do not restrict the
tight-binding basis states to form an orthonormal
set. It should be noted that Eq. (4) is independent
of I,, because of the translational invariance of H.

If we truncate the matrix elements of H in Eq.
(4) at some finite number of neighbors, we find
that each of them can be written as a polynomial
ine ke with a’ being the distance between two ad-
jacent layers, viz.,

. m ,
HEK)= 2 (0) ’”kza , (5)

where m is the number of neighboring layers in-
cluded. In Eq. (5), we have omitted the indices
(ai) and expressed the k, dependence explicitly.
HYk), represents a matrix which couples a given
layer to the oth neighboring layer. We define

iok,a’
Cl=e""""Cy, o=—m,...,m. 6)

Substituting Egs. (5) and (6) into Eq. (4) yields
m~—1 P
S HOCW+H™ ! cm-b=0, ()
o=—m

ik,a’
where C'™ has been expressed as e * C™~1.

Also note that

C0) =™ clo— D o=—m+1,...,m—1.

(8)

In Egs. (7) and (8), we have also omitted the sub-

scripts ai. Equation (7) multiplied by ™" ' and

Eq. (8) lead to an eigenvalue equation for Mo
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—_Fm~ gm—1) _gm~ g
1o oo 0
0 lo. . 0
1o
0 e 0 1

We shall refer to the matrix on the left side of Eq.
(9) as the companion matrix (denoted T') of the
polynomial H(k). The elements in the second di-
agonal of T (designated 1;) represent identity ma-
trices of the same dimension as H.

Equation (9) is valid whenever the inverse of the
matrix ™ exists. In some cases this does not oc-
cur and Eq. (9) must be modified. For example, if
each layer contains several (say s) atomic planes
and the number of neighboring atomic planes cou-
pled by the Hamiltonian to a given plane is less
than sm, the H'™ will be singular.

Consider the general case in which s’ (s’ <)
atomic planes in the mth layer are not coupled to
any atomic planes in the zeroth layer (see Fig. 1).
We can write the matrices H'°’ and column vec-
tors C'“) of Eq. (7) in the following decomposed
form,

I?I_(ﬁ) —(10)
s
H?=| : : (10)
Fr(o) 7o)
79 ... B¢
and
C(la)
C'9)= : ,
C(U)
'S

where the submatrix E(j") denotes the coupling be-

o™ Laver o LAYER

-m'™ LaveR

s-s's-s'+l s

FIG. 1. Coupling between atomic planes in various
layers. The coupling is truncated at the (sm —s’)th
neighbor. The arrows indicate the furthermost cou-
plings from various atomic planes in the zeroth layer.

_gm g=m

cim-1 gm-v
0 Cim—2) cim-2
0
cO |—e®** | co | )
0 C(—m) C(—m)

;
tween the ith and jth atomic planes in the zeroth
and oth layer, respectively. The subcolumn vector
C!? contains the expansion coefficients C'3’ as its
components. For the mth layer, the matrix H' (m)
takes the special form

where /'™ is a nonsingular (s —s’) X (s —s’) block
matrix defined by

7(m)
s+1,1 O . -0

Iy (m) Fy(m)
s42,1 Hyyr1 O

o - (11
0
e : Sl

After the decomposition, Eq. (7) can be written as

m—1

)

o=—m

s
ZHI‘(ja)C}a)
j=1

=0, i=1,.,s’ (12)

and

m—1 s s—s' o,
#=(0) (o) (m) | K@ ~(m—1) | _
2 l Hy'Cj° ]+2hi,- [e Y ]—0’
o=—m |j=1 j=1

i=s'+1,...,s.

(13)

Multiplying Eq. (12) by ™

tion (8), we obtain

"and using the rela-
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aZyc
o=—m+1 |j=1 Y
s Fim—1 e cim—1)
+ 3 Hj G =0,
=1
i=1,..,s'. (14)
]
e oim =1 _ _ "'il i i(h(m)‘l

o=—mi'=s'+1j=1 -

(a)C(a)
b4
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Equations (13) and (14) repr&sent s coupled linear
equations for the s unknowns e C; (m—1)
j=1,..,s. To solve this set of coupled equations
for the ﬁrst (s —s’) unknowns we multiply Eq. (13)
by 2™ ™" and obtain

i=1,...,s—s. (15)

To solve for the remaining unknowns, we substitue Eq. (15) into Eq. (14) and obtain

’

_ 12 (h(m—l)‘“

=1

e'.,‘:z“"Cti(m—l)= 2 2

o—-—-mj—l

where ™~ Disa nonsmgular s’ X s’ block matrix
with components given by h m—1) H,(,'” _”,
i=s—s"+1,. ..,sandj—l . In Eq. (16)
we have defined =" V=0 in order to simplify
the expression. Equations (15), (16), and (8) lead to
a new eigenvalue equation, which is similar in
form to Eq. (9). The resulting companion matrix
associated with this eigenvalue equation can be
truncated by eliminating the last 2s’M rows and
columns, where M is the number of independent
atomic orbitals in each atomic plane. The last
2s’M columns all contain zeros, because Egs. (15)
and (16) relate at most 2(sm —s')+1 atomic planes
(see Fig. 1).

Recently, Lee and Joannopoulos'? have
developed a simple scheme for calculating surface
states and surface Green’s functions. In their
method the surface Green’s function is related to a
transfer matrix which can also be written directly
in terms of tight-binding coupling matrices. The
eigenvalues of their transfer matrix also give rise to
the complex solutions to the bulk Schrodinger
equation. The companion matrix derived in the
present paper is closely related to their transfer
matrix. Both the companion matrix and the
transfer matrix have the same dimension,
2(sm —s')M. Our companion matrix links each
layer (containing s atomic planes) to its adjacent
layer, whereas the transfer matrix links two neigh-
boring principal layers [each containing
n =(sm —s') atomic planes] in one superlayer to
the corresponding principal layers in the adjacent

5 2H(m—1) i (hom~ ‘)

(0‘) C(U)
j'=1 i'=s"+1
i=s—s'4+1,...,s,

(16)

I

superlayer. Here, a principal layer is defined as
the smallest group of atomic planes such that only
nearest-neighbor interactions between principal
layers exist, and a superlayer is the smallest collec-
tion of pn'ncipal layers, which form a unit cell of a
periodic array.!? For the simplest case (m =1), the
two matrlces are equivalent and both have eigen-
values ¢"**. For more complicated cases (m > 1)
the companion matrix is computationally simpler
in that it contains the inverse of a smaller

((s —s")M X (s —s’)M ) matrix, while the transfer
matrix contains the inverse of a nM X nM matrix.
In these cases, the elgenvalues of the transfer ma-
trix will be powers of e e

B. Pseudopotential and k-P schemes

In the pseudopotentlal scheme, the Bloch func-
tion ¥( k T') is expanded in terms of plane waves,
ie.,

where the G are reciprocal-lattice vectors. The
Schrodinger equation written in the plane-wave
basis is'?

(17



25 COMPLEX BAND STRUCTURES OF CRYSTALLINE SOLIDS: . . . 3979

Hg g K)=[(K+GrP-Eg g

+V(|G=G'|), (18)

with V(| §| ) being the pseudopotential form fac-
" tors. In Eq. (13) we have introduced the atomic
units in which energy and distance are measured in
rydbergs and bohrs, respectlvely

In the full-zone k p perturbation scheme,'* the
Bloch function $(k,7) is expanded in terms of
Bloch functions with associated k =0 [denoted
u,(7)]; ie,

WK, D= TSy (T) . (19)

In the {u,(T)} basic, the Schrédinger equation
takes the form

HW(k)CV(k) 0, (20)
where
H,,(X)=(k*+E,—E)S,,

+2{u, | KB |uy) ‘ @n . -
and the E,’s are energies associated with the k =0 _

Bloch states, u,,.

It is noted that both the H matrices in Egs. (18)
and (21) are a quadratic polynomial in k, for fixed
k and E. We can simply write

HE&)=F%) + YRk, +k2 . 22)

Equations (17) and (20) can be immediately
transformed into an eigenvalue equation for k,,!’
viz., )
0 1
___I'I'(O)(E) __ﬁ(l)(E)

C
c

o

k C(l)

(23)

where C'V'=k,C, and C represents a column vector
consisting of the C,’s.

Previous calculations of the complex band struc-
tures of solids within the pseudopotential scheme?>
involve ﬁndlng the zeros of the secular deter-
minant, det[H(K)] by iterative procedures. This is
much more time consuming and less convenient
than the present eigenvalue method. Furthermore,
it is quite difficult to find all of the correct k,
solutions in the complex k, plane, unless their
values are already approximately known. The
present method allows one to obtain all of the
complex k, solutions for fixed E and k from di-
agonalizing a single matrix.

III. COMPLEX BAND STRUCTURES OF Si
IN VARIOUS SCHEMES
We have studied the complex band structures of
Si within the nearest-neighbor tight-binding, the

full zone E-'ﬁ, and the pseudopotential schemes.
In the tight-binding scheme, we have used five
atomic orbitals for each atom, including sp® plus
an excited s-like state. The parameters for this
model are given in Ref. 16. The Hamiltonian ma-
trix (in the planar orbital basis) subtracting the en-
ergy E can be written as

_ a1 wno ]

’

(i) ¢ 24
where 4 and C are 5X 5 diagonal matrices contain-
ing the differences between the on-site energy
parameters and the energy E. V( k) and V'(K) are
5% S nearest-neighbor coupling matng&s, which
can be written as polynomials in e ke , Viz.,

V(K)=V_(Re ™ 1 vy +V, (0™ (25a)
and ‘

V'(K)=V", (ke

)+ (e

: (25b)
where V';f is the Hermitian conjugate of V; for ’
i=0, +,and —.

For the (110) face, the present example has
m=1,5s=1,5'=0, and M =10. Substituting Eqgs.
(24) and (25) into Eq. (9), we obtain an eigenvalue
equation

—_gH7'go _g+-tgr] [ew
10 0 C(O)
[[
A felt))
k.
with =" o |, (262)
) 0 Vilk) ‘
BEZ=\pt® o (26b)
and
— o A Vylk)
HY'= VE(E) 6 . (26¢)

For the (100) and (111) faces, we have m =1, s =2,
s'=1,and M =5. In this case, ¥, (k)=0 and the
inverse of H'*’ does not exist. Following the pro-
cedures discussed in the preceding section [Eqs.
(100—(16)], we obtain another eigenvalue equation

—vt)-p} —wvh)-¢ c,
vo'awvh)-vy viltaovth)-e—v_1] |G
_ ikza’ Cl
=e C2

- @27
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The complex band structures obtained by diagonal-
izing the companion matrices given in Egs. (26)
and (27) are shown in Figs. 2—4 for the Si [100],
[111], and [110] directions, respectively. In these
figures, the purely imaginary (Rek, =0) and real
(Imk, =0) bands are denoted by solid curves and
are plotted in the left and right panels, respective-
ly. The complex bands (Rek,5~0 and Imk,=0) are
denoted by pairs of dashed curves, with their real
and imaginary portions plotted in the right and left
panels, respectively. We distinguish the bands with
Rek, located at the zone edge (i.e., Rek,a’'=m)
from those with general values of Rek, by denot-
ing the former and the latter by short and long
dashed lines, respectively. Here and after, we refer
to them as the “imaginary bands of the second
kind” and the “complex bands,” respectively.

In the k-P and pseudopotential schemes, we use
the parameters given by Refs. 14 and 13, respec-
tively. The present pseudopotential model includes

10 -
sif100] N\, /
g ™~
51 N \
0 — 4
S / :
(] /
o / ] '
/ oo )
I [
!/, |
-5— IV |
1/
4 )
A !
Sl \
/ I ‘
-0 /// ! |
)
//’ / !
\
I, // / \
! |
fo
-15 FEE| 1 1 |
1.5 I 0.5 0 0.5 |
| Imk, o} Rek,—]
(2T

a

FIG. 2. Complex band structure of Si along [100]
direction obtained in the tight-binding scheme. Solid
curves denote real bands (right) and imaginary bands
(left), short-dashed curves denote complex bands with
Rek, located at the zone boundary, and long-dashed
curves denote complex bands with general values of
Rek,.

89 plane waves (truncated at the seventh shell).
The complex band structures for the Si [100],
[111], and [110] cases obtained in these two
schemes are plotted in Figs. 5—10. The notations
used to denote the real, imaginary and complex
bands are the same as in Figs. 2—4. In Figs.
5—10, there are many complex k, solutions whose
real parts are found to lie outside the first Bril-
louin zone. These solutions should be equal to the
solutions obtained inside the first Brillouin zone
plus a reciprocal-lattice vector. However, since a
complete set of basis functions is not used, they are
only approximate, repeated-zone scheme solutions.
Farther away from the first Brillouin zone, the ap-
proximation to the correct solutions becomes
worse. Therefore, many complex bands whose real
part is outside of the first Brillouin zone have to
be discarded. In Figs. 5—7, the bands to be dis-
carded are denoted by dotted lines. In Figs. 8—10,
these bands are simply excluded.

Comparing the complex band structures obtained
within the three different schemes, we first note
that in the pseudopotential scheme there are many
complex bands associated with large imaginary k,

10 : o
\\ S
.
Si 1]
\\\\ ~
5t 2
[ A- g
, |
0 // 1
|
—_ /
> /e T
c Y Atas I
1] 1,7 |
4 '
|
-5 //,7 |
/’ II - !
P e !
K | 1 \
’ ! \
1 I \
-0 P N \
’
/ I’ —/
! \
! !
! \
! I
[ \
i | / \
-15 1] Al | |

2 1.5 | - 0.5 0] 0.5 |
o Imk, —————~}——Rek,—+|
J3r
(——)
FIG. 3. Complex band structure of Si along [111]

direction obtained in the tight-binding scheme. The no-
tation is the same as in Fig. 2.
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si[110]

L
o
T

2J/2
(=)

FIG. 4. Complex band structure of Si along [110]
direction obtained in the tight-binding scheme. The no-
tation is the same as in Fig. 2.

values which are separated from the main struc-
tures. These bands emanate from conduction-band
extrema with energies higher than 10 eV and have
little physical significance. Except for these physi-
cally insignificant bands, all three schemes seem to
produce qualitatively similar complex band struc-
tures for energies below 5 eV.

Generally speaking, the complex bands emanat-
ing from all the valence bands and the first con-
duction band produced by the tight-binding scheme
are in close agreement with those produced by the
pseudopotential scheme, except for some special
features in the Si[110] case. In this case two of the
three imaginary bands emanating from the
valence-band maximum in the pseudopotential
scheme join onto the conduction-band minimum.
The third goes to — 0, after going through a max-
imum at E ~0.2 eV. This maximum and the
minimum of the fourth conduction band are con-
nected by a complex band (see Fig. 10). In the
tight-binding scheme, only one imaginary band
connects up the valence-band maximum and the
conduction-band minimum. The other two imag-

10 T \w
/] :
1
1

e m T TR .

|
I
|
I
|
I

L

(o]
Imk, - Rek;
(2L
FIG. 5. Complex band structure of Si along [100]
direction obtained in the k-P scheme. Solid curves
denote real bands (right) and imaginary bands (left), and
dashed curves denote complex bands. Dotted curves

denote the repeated solutions, which should be discarded
(see text).

inary bands run monotonically to infinity. The
tight-binding scheme does not model the higher
conduction bands well; hence, the associated com-
plex bands do not have the same topological struc-
ture as those produced in the pseudopotential
scheme.

The E-ﬁ scheme appears to be a rather good ap-
proximation to the pseudopotential scheme for
small values of k,. Most topological structures of
the complex bands near the zone center obtained in
the pseudopotential scheme are reproduced quite
successfully in this scheme. The major shortcom-
ing of this scheme is the lack of periodicity. This
would lead to nonvanishing group velocities for all
the bands at the zone boundary. As a result, many
imaginary bands of the second kind would become
complex bands and any structure involving the
connection of a complex band with the extremum
of an imaginary band of the second kind would be
destroyed. For example, in Fig. 9 (Si[111] within
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/ e
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Imk, -+ Rek; ——=
~ 3T
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FIG. 6. Complex band structure of Si along [111]
direction obtained in the kP scheme. The notation is
the same as in Fig. 5.

the pseudopotential scheme), the imaginary band of
the second kind which connects the first valence
band and the second conduction band and the one
which connects the first and fifth conduction
bands have a minimum near E ~ —3.0 and —0.5
eV, respectively. Each of the two minima is con-
nected by a complex band running to —co. These
structures are destroyed in the kP scheme as
shown in Fig. 6. Similarly, the maximum associat-
ed with the imaginary band of the second kind
emanating from the lowest valence band (see Figs.
4 and 10) also disappear in the k-P scheme (Fig.
7). It should be noted that the present kP model
is designed to produce good overall band structures
along the [100] and [111] directions'*; hence the
Si[110] band structure is not well represented, espe-
cially for k, near the zone edge (see Fig. 7). Note
that the lowest two valence bands cross each other
near Rek, ~0.8(2v27/2) and the second conduc-
tion band exceeds 10 eV at the X point, instead of
being degenerate with the first conduction band
there, as it should be.

10

Si (110)

54

E(eV)

..|o_

N

' 0
——1Imk, +— Rek;
22w
(=)
FIG. 7. Complex band structure of Si along [110]

direction obtained in the l_{'f»’ scheme. The notation is
the same as in Fig. 5.

1
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o |
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|

/] |

|

- 1
15 4
Imk, t=—Rek;—=
(2r)

FIG. 8. Complex band structure of Si along [100]
direction obtained in the pseudopotential scheme. The
notation is the same as in Fig. 2.
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To apply the complex band structure to solid surfaces, we write the surface adapted Green’s function, G°

IV. GREEN’S FUNCTIONS AND SURFACE STATES

(28)

(i.e., bulk Green’s function with fixed k) in terms of the evanescent states,’
(Tykky WH (T kk*)
L4 i A O(z'-z2) |,

—z)-3

A

(T kk T kk )
— O(z
V,(kkt)

2

A

GUTT"kE)= —2mi

V,(kk3 )

where the complex k, solutions are sorted into two groups with Imk ¥ 20if ki is complex, V,(kki) 20if

ki is real. §(T; kk,) is the Bloch wave function associated with the wave vector (k,k;) and

_ OE

Green’s function can be rewritten in the planar orbital basis, i.e.,
ik f‘ (0—0')a’

ky =k,
is the group velocity of a given complex band. ©(z) is a Heaviside step function, with ®(O)=% We will
only present the results obtained in the tight-binding scheme because of its simplicity. In this scheme, the

_ Coil K )Clir (k% e
GY, o (0i,0"i";kE) = —2mi | 3, —= h et __l+ 6(0—0’)
’ A V,(kky )
C(ki)VC (ki iky (0—ao')a’
ax( }.) al( A Je 9(0"—0’) , (29)

*% V,(kky)

where the C(k#) are solutions to Eq. (4) with k,=ki. o(o’) labels the layer, and i (i’) labels the atomic

planes in each layer.

10 T

[
si[in] g
Il
5r 1
Il
/'
0 I

I

Imkz

«/Evr)

( a
FIG. 9. Complex band structure of Si along [111]
direction obtained in the pseudopotential scheme. The

-+

notation is the same as in Fig. 2. The three dashed lines

in the left panel (with Imk, > 3) are all associated with
the dashed line in the right panel with Rek,~0.67.

E(eV)

Si[110]

Mo, e

1

e

1

Rek,—=|

|
T

Imk,

FIG. 10. Complex band structure of Si along [110]
direction obtained in the pseudopotential scheme. The

notation is the same as in Fig. 2.
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Si(100) Si (110)
¥ =(0,0) k =(0,0)
p(E) p(E)
o L L Elev) o N . E(ev)
-15 5 10 OH 5 10
g(E) g(E)

FIG. 11. Surface-wave-vector-resolved local density
of states per atomic plane, p(E) (upper portion) and real
part of the determinant of the bulk Green’s function
g (E) (lower portion) with £ =0 for the Si(100) face.
The arrows indicate the energy positions of the zeros of
g (E).

FIG. 13. Same as in Fig. 11 for the Si(110) face.

To evaluate the group velocity V,( Kk 2), we apply the Hellman-Feynman theorem'” and obtain

2 Cai(k3)

ai,a'l’

0
I ak, Hai,a’l"(kz) ]

Z

A

Ca’i'(kl )

V, (k)=
Z 3 C%i (k3 )Coilky)

where the H,; o are matrix elements of the Ham-
iltonian H in the planar orbital basis, written as a
function of k;. In deriving Eq. (30), we have used
the property H (k})=H(k;)."® With Egs. (29)
and (30), the Green’s function is readily evaluated.
The results for Si (100), (111), and (110) faces with
k =0 are presented in Figs. 11—13. In Figs.

11— 13, the upper portions show the surface-wave-
vector-resolved local density of states per atomic

[\J} - J\/l“m ME(eV)

10

p(E)

q(E)

Si(lin
k=(0,0)

|

FIG. 12. Same as in Fig. 11 for the Si(111) face.

’ (30)

|
plane, p(I;,E), which is given by
plk,E)= —mIm[TtG%oi,0i;kE)] , 31

and the lower portions show the absolute value of
the function

g(k,E)=Re{det[G%oi,0i;kE)] } , (32)

where G is a five-dimensional matrix for the (100)
and (111) faces, and a ten-dimen_sional matrix for
the (110) face. The function p(k,E) has singulari-

Y 2

SURFACE WAVE VECTOR , &

FIG. 14. Surface energy bands of Si(100). The inset
shows the surface Brillouin zone.
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FIG. 15. Surface energy bands of Si(111). The inset
shows the surface Brillouin zone.

ties at energies where the group velocity associated
with, a real band vanishes. The threshold of each
peak in Figs. 11—13 can be identified with the
corresponding extremum point of the real bands in
Figs. 2—4. The function g(k,E) has singularities
at energies where the group velocity associated
with any complex band (including the real one)
vanishes. Furthermore, according to the orbital re-
moval method® the zeros of g (k,E) correspond to
the energy positions of the surface states (if E is in
the gap) or surface resonances (if E is not in the
gap) for the ideal surface. The positions of these
zeros are marked by arrows in Figs. 11—13.
Tracing the thresholds of p(k,E) and the zeros
of g(k,E) for different values of k, we obtain the
projected band structures and dispersion curves of
the surface states for the ideal Si (100), (111), and
(110) surfaces. The results within the fundamental
gap are shown in Figs. 14—16. It should be noted
that the removal of one plane of atomic orbitals re-
sults in two surfaces. For the Si(100) and Si(110)
cases, these two surfaces are identical; therefore, all
zeros of g (k,E) are doubly degenerate. For the
Si(111) case, one surface has one dangling bond
and other has three dangling bonds (which is a
nonphysical surface). To identify the zeros of
g (k,E) with the two nonidentical Si(111) surfaces,
we check the determinant of the Green’s function
corresponding to the removal of two atomic planes
(which results in two identical surfaces, having ei-
ther one or three dangling bonds). In Fig. 12, the
zero at g (E) with lower energy indicates the sur-
face state of the one-dangling-bond surface, the
other indicates that of the three-dangling-bond sur-
face. In Fig. 15, only the surface states of the sur-
face with one dangling bond are shown. The re-
sults for the ideal Si(111) surface are identical to

R ———
05 \5
_\

E(ev)

-05¢//, -4
/ |

/X' W
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s T , e
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T X' M X T
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FIG. 16. Surface energy bands of Si(110). The inset
shows the surface Brillouin zone.

those obtained by Buisson et al.!® In Ref. 19 the
spectral representation (conventional technique) for
the bulk Green’s function was used and the crea-
tion of the surface is modeled by cutting a plane of
chemical bonds. We find that the current tech-
nique is at least an order of magnitude more effi-
cient than the conventional technique®!® and easier
to implement. Furthermore, the present technique
calculates the bulk Green’s function exactly for
each fixed k and E, whereas the conventional one
only does it approximately.

V. SUMMARY

We have presented a method for finding the
complex k, solutions (evanescent states) to the bulk
Schrodinger equation for arbitrary faces of a crys-
talline solid. This method is simple, efficient, and
free of numerical difficulties. Furthermore, it is
adaptable to the pseudopotential, the k-P, as well
as the tight-binding schemes. To illustrate the use
of this method, we have calculated the complex
band structures of Si in all the three schemes and
examined their differences.

The complex band structures have many useful
applications to the crystalline solid involving a
planar defect. Several of these applications, in
which the wave-function matching method was
used, were discussed previously for solid sur-
faces,! ~3 interfaces* and superlattices.” In the
present paper, we have demonstrated that by incor-
porating the complex band structures with the
analytical representation of the bulk Green’s func-
tion,” one can calculate the surface electronic
properties with great efficiency. The simplicity
and efficiency of this technique should offer prom-
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ise of solving more complicated problems related
to planar defects in solids, such as surfaces with a
large unit-mesh reconstruction [e.g., the Si(111)-
(7X7) reconstruction], surfaces or interfaces with
relaxations extended to many layers, and large size
defects (e.g., dislocations or steps) on surfaces.
Research along these lines is currently in progress.
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