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We report a theory for bound multiexciton complexes (BMEC) associated with donors

in multivalley semiconductors. The energy separations between the low-lying electronic
states and the ground state are calculated in the Hartree-Fock approximation. By incor-

porating the effect of the anisotropic, multivalley band structures with interparticle in-

teractions, we obtain energy separations in good agreement with the available experimen-

tal data. This agreement between theory and experiment suggests that the assignment of
electrons and holes to single-particle states is a good description of the BMEC in mul-

tivalley semiconductors.

I. INTRODUCTION

Recent experimental studies have revealed the
existence of an interesting excited state in semicon-
ductor systems, in which a number of electron-hole
pairs (EHP) are bound to a neutral impurity. '

This finite many-body system is called a bound
"exciton" (BE) when one EHP is bound and a
bound "multiexciton" complex (BMEC) when
more than one EHP are bound to a single neutral
impurity. Photoluminescence resulting from the
recombination of an EHP in BMEC typically
yields a series of sharp lines lying at the long-
wavelength side of the associated BE luminescence
line. These spectra were first reported by Kamin-
skii et al. and later by several authors. Some
theoretical speculations have been put forward to
explain these experimental spectra. ' The shell
model (SM) proposed by Kirczenow has success-
fully interpreted many features of the spectroscopy
associated with BMEC in Si.

In a previous paper, we have reported a theoret-
ical calculation for the excitation spectra of bound
excitons associated with donors in Si. Our results
for the energy separations between the low-lying
one-electron excited states and the ground state are
in good agreement with the experimental data in-

terpreted using the SM, hence lend support to the
assignment of single particles into the shell-like
structure.

In this paper, we present theoretical calculations
for the excitation spectra of BMEC associated with

donors in Si and Ge. We find that the excitation
energy for one I ~ symmetry electron being excited
into a state of I 3 or I 5 symmetry in BMEC is ap-
proximately independent of the number of EHP.
This condition holds for most donors in Si and Ge.
This independence of the number of EHP on the
energy separations between the low-lying excited
states and the ground state for BMEC in Si was
pointed out by Elliott and McGill, based on a sys-
tematic study of the experimental data. Our
theoretical results for these excitation energies of
BMEC associated with donors in Si are in good
agreement with the experimental data. ' This
indicates that the assignment of electrons to one-
electron donor states is a good description of the
BMEC. For donors in Ge, only optical transitions
from the ground state of the m =2 BMEC (two
EHP bound to a neutral donor) to the excited
states of the bound exciton are available. " Hence,
our theoretical calculation for the excited states of
BMEC associated with donors in Ge cannot be
compared with the experimental data but may
serve as a guidance for later experimental work. A
preliminary report of this work was presented in
Ref. 12.

In Sec. II, we present a general theory for
BMEC in semiconductors. In Sec. III, we discuss
our calculation method for BMEC associated with
donors in Si and Ge. In Sec. IV, we discuss our
theoretical results and compare them with the
available experimental data. Finally, a summary is
presented in Sec. V.
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II. GENERAL THEQRY

In this section, we discuss the general theory for
BMEC in semiconductors. For definiteness, we
will treat the BMEC associated with donors. This
discussion may be applied to BMEC assoriated
with acceptors as well. BMEC's assoriated with
donors are denoted by D X (where m is the num-
ber of EHP), whose effective-mass Hamiltonian
can be written as'

m+1 m m+1
HDOX

——g h, (r;)+ ghh( sJ)+ g U„(r;—r; )
i =1 j=l i &i'

m+1 m

+ Qvhh(sj —sj)+ g QUeh(ri sj) .
i=1 j=l

h, and hI, represent the single-particle Hamiltonian
for an electron and hole, respectively, interacting
with the donor; v«, v~I„and v,~ represent the
electron-electron, hole-hole, and electron-hole mu-

tual interactions, respectively. %e have used the
indices i (or i') to label the (m +1) electrons with
spatial coordinates r; and j (or j') to label the m

holes with spatial coordinates sj. This Hamiltoni-
an is invariant under the point group Td. There-
fore, the eigenfunctions of H 0 should transform

m

according to the irreducible representations (labeled

by I ) of Td, i.e.,

(2)

where %' " is the eigenfunction of H 0& which

transforms like a basis vector (labeled by p) of the

representation I . E is the associated eigenvalue.

7; and gj are ihe spinors associated with the ith
electron and the jth hole, respectively. To solve

Eq. (2), one can expand 4""on a complete set of
basis wave functions with symmetry (I'p).

(3)

It is customary to choose P"„"as the linear com-
bination of the Hartree-Pock (HF) solutions associ-
ated with the configuration an, where a labels the
crystalline symmetries for the associated single-
particle states and n labels their remaining quan-
tum numbers. Each single-particle state in a given
HF solution is chosen to transform according to an
irredurible representation of Td. We will use I;
and I"j to denote the crystalline symmetries of the
single-particle envelope functions associated with
the ith electron and the jth hole in the HF solu-

tions, respectively. For each electron of symmetry

I; and hole of symmetry I j, there can be infinite
number of states labeled by n; and nj, respectively,
corresponding to infinite number of HF excited
states. In analogy to atomic physics, n; (or nJ)
denotes the orbital symmetry (s,p, d, ...) and the
principal quantum number (1,2,3,...) of the single-

particle envelope functions. However, since the
single-particle effective-mass Hamiltonians h, and

hh are not rotationally invariant, the states of dif-
ferent orbital symmetries are usually mixed togeth-
er. ' %e can denote each configuration an as the
product of a "crystalline configuration" labeled by
a—:I I;,k = 1, . . . , m + I; I ~, j= 1, . . . , m j and
an "atomic configuration" labeled by
n—:In;, i =1, . . . , m+1; nJj =1, . . . , ni j.
Then, we can write

where |I}„' '(r;) and P„' '( s J ) are the Hartree-Fock
l J

single-particle solutions with symmetry (I';p;) and

(I Jp~) for the electron and hole, respectively; n;
and nj label the remaining quantum numbers.
C(I p f I I;p;7;,I 1pJ j ) are the coupling coeffi-
cients (including spinors) which can be determined

by the group theory. The symbol A is the antisym-
metrization operator producing a Slater deter-
minant. The hole spinors gj have been absorbed
into the double-group representations I;. %e have

I

treated the electrons and holes as nonidentical par-
ticles, since the electron-hole exchange is usually

negligible. Substituting Eq. (3) into Eq. (2), we

readily obtain

In Eq. (5), the matrix (P""
f H~,x f P~,"„)is usual-

ly referred to as the "configuration interaction"
(CI) matrix. The standard procedure of solving
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Eq. (2) is first to solve the Hartree-Fock equations
I,.p,. I .p.

for P„,
' ' and P„' ', and then diagonalize the CI

J
matrix to find D "and the eigenvalues E . In
practice, the CI calculation is unmanageable when

the number of particles becomes large. Equation
(5} will be greatly simplified if the coupling of
states belonging to different crystalline configura-
tions (labeled by a) can be neglected, i.e.,

&P.'."IH,.X I4".&=5, &P.'."IH,. IP.'& &. (6)
g&P"."

I H, I P.'."&D.'". =E."D.'". . (10)

acceptor through the "j-j coupling" scheme. ' But
the D X system, all the holes are loosely bound,
and these fine-structure splittings will be much

smaller than that for the acceptor-bound exciton.
When these coupling terms are neglected, Eq. (5)

can be rewritten for each crystalline configuration
u and overall symmetry I p as

We assume Eq. (6) is valid provided

I &P~(IH o IPN,"„&
I && IE~„E"„

I
—fora&a',

where E~„and E~„are the energy expectation
values of HD,x in the states of interest. In this

paper, we are interested in the ground state and the
low-lying excited states in which one I ~-symmetry
electron is excited into a state of I 3 or I 5 symme-

try, i.e., the states containing mainly the lowest-

lying HF states @'of low-lying crystalline config-
urations (a). It is conceivable that

1&P."."IH,; IP."".
& I « I &PR IH o, IP."o&

I

for n & 0 or n'&0,

since these coupling are determined by the inter-

particle interactions, which are larger for states of
the lowest atomic configuration and more localized
in space. The criterion for Eq. (6) to be valid

reduces from Eq. (7) to

1&Pno IHDo~ IPao& I && IEao E~o
I

The matrix element & p g I HD,X I p ~p& (a+a) in-
m

eludes the matrix elements for the electron-electron

interactions, electron-hole interactions and hole-

hole interactions. As discussed in our previous pa-

per, both the electron-electron and electron-hole

couplings between the lowest-lying states associated

with different crystalline configurations are of the

same order of magnitude as the "fine-structure"

splittings (splittings between states associated. with

the same configuration caused by the interparticle
interactions) which are about 0.5 meV for Si and

0.1 meV for Ge. It will be shown in Sec. III that

this argument also holds for the hole-hole cou-

pling. The fine-structure splittings due to the
hole-hole interactions are similar to the splittings

for the low-lying states of an exciton bound to an

From Eq. (10), it is observed that the energy spec-
tra of the BMEC (labeled by E") can be described

approximately by assigning electrons and holes to
various crystalline configurations (labeled by a).
This approximation has been used in the shell

model to interpret the experimental data for the
BMEC observed in Si and Ge. In the shell model,
it is further assumed that the ordering of the ener-

gy levels associated with various crystalline config-
urations is determined by single-particle states con-
tained in these crystalline configurations. It is not
clear whether or not this assumption could hold
unless Eq. (10) for various crystalline configura-
tions is solved. It is conceivable that the correla-
tion energy obtained by solving Eq. (10) will be ap-

proximately independent of the labeling a for the
states close to each other in energy. Therefore the
ordering of the states containing mainly lowest-

lying HF states (labeled by n =0}is approximately

determined by the energy expectation values for
the associated Hartree-Fock solutions, i.e.,
&PQ'

I HDox I P g'&. For our purposes here (find-
m

ing the energy differences between these states and
the ground state), we only solve the Hartree-Fock
equations for the energies &PQ'

I
H o I

PQ'&. For

BMEC whose number of EHP (m) is less than five,
all the electrons and holes can be assigned to states

of different spin or crystalline symmetries. For the
states of interest, all the four holes should occupy
the I s representation. In this case, if we neglect
the exchange interaction between electrons of the
same spin but different crystalline symmetries and
that between holes (which again yields the fine-

structure splittings of the same size as that pro-
duced by the other coupling schemes), then the
problem of solving the Hartree-Fock equations
reduces to that of solving the Hartree self-
consistent equations. In Sec. III, we describe the
calculation method which we used to solve the
self-consistent Hartree equations for BMEC associ-
ated with donors in Si and Ge.
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III. CALCULATION METHOD

To obtain the self-consistent Hartree-Pock solu-
tions, we expand each of the single-particle wave

~&I'ifunctions [P ' '(r;) or P '( sj)] on a set of basis

functions, denoted by 13&.'(r;) and Pqj( sJ) for the

electron and hole, respectively, viz. ,

I,.
$0' '(r;)=QCr. (b;)Py,'(r;),

reducible representation of the group pz.7 The kj
dcnotcs thc positions of thc N equivalent
conduction-band minima. g is the eccentricity fac-
tor determined by minimizing the energy expecta-
tion value of the donor Hamiltonian on P~(r ), in
which the exponent b is also allowed to vary. %e
find that the value of g are 0.57 and 0.355 for Si
and Ge, respectively, and they are approximately
the same for I'i, I'3, and I'5 states. The exponents
are chosen to be

Ig.
Po '(s~)=QCr, (bj)jfg', (s~) .

b.

For electrons, the basis functions are selected to
be linear combinations of seven ellipsoidal Slater-
type orbitals (ESTO) of the form

pp()() l kjr —b„(x2+y2+z2ig2)i~2
If j

where aj(v) are proper coefficients which are
chosen to make this basis function transform as a
basis vector (labeled by p, ) associated with an ir-

with

b„=ho/Z„, n=1, ...,7

bo ——2 bohr ' for Si, 4 bohr ' for Ge,

Z„=(1,2,4,8, 16,—,, —,) for Si and Ge .
(13)

For the holes, seven s-like and seven d-like Slater-

type orbitals (STO) are used to account for the
warping of the conduction band. The products of
these STO and the j= —, spinors, which transform

as basis vectors associated with the I 8 representa-
tion of T~, are constructed to form the basis-hole
wave functions, ' viz. ,

e "
~I =0,j= , ,F= —,,F, =—p) for l=0,

re " ~1=2 j= , ,F= , ,F, =—p'l f—or/=2,
(14)

where F:—1 + j; b„=Co/Z„, n =1,...,7 with Co ——0.5 bohr ' and Z„s given by Eq. (13). States with

Fg —, are not included, because they are not directly coupled to the s-like orbitals. ' The single-particle

Hamiltonian seen by a given electron (say, i = 1) due to the average charge distribution of other particles is

tlat +1 I Nf

H (rl)=~ (rl)+ X f I
00' '(«)

I
'&-(1 &)d'& + 2 f I 40 '( s)) I

'U.a(1 j)d"; (15)

where h, is the donor Hamiltonian and U is the mutual Coulomb interaction. Similarly, the Hamiltonian

seen by a given hole (say, j= 1) is

IIq(si)—=hi, (s, )+ g f jpa' '(r;)
~

u,q(l, i)d r;+ g f )$0 '(sj)
~ vs(, j)d s~ .

To obtain the Hartree-Pock solution for each
confligulation, wc fiist sct up thc HaImltoniaIl ma-
trix for one particle, H, or H~, with the remaining
single-particle wave functions fixed by the initial
guess. This matrix is then diagonahzed to obtain
an improved solution for the coefficients Cr (b; )

1

and Cr, (bj). This process is repeated for each par-

ticle and the whole procedure is then iterated until

a self-consistent solution is obtained. The matrix
elements for H, are the sum of the matrix ele-

ments for a donor Hamiltonian h„electron-
electron interaction, and electron-hole interaction.
The matrix elements for H~ are the sum of the
matrix elements for a hole Hamiltonian hI„
electron-hole interaction, and hole-hole interaction.
All these matrix elements except the hole-hole in-

teraction term have been discussed in our previous

papers, 6'7 and are briefly reviewed here.
For the donor Hamiltonian, h„we include the

intravalley and intervalley terms for both the kinet-
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ic and potential energies as well as the effect of the
short-range core potential. The short-range core
potential is approximated by a contact potential 14

[i.e., Jh5(r }]with the strength parameters Jh
(where A, =1,2, 3 for intravalley, intertransverse,
and interlogitudinal scattering terms, respectively)
determined semiempirically. Since we only include
the s-like ESTOs, the energy eigenvalues obtained

by diagonalizing h, on this basis set are slightly
higher (about l%%uo) than the exact eigenvalues of h, .
For our purpose here, we adjust the parameters J~
to fit the eigenvalues of h, (in the present basis set)
to the experimental results. The values of the ad-

justed parameters J~ were reported in Ref. 17. For
the hole Hamiltonian h~, we neglect the mixing
with the split-off band. This is a valid approxima-
tion, since the orbital energy of the hole (i.e., the
lowest eigenvalue of Hh) is small compared to the
separation between the top of the valence band and
the split-off band. For the electron-electron in-

17teraction, the matrix elements can be written as

&/ a 2 U«(1»} I/ l/2&= Uo/'„, „;&„~;
4

++UhGh(/ a»/ i/2»
A, =-1

where p&(p', ) and p2(p2) denote the single-particle
symmetries of the two electrons (labeled by 1 and

2), respectively. Uo represents the intravalley mu-
tual interaction between two electrons with major
axes of their ellipsoidal charge distributions along
the same axis. Uh(A, =1,2, 3,4} are terms which
lead to splittings within a given crystalline configu-
ration and couple states of different configurations
but the same overall symmetry. Gh (A, =1,...,4)

are the electron-electron coupling matrices defined
in Ref. 17. In the present calculation, the terms
U~, A, =1,2, 3,4 are neglected. For the electron-
hole interaction, the matrix elements can be written
as

&/, / h I .h I / '/ h & = ( 1'„+~dd )&
~e&e &hI h

+ ~sdJ(PePe~PhP'h ) ~ (18)

where /b, (p,') and p, h(p, h) denote the single-particle
symmetries of the electron and hole, respectively.
V, Vd~, and V,~ represent the mutual interactions
between the ellipsoidal charge distribution of the
electron and the charge distribution of the hole.
V„and Vdd represent the coupling between two s-
like and two d-like hole states, respectively; V,d
represents the coupling between one s-like and one
d-like hole state. j (p,p,',phph) is the electron-hole
coupling matrix defined in Ref. 6. In the present
calculation, the electron-hole coupling term (in-
volving V,~) is neglected.

The hole-hole interaction has not been treated
previously and is discussed here in more detail. In
Appendix A, we derive the hole-hole interaction
matrix elements between the two-hole states denot-
edby I/ iV2& and lu'i/2& with/ i(/ l} and/2(/2}
labeling the basis vectors of the I 8 representation
for the two holes. It is shown in this appendix
that the off-diagonal terms (with p~Qp&, or
@2+@A)are 2 orders of magnitude smaller than the
diagonal term (with p~

——pt and p2 ——p2). There-
fore, the mixing of hole states through the off-
diagonal term (hole-hole coupling) can be neglect-
ed. Neglecting these off-diagonal terms, we can
write the matrix elements for the hole-hole interac-
tion as (see Appendix A for derivation)

2ffb, (ri)fb (rI)—fb2(r2}fb, (r2)r&r2dr~dr2 for /~
——/~ and /2 —

/2
1

&p/J I lp p &= 2

„ffb, (ri}fb (ri—} 3'fb, (r2)fb, (r2)r~r2dr&dr2 for /, +/I and /2+/z

0 otherwise,

where fb, (fb ) and fb (fb ) are the radial parts of
the basis functions (Pb s) given by Eq. (14); l, (l, )J
and l2 (l2) denote the angular momenta associated
with the states pb (pb, ) and pb (jf&, ), respective-b'

ly. %e have introduced the normalized units in

I

which distance and energy are measured in units of
eofP/m, e and e m, /2eofP, respectively. eq and m,
are the static dielectric constant and the transverse
effective mass, respectively.

In Sec. IV, we discuss our theoretical results for
the energies of the lowest-lying HF states associat-
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ed with various configurations for several donors
in Si and Ge.

A. Si

The total energies of the low-lying states for
D X~ in Si:P, Si:As, and Si:Sb are listed in Table
I. For complexes with m & 2, some states with
conflgllratlolls of tllc tyPc {I 1,1 s, I s', 2l sj, 111

which three electrons are assigned to different

symmetry states, are not listed. These states can
be inserted between states with configurations of
the types

{r„21,;21'sj and {I'„21's,21'sj .

It should be noted that the separations between
these states are of the same order of magnitude as
the splitting caused by interparticle interactions;
therefore, all these states are strongly mixed to-
gether and the assignment of electrons and holes
into single-particle states is no longer a good
description for these states in BMEC. However, a
shell model in which states associated with the I 3

and I 5 single-particle symmetries are considered as
belonging to a single-crystalline configuration is
still a good description of the BMEC.

In the photoluminescence spectrum from the
BMEC two series of lines (a and P ) are ob-
served. In the shell model, the a-series and P-
series luminescence are interpreted as the ground-
to-excited-state and ground-to-ground-state transi-
tions, respectively, ' i.e.,

a transition: {2I'„(m—1)I'3 $ mrs j {I „(m 1}1»,(m

P 1 transition: {21'1,(m —1)I'»,mI sf~[21 1,(m —2}1q q', (m —1}1sj .

The excitation energies of these excited states
can therefore be deduced from the separations be-

twcc11 tllc posltiolls of tllc cz aild p 1 1111cs. A
systematic study of these energy separations for
various donors in Si has been given by Elliott
et a/. In Fig. 1 we plot our theoretical predictions
of these separations obtained in the present approx-

I

imation and the experimental data. " ' The results
presented here are slightly different (within S%%u~)

from those presented previously. ' In Ref. 12 we
did not adjust the parameters J~ to fit the eigen-
values of h, (in the present basis set) to the experi-
mental results. We have relabeled the P2 and Pz
lines in Ref. 8 as P& and Pq and assumed that the

TABLE I. Total energies of the low-lying states for D X in Si:P, Si:As, and Si:Sb ob-

tained in Hartree-Pock approximation. All energies are in meV.

Complex Conf lgUI ation Si:P Si:As Si:Sb

{21'„I'sj
{I„r„l,j
{I „r,;I., j

{21„r„21., j
{21'i,I 1,21's j
{1"(,21'g, 21 s j
{I),213,21 sj
{2I ),21"g,'3l's j
{21'),2l 3', 3I s j
{1),315,31 gj

{I'(, 3l'3, 31 s j
{21'i, 31's,41's j
{21'),3l 3,41 sj
{1),41 5', 4I sj
{1),41'3,41'sj

—57.36
—S3.22
—53.00
—64.29
—64.25
—60,04
—59.73
—70.75
—70.65
—66.59
—66.21
—76.96
—76.84
—72.76
—72.32

—66.65
—60.82
—60.69
—73.70
—73.69
—67.44
—67.23
—80.10
—80.04
—73.80
—73.52
—86.26
-86.16
—79.79
—79.43

—54.25
—50.54
—50.11
—61.11
—61,02
—57.36
—S6.76
—67.55
—67.35
—63,88
—63.14
—73.70
—73.44
—70.01
—69.17
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FIG. 1. Theoretical and experimental energy separa-
tions between the a +i and P lines p1otted against the
number of electron-hole pairs bound to a donor. The
experimental data are taken from Ref. 9 for Si:P and

Ref. 8 for Si:Sb and Si:As (see text for reinterpretation).
The arroz& indicates the range of the values of the

P2 —a3 separation for Si:As.
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p2 line is hidden under the TO phonon-assisted ai
line. Hence, we cannot precisely locate the pq line

as indicated by a range in the figure. This relabel-

ing of lines in Si:As results in the a +i —p~
separations being almost independent of the index

m as in Si:P and Si:Sb. Good agreement between

theory and experiment is found for all complexes.
We can nake systematic studies of the correla-

tion energies of D X~ in Si. We define the disso-
ciation energies 5E by

5E =(E i+E ) E (20

where E~ and E„are the ground-state energies for
D X and a free exciton, respectively. Expanding
the free-exciton wave function on our basis set, we
obtain a value —14.2 neV for E„which is slight-
ly higher than the experimental value —14.7 meV
(Ref. 18) and the theoretical value obtained with a
larger basis set. ' Taking the difference between
the experimental values for the dissociation ener-

gies, 5E~ (SM) (Refs. 8—10) (from the lumines-
ceilce data interpreted llsiilg 'tile sllell nlodel ) aiid
the HF values 5E~ (HF), we can obtain the corre-
lation energies 5E~ for binding one EHP to the
(m —1) complex. In Fig. 2 the correlation energies
per EHP so obtained (5E" ) are plotted against
the number of EHP in D X for various donors in
Si. As shown in this figure, 5E" increases mono-
tonically, reaching a limiting value 5EEHD, the

FIG. 2. Correlation energies per electron-hole pair
(EHP) plotted against the number of EHP bound to a
neutral donor for Si:P, Si:As, and Si:Sb. The arrow in-
dicates the range of the values of 5E~ "for Si:As. The
experimental data used for obtaining these correlation
energies are taken from Ref. 9 for Si:P and Ref. 8 for
Si:Sb and Si:As (see text for reinterpretation).

correlation energy per EHP in the electron-hole
droplet (EHD). The value 17 meV for 5Es'HD is
obtained by taking the difference between the ex-
perimental binding energy and the binding energy
calculated in the Hartree-Pock approximation. ' .
For Si:As, we have relabeled the p2, p3, and p4
lines as before. The values of 5E3' are indicated
by a range in the figure, because we cannot precise-
ly locate the P2 hne.

In Table II, we list the total energies of the
ground states [I2I'i, (m —l)I'5;ml sI] and the
one-electron excited states ( I I i,m I 5,'mI'sI ) for
complexes D X obtained in the present approxi-
mation for Ge:P, Ge:As, and Ge:Sb. For illustra-
tive purposes, we plot in Fig. 3 the energy separa-
tions between these one-electron excited states and
the ground states (P —a +i separations) for com-
plexes associated with various donors. As shown
in this figure, the energy separations for all donors
are approximately independent of the index m (the
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TABLE II. Total energies of the low-lying states for D X in Ge:P, Ge:As, and Ge:Sb,
obtained in Hartree-Fock approximation. All energies are in meV.

Complex Configuration Ge:P Ge:As Ge:Sb

DX

D Xg

D X3

D X4

[2r„r,j
jl )rrg,=rgj

I2r„r,;2r, j
I r„2r5,2rsj

I 2rI, 2rI', 3rs I

[ r), 3rg', 3rsj
I2r(, 3rI,4rsj
Ir„4r„4r,j

—16.12
=-= 15.10
—18.11
—17.02
—19.81
—18.71
—21.36
—20.25

—17.73
==-16.43
—19.56
—18.15
—21.26
—19.81
—22.81
—21.34

—13.35
=13,20
—15.09
—14.98
—16.82
—16.69
—18.49
—18.27

0 2.0—
(D

E

+ l.6—
E

C~ l2-
lj
O

o-Ge'P
&-Ge As
o-Ge: Sb

number of EHP in D X~). For Ge:Sb, these
separations are of the same order of magnitude as
the electron-electron coupling (about 0.1 meV).
Hence we expect a substantial mixing between the
one-electron excited states and the ground states
for m & 2 complexes. Therefore the shell model is
not a good description for BMEC in Ge:Sb. The
energy separations for the first one-electron excited
states for bound excitons (D X) in Ge:P and Ge:As
are in good agreement (to within 0.05 meV) with
the experimental data [the separations between the
ai (lsI'5) and yj lines] observed by Mayer and
Lightowlers. " The experimental data for the other

P~ —a~+i separations are not available for a com-
parison with our theoretical results. The observa-
tion of the luminescence from higher complexes in
Ge is difficult because these lines are mixed with

the luminescence associated with electron-hole dro-
plets and are difficult to resolve.

V. CONCLUSION

We have calculated the electronic excitation
spectra of the BE and BMEC's for donors in Si
and Ge. Good agreement between our calculation
and the experimental data interpreted using the
shell model strongly suggests that the BE and
BMEC can be understood in terms of a shell-like
model. Throughout this calculation we have
neglected correlation effects which are essential in
obtaining the correct binding energies. These
correlation energies are estimated to be approxi-
mately 10 meV for each EHP in the D X~ in Si.
The correlation effect could be included by expand-
ing the total wave function in terms of the HF
solutions. However, we expect the splittings
evaluated on the "correlated" states to be still of
the same order of magnitude as above. Hence, we
conclude that the correlation effect, although sub-
stantial in magnitude, does not affect the splittings
substantially. Our calculation provides a better
understanding of the BMEC's in multivalley sem-
iconductors.~ 0.8—

O
I—

~ OA-
CL
LLI
(A

0
I 2 3 4

NUMBER OF ELECTRON-HOLE PAIRS (m)
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In this appendix, we derive the expression for the hole-hole interaction matrix elements of the type
I 1

&1M» I u»» I
W'lu2 & —= &~»,'Ps,' I e»»(I»)

I +»', I;'& (Al)

where pq's are given by Eq. (14) with b and lu denoting the exponent and symmetry (index for the I, repre-
sentation), respectively. More specifically, we can write

P~(r) =f»(r)QC1(p, m)Y1~(QQ'& (A2)

where

f ( }
e " for / =0
re " for l=2.

(A3)

(A4)

We obtain

&vill»21 "h» IIP1I»2& ~ y ~l (P'1 ml )~$' (P1 Pl Pl+ ml)~l (P2 m2)~$ ~ (ll»2 P2 P2+m2)
m)lN2

X/~L(blif 2~bi tb2) f +1inli(Ql)Y/' ii' ii +Ni (Ql)+LM(Q1)dQ1

The coefficients Cl o(p, m =0)=1 for all p. The coefficients v SC1 2(1M, m) are listed in Table III. Substi-
tuting Eq. (A2) into Eq. (Al) and using the relation

L
2 Sm r(

U»»(1, 2)= =g L+, YLM(Qi) YLM(Q2),
LM 2L+I r;+'

~ f +12m2(Q2)Y1& ii' ii +i' (Q2)YLM(Q2)dQ2 &

(AS)

where

L
2 7 ( 2 2JL(bi, b2, b'l, b2 )=

2L +] 1 b) pL+1f» (rl)f», (rl) L+1 f» (r2)f», (r2)r lr2dridr2 .

In Eq. (AS), the integrals over dQl and dQ2 yield coefficients proportional to 5, M and 5
P&

—P,&,M P2—P2,M'

respectively. Therefore & pi@2 ~
v»»

~ pip& & vanishes unless

Pi —Pi=Pe —Pz .

(A6)

(A7)

TABLE III. Expansion coefficients VS'(p„m) for the I =2 hole basis functions on the
products of spherical harmonics and j=—spinors.

v 5Ci 2(p, m) 3

2

1

2

1

2

3

2

—2
—1

m 0
1

2

v2

—1

v2
0

0
v2
—1

0
v2
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We discuss the diagonal 'terms (p~ ——p, '~ and p2
——pq) and off-diagonal terms (p~Qp, ~ and pqQpq) separate-

(I) Diagonal term Os& —p~
—and JM2=pg.

(a) l~ ——l~ and 12 lz—..—

(pg42 ( Us/ ( pg42) = 4ry&L(b), b2,,b $,b2) Jy„~ C/(pg, m))rj, ,(Q$) [ '&& r~(Qg) dQ,
L PS)

X fg ~ C(,(p2, m2)F(, (Qs)
~

~I'L, o(Qg) dQg

=&o(b~ b»bi»2)

where we have used the relation (see Table III)

g ( C)(p, m)F(~(Q) )
= g ) Y(~(Q) )

2

{b) i(+I g and Ep+lp.'

&JMijMi I oss I pips& =
5 &~&{bi»2 4 b2 }J I'20(Q1) I'Lo(Q&) dQ& J I'2o(Q2) I'&o(Q&) dQ2

= —,J (2b), bg, b), bt) . (A10)

(c) For the other cases (1& ——1'& and 12+l2} and (l~+l'& and lz ——l2),

(pi@2 I oss I p&2) =0

Substituting Eq. (A3} into Eqs. (Ag) and (A10), we obtain

64(b)bgbgb2) ~
2 2 +

a,a&{a&+a&} a~a2(a~+a2)
for /) =l (

——l2 ——lg =0

&Ps,'Pa,'I ops I 0,', P, ', &=

12s(b, b', )'"(b2b2)'"
(x~+a2x'+a(a2x+2a)ap} for 1)——l )

——0,
a',o,',x'

2S6(b, b, )'"(b;b; P'
EX~AgX

(A11c)

(Ai la)

256(bibibpb2 )
[2(a,+a, )x +10a,a,x —25a,a,] for l, =l& ——l2 ——l2 ——23 3

a',+AX�'

The other cases can be obtained from Eq. (A11) by symmetry.

(2) 0+diagonal terms (p~+p~ and lsz+pg. I.et M=p~ —@~+0„the—n p2 p2 M[from E—q. (A——7)].
Equation {A5) can be written as
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(/ti/t2 i ups i /ti/t2 }= (2/i+1)(2/i +1)(2/2+1)(2/&+1))'i

X Q Ci, (Pi, mi)Ci, (/si, M+mi)Ci, (/t2, mz)C, , (/t2, mi —M)( —1) '( —1) '( —1)
1 '2

X g (2L+1)JL(bi,b2, bi, b2)
1.& ~M (

I /2 /2 I.
—m~ m& —M —M 0 0 0 —m2 m2 —MM 0 0 0

(A12)

where we have used the relation

t I
(2/+1)(2/+1)(2I. +1)

'
/ /' L

I'im I'i m I'estd'= 4~ 00 0 mm'M (A13)

The right-hand. side of Eq. (A12) vanishes for /, =/i ——0 or /2 ——/2 ——0, since the coefficient

0 0 I.
mm'M =0 unless I.=M =0 .

Therefore, the most important contribution to (/si(u2 I ups I pi/tz }Fq (A12)] comes fro m /1 /2 0 aiid
/i ——/2 =2 (or equivalent cases, e.g., /i ——/z ——0 and /i ——/z ——2, etc.). For this case, we obtain

&/ i/ 2 I usa I/ i/ 2 }=C2(/ i,M)C2(/ 2, —M)J2(bi, b2, bi, b2) & —,J2{bi,b2, bi, b2) . (A14)

We can compare the size of the contribution for Eq. {A14) to that from Eq. (All). If we assume that in the
ground state, the hole wave function Pi, is described by

(t)s =a.0.+a»A (A15)

(A16)

with b, and b» being the exponent associated with the wave functions P, and P», respectively. Taking
b, =b» and —,a,a»-0. 3, we obtain a contribution from (A16) about 2% of that from the hole-hole interac-
tion given by Eq. (Al la).

with P, and P» being the s-like and d-like components of P», respectively, then Eq. {A14)will yield a contri-
bution to the total energy of magnitude

4
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