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We report a theory for bound multiexciton complexes (BMEC) associated with donors
in multivalley semiconductors. The energy separations between the low-lying electronic
states and the ground state are calculated in the Hartree-Fock approximation. By incor-
porating the effect of the anisotropic, multivalley band structures with interparticle in-
teractions, we obtain energy separations in good agreement with the available experimen-
tal data. This agreement between theory and experiment suggests that the assignment of
electrons and holes to single-particle states is a good description of the BMEC in mul-

tivalley semiconductors.

I. INTRODUCTION

Recent experimental studies have revealed the
existence of an interesting excited state in semicon-
ductor systems, in which a number of electron-hole
pairs (EHP) are bound to a neutral impurity.!

This finite many-body system is called a bound
“exciton” (BE) when one EHP is bound and a
bound “multiexciton” complex (BMEC) when
more than one EHP are bound to a single neutral
impurity. Photoluminescence resulting from the
recombination of an EHP in BMEC typically
yields a series of sharp lines lying at the long-
wavelength side of the associated BE luminescence
line. These spectra were first reported by Kamin-
skii et al.2 and later by several authors.® Some
theoretical speculations have been put forward to
explain these experimental spectra.*> The shell
model (SM) proposed by Kirczenow® has success-
fully interpreted many features of the spectroscopy
associated with BMEC in Si.

In a previous paper,® we have reported a theoret-
ical calculation for the excitation spectra of bound
excitons associated with donors in Si. Our results
for the energy separations between the low-lying
one-electron excited states and the ground state are
in good agreement with the experimental data in-
terpreted using the SM, hence lend support to the
assignment of single particles into the shell-like
structure.

In this paper, we present theoretical calculations
for the excitation spectra of BMEC associated with
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donors in Si and Ge. We find that the excitation
energy for one I'; symmetry electron being excited
into a state of I'; or I's symmetry’ in BMEC is ap-
proximately independent of the number of EHP.
This condition holds for most donors in Si and Ge.
This independence of the number of EHP on the
energy separations between the low-lying excited
states and the ground state for BMEC in Si was
pointed out by Elliott and McGill,? based on a sys-
tematic study of the experimental data. Our
theoretical results for these excitation energies of
BMEC associated with donors in Si are in good
agreement with the experimental data.®~'° This
indicates that the assignment of electrons to one-
electron donor states is a good description of the
BMEC. For donors in Ge, only optical transitions
from the ground state of the m =2 BMEC (two
EHP bound to a neutral donor) to the excited
states of the bound exciton are available.!! Hence,
our theoretical calculation for the excited states of
BMEC associated with donors in Ge cannot be
compared with the experimental data but may
serve as a guidance for later experimental work. A
preliminary report of this work was presented in
Ref. 12.

In Sec. II, we present a general theory for
BMEC in semiconductors. In Sec. III, we discuss
our calculation method for BMEC associated with
donors in Si and Ge. In Sec. IV, we discuss our
theoretical results and compare them with the
available experimental data. Finally, a summary is
presented in Sec. V.
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II. GENERAL THEORY

In this section, we discuss the general theory for
BMEC in semiconductors. For definiteness, we
will treat the BMEC associated with donors. This
discussion may be applied to BMEC associated
with acceptors as well. BMEC’s associated with
donors are denoted by D°X,, (where m is the num-
ber of EHP), whose effective-mass Hamiltonian
can be written as'’

m+1 m+1
= 3 hel ,+2hh(s +2vee Ty
i=1 i<i

m m+1 m
+2vhh('s’j—‘s’j')+ 2 Zve},(f:‘—-—S’j)

i<i' i=1j=1

(1)

h, and hj, represent the single-particle Hamiltonian
for an electron and hole, respectively, interacting
with the donor; v, vy, and v, represent the
electron-electron, hole-hole, and electron-hole mu-
tual interactions, respectively. We have used the
indices 7 (or i’) to label the (m +1) electrons with
spatial coordinates T; and j (or j') to label the m
holes with spatial coordinates §;. This Hamiltoni-
an is invariant under the point group T,;. There-
fore, the eigenfunctions of H pox,, should transform

according to the irreducible representations (labeled
by ') of Ty, i.e.,

HDomer#({f}}Xi’{gj}Xj)

=ETWIR({T X, {3;1X)) )
which

transforms like a basis vector (labeled by u) of the

where WI* is the eigenfunction of Hpp

YIA-CHUNG CHANG AND T. C. McGILL

25
representation I'™. ET is the associated eigenvalue.
X; and X; are the spinors associated with the ith
electron and the jth hole, respectively. To solve
Eq. (2), one can expand W' on a complete set of
basis wave functions with symmetry (Tw).

WIE((T X0, (35)X5) ED T X {351

3)

It is customary to choose 35# as the linear com-
bination of the Hartree-Fock (HF) solutions associ-
ated with the configuration an, where a labels the
crystalline symmetries for the associated single-
particle states and n labels their remaining quan-
tum numbers. Each single-particle state in a given
HF solution is chosen to transform according to an
irreducible representation of T;. We will use T;
and T'; to denote the crystalline symmetries of the
single-particle envelope functions associated with
the ith electron and the jth hole in the HF solu-
tions, respectively. For each electron of symmetry
['; and hole of symmetry I';, there can be infinite
number of states labeled by n; and n;, respectively,
corresponding to infinite number of HF excited
states. In analogy to atomic physics, n; (or n;)
denotes the orbital symmetry (s,p,d,...) and the
principal quantum number (1,2,3,...) of the single-
particle envelope functions. However, since the
single-particle effective-mass Hamiltonians s, and
hy, are not rotationally invariant, the states of dif-
ferent orbital symmetries are usually mixed togeth-

* We can denote each configuration an as the
preduct of a “crystalline configuration” labeled by

a={Tuk=1...,m+1; L, j=1, o ,fn} and
an “atomic configuration” labeled by
n={n;, i=1..., m+1; njp,j=1...,m}.

Then, we can write
|

{u

2

Kpi=1,...,m+1)
{yj,j=1,...,m)

Te({r X {s53X))

where ¢£l_"ﬂ'(f',-) and ¢,l;’#j () are the Hartree-Fock
single-particle solutions with symmetry (I';u;) and
(T'ju;) for the electron and hole, respectively; n;
and n; label the remaining quantum numbers.
C(Tp | {Tip;X;,Tju;}) are the coupling coeffi-
cients (including spinors) which can be determined
by the group theory. The symbol 4 is the antisym-
metrization operator producing a Slater deter-
minant. The hole spinors X; have been absorbed
into the double-group representations I';. We have

C(Tu|{T

m Ty,
§ Cl

Jj=1

m+l po,
I1 ¢, (5, |4

i=1

X, Tipi})A

—s’j)y, @)

!

treated the electrons and holes as nonidentical par-
ticles, since the electron-hole exchange is usually
negligible. Substituting Eq. (3) into Eq. (2), we
readily obtain

Z (Ban | H

In Eq. (5), the matrix (8L |H

ly referred to as the “configuration interaction”
(CI) matrix. The standard procedure of solving

|y T
o=E'DJt .

DOX | B(l;":l' >D (5)

DOy | B, is usual-
m
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Eq. (%) is first tlg solve the Hartree-Fock equations
for ¢,"* and ¢,,jjﬂj , and then diagonalize the CI

matrix to find DI* and the eigenvalues ET. In
practice, the CI calculation is unmanageable when
the number of particles becomes large. Equation
(5) will be greatly simplified if the coupling of
states belonging to different crystalline configura-
tions (labeled by a) can be neglected, i.e.,

(Ba | Hpoy | Batn) =8aaBat | Hyoy 1Bl - (6)
We assume Eq. (6) is valid provided
| <B£# | HDOXm I Bg";'> | << IEtl;n _Etl;n’ for a7(—'al

(7)

where E ,1;,, and E 5,,: are the energy expectation
values of H e in the states of interest. In this
m

paper, we are interested in the ground state and the
low-lying excited states in which one I'{-symmetry
electron is excited into a state of I'; or I's symme-
try, i.e.; the states containing mainly the lowest-
lying HF states BL¢ of low-lying crystalline config-
urations (). It is conceivable that

| Bk | Hyoy |Bia) | << | (BEE | Hpox |BES) |

(8)
forn>0o0rn'>0,

since these coupling are determined by the inter-
particle interactions, which are larger for states of
the lowest atomic configuration and more localized
in space. The criterion for Eq. (6) to be valid
reduces from Eq. (7) to

| (Bab | Hyoy | Bt} | << |Eao—Eao| . ()

The matrix element (8L | H oy | Bt (as~a) in-

cludes the matrix elements for the electron-electron
interactions, electron-hole interactions and hole-
hole interactions. As discussed in our previous pa-
per,® both the electron-electron and electron-hole
couplings between the lowest-lying states associated
with different crystalline configurations are of the
same order of magnitude as the “fine-structure”
splittings (splittings between states associated with
the same configuration caused by the interparticle
interactions) which are about 0.5 meV for Si and
0.1 meV for Ge. It will be shown in Sec. III that
this argument also holds for the hole-hole cou-
pling. The fine-structure splittings due to the
hole-hole interactions are similar to the splittings
for the low-lying states of an exciton bound to an

acceptor through the *j-j coupling” scheme.!> But
the D°X,, system, all the holes are loosely bound,
and these fine-structure splittings will be much
smaller than that for the acceptor-bound exciton.

When these coupling terms are neglected, Eq. (5)
can be rewritten for each crystalline configuration
a and overall symmetry I'u as

(B | Hy, |BHIDIL=EIDIE. (10
nr m

From Eq. (10), it is observed that the energy spec-
tra of the BMEC (labeled by EL) can be described
approximately by assigning electrons and holes to
various crystalline configurations (labeled by a).
This approximation has been used in the shell
model® to interpret the experimental data for the
BMEC observed in Si and Ge. In the shell model,’
it is further assumed that the ordering of the ener-
gy levels associated with various crystalline config-
urations is determined by single-particle states con-
tained in these crystalline configurations. It is not
clear whether or not this assumption could hold
unless Eq. (10) for various crystalline configura-
tions is solved. It is conceivable that the correla-
tion energy obtained by solving Eq. (10) will be ap-
proximately independent of the labeling a for the
states close to each other in energy. Therefore the
ordering of the states containing mainly lowest-
lying HF states (labeled by n =0) is approximately
determined by the energy expectation values for
the associated Hartree-Fock solutions, i.e.,

(B | H Dox, | B2). For our purposes here (find-

ing the energy differences between these states and
the ground state), we only solve the Hartree-Fock
equations for the energies (BN | H pox | BEE)Y. For

BMEC whose number of EHP (m) is less than five,
all the electrons and holes can be assigned to states
of different spin or crystalline symmetries. For the
states of interest, all the four holes should occupy
the I'g representation. In this case, if we neglect
the exchange interaction between electrons of the
same spin but different crystalline symmetries and
that between holes (which again yields the fine-
structure splittings of the same size as that pro-
duced by the other coupling schemes), then the
problem of solving the Hartree-Fock equations
reduces to that of solving the Hartree self-
consistent equations. In Sec. III, we describe the
calculation method which we used to solve the
self-consistent Hartree equations for BMEC associ-
ated with donors in Si and Ge.
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III. CALCULATION METHOD

To obtain the self-consistent Hartree-Fock solu-
tions, we expand each of the single-particle wave

functions [¢ ’“‘ )or ¢ T, j)] on a set of basis
functions, denoted by ﬁ" ;) and B" /($;) for the
electron and hole, respectlvely, viz.,

1“1 ’ zcr b )ﬁ‘ ’

and
YI(3)) =3 Cry(b))B(3) (11)
b

For electrons, the basis functions are selected to
be linear combinations of seven ellipsoidal Slater-
type orbitals (ESTO) of the form

-7 —b (x24y2422/62)172

B“(r)—zaj ,u)e ,  (12)

where aj(v) are proper coefficients which are
chosen to make this basis function transform as a
basis vector (labeled by u) associated with an ir-

B‘g:

where F=T1 +_| b,=Cy/Z,,n=1,.

F,=u) forl=0
F,=p) forl=2

reducible representation of the group T;.” The Ej
denotes the positions of the N equivalent
conduction-band minima. § is the eccentricity fac-
tor determined by minimizing the energy expecta-
tion value of the donor Hamiltonian on B4(T), in
which the exponent b is also allowed to vary. We
find that the value of & are 0.57 and 0.355 for Si
and Ge, respectively, and they are approximately
the same for I'y, I'3, and T'5 states. The exponents
are chosen to be

b,=by/Z,, n=1,...,7
with
bo=2 bohr~! for Si, 4 bohr~! for Ge,
Z,=(1,2,4,8,16,7,7) for Siand Ge .

(13)

For the holes, seven s-like and seven d-like Slater-
type orbitals (STO) are used to account for the
warping of the conductxon band. The products of
these STO and the j = spinors, which transform
as basis vectors assocmted with the I'g representa-
tion of T, are constructed to form the basis-hole

wave functions,'® viz.,

.,7 with Cy=0.5 bohr~! and Z,’s given by Eq. (13). States with

F ;& 5 are not included, because they are not directly coupled to the s-like orbitals.!® The single-particle
Hamiltonian seen by a given electron (say, i =1) due to the average charge distribution of other particles is

m+1

f1+2f|¢

H(rlz

;) vee<11>d3r+2fl¢o“”’ $5) | (L )ds; (15)

where h, is the donor Hamiltonian and v is the mutual Coulomb interaction. Similarly, the Hamiltonian

seen by a given hole (say, j =1) is

m 1 " m .
HyS)=h G0+ S [ 160" E) | van(Lidri+ 3, [ 18075 )) | 2o (1,)d’s; . (16)
j=2

i=1

To obtain the Hartree-Fock solution for each
configuration, we first set up the Hamiltonian ma-
trix for one particle, H, or Hj, with the remaining
single-particle wave functions fixed by the initial
guess. This matrix is then diagonalized to obtain
an improved solution for the coefficients Cr,(b;)
and Cr,(b;). This process is repeated for each par-
ticle and the whole procedure is then iterated until

a self-consistent solution is obtained. The matrix
elements for H, are the sum of the matrix ele-

I
ments for a donor Hamiltonian A,, electron-
electron interaction, and electron-hole interaction.
The matrix elements for H, are the sum of the
matrix elements for a hole Hamiltonian 4,
electron-hole interaction, and hole-hole interaction.
All these matrix elements except the hole-hole in-
teraction term have been discussed in our previous
papers,>!7 and are briefly reviewed here.

For the donor Hamiltonian, A,, we include the
intravalley and intervalley terms for both the kinet-
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ic and potential energies as well as the effect of the
short-range core potential. The short-range core
potential is approximated by a contact potential'*
[i.e., J58(T)] with the strength parameters J;
(where A=1,2,3 for intravalley, intertransverse,
and interlogitudinal scattering terms, respectively)
determined semiempirically. Since we only include
the s-like ESTOs, the energy eigenvalues obtained
by diagonalizing A, on this basis set are slightly
higher (about 1%) than the exact eigenvalues of 4,.
For our purpose here, we adjust the parameters J
to fit the eigenvalues of 4, (in the present basis set)
to the experimental results. The values of the ad-
justed parameters J; were reported in Ref. 17. For
the hole Hamiltonian 4, we neglect the mixing
with the split-off band. This is a valid approxima-
tion, since the orbital energy of the hole (i.e., the
lowest eigenvalue of H}) is small compared to the
separation between the top of the valence band and
the split-off band. For the electron-electron in-

teraction, the matrix elements can be written as!’

(pipa | vee(1,2) | pipy ) = UoB, 18,

4
+ X UpGalpipa,ptipy)
a1

(17)

where p1(1) and p,(u5) denote the single-particle
symmetries of the two electrons (labeled by 1 and
2), respectively. U, represents the intravalley mu-
tual interaction between two electrons with major
axes of their ellipsoidal charge distributions along
the same axis. U,(A=1,2,3,4) are terms which
lead to splittings within a given crystalline configu-
ration and couple states of different configurations
but the same overall symmetry. G, (A=1,...,4)

(tta | vp | papty) = r
3
0 otherwise ,

where £, (f;) and f, (f3,) are the radial parts of
the basis functions ( bj ’s) given by Eq. (14); I, (I7)
and /, (I3) denote the angular momenta associated
with the states B’;: (. b'i ) and B’;; (B:Z ), respective-
ly. We have introduced the normalized units in

are the electron-electron coupling matrices defined
in Ref. 17. In the present calculation, the terms
Uy, A=1,2,3,4 are neglected. For the electron-
hole interaction, the matrix elements can be written
as

(Bettn | Ven | pepth ) = (Ve +Vaq 18,

+ Vsdj(/‘eﬂcle’.uhl‘;t ), (18)

where p,(u,) and p,(pj,) denote the single-particle
symmetries of the electron and hole, respectively.
Vs> Vaa, and Vi, represent the mutual interactions
between the ellipsoidal charge distribution of the
electron and the charge distribution of the hole.
Vis and V4 represent the coupling between two s-
like and two d-like hole states, respectively; ¥V,
represents the coupling between one s-like and one
d-like hole state. j(uou,,upuy) is the electron-hole
coupling matrix defined in Ref. 6. In the present
calculation, the electron-hole coupling term (in-
volving V) is neglected.

The hole-hole interaction has not been treated
previously and is discussed here in more detail. In
Appendix A, we derive the hole-hole interaction
matrix elements between the two-hole states denot-
ed by |pip,) and |pius ), with wy(u)) and p,(uh)
labeling the basis vectors of the I'y representation
for the two holes. It is shown in this appendix
that the off-diagonal terms (with ujs4u,, or
Mo74p)) are 2 orders of magnitude smaller than the
diagonal term (with py =y, and u,=p}). There-
fore, the mixing of hole states through the off-
diagonal term (hole-hole coupling) can be neglect-
ed. Neglecting these off-diagonal terms, we can
write the matrix elements for the hole-hole interac-
tion as (see Appendix A for derivation)

‘ 1
2f fbl(rﬂfb;(rl)r—‘sz(rz)fbé(rz)rfrgdrldrz for I;=1{ and I, =1}
>

= [ fo (11 My (ry )r_< Fo,(r2)fyy (r2)rir3dridr, for i1} and L1 (19)

I
which distance and energy are measured in units of
€f*/m,e? and e*m, /2e3#?, respectively. €, and m,
are the static dielectric constant and the transverse
effective mass, respectively.

In Sec. IV, we discuss our theoretical results for
the energies of the lowest-lying HF states associat-
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ed with various configurations for several donors
in Si and Ge.

IV. RESULTS AND DISCUSSION
A. Si

The total energies of the low-lying states for
D°X,, in Si:P, Si:As, and Si:Sb are listed in Table
I. For complexes with m >2, some states with
configurations of the type {I',I'3,I'5;2Ig}, in
which three electrons are assigned to different
symmetry states, are not listed. These states can
be inserted between states with configurations of

It should be noted that the separations between
these states are of the same order of magnitude as
the splitting caused by interparticle interactions;
therefore, all these states are strongly mixed to-
gether and the assignment of electrons and holes
into single-particle states is no longer a good
description for these states in BMEC. However, a
shell model® in which states associated with the T,
and I's single-particle symmetries are considered as
belonging to a single-crystalline configuration is
still a good description of the BMEC.

In the photoluminescence spectrum from the
BMEC two series of lines (a,, and B,,) are ob-
served.’ In the shell model,’ the a-series and 3-
series luminescence are interpreted as the ground-

the types
(T',2T'3;2T} and {T},2T5;2Ty} .

to-excited-state and ground-to-ground-state transi-
tions, respectively,>’ i.e.,

ap, transition: {2T,(m —1)T'3 s;mTg}—{T,(m —1)T; 5;(m — 1)L},

B —1 transition: {2T},(m —1)T'3 s;mTg}— {2 ,(m —2)T35;(m —1)Ts} .

[

imation and the experimental data.*~!© The results
presented here are slightly different (within 5%)
from those presented previously.'> In Ref. 12 we
did not adjust the parameters J; to fit the eigen-
values of A, (in the present basis set) to the experi-
mental results. We have relabeled the 8, and 3
lines in Ref. 8 as 3; and B, and assumed that the

The excitation energies of these excited states
can therefore be deduced from the separations be-
tween the positions of the «,, and B, _ lines. A
systematic study of these energy separations for
various donors in Si has been given by Elliott
et al® In Fig. 1 we plot our theoretical predictions
of these separations obtained in the present approx-

TABLE 1. Total energies of the low-lying states for D°X,, in Si:P, Si:As, and Si:Sb ob-
tained in Hartree-Fock approximation. All energies are in meV.

Complex Configuration Si:P Si:As Si:Sb
{2T; T} —57.36 —66.65 —54.25
D% (T}, Ts; g} —53.22 —60.82 —50.54
{T},T5; T} —53.00 —60.69 —50.11
(2@}, T'5;2T)} —64.29 —73.70 —61.11
D%, {2I'},T5;2Tg) —64.25 —73.69 —61.02
{T},205;2Tg} —60.04 —67.44 —57.36
{T},21'5;2T)} —59.73 —67.23 —56.76
{2I"},2T5; 3T} —170.75 —80.10 —67.55
DX {2I'},2T5; 31} —70.65 —80.04 —67.35
3 {T1,3Ts5;3T%) —66.59 —73.80 —63.88
{T'),303;3T) —66.21 —73.52 —63.14
{2T,305;4T} —76.96 —86.26 —73.70
DOX {21,300 3;4T%} —76.84 —86.16 —73.44
¢ {T,4T5;4Tg} ~72.76 —79.79 —70.01
{T),4T3;4T} —72.32 —79.43 —69.17
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FIG. 1. Theoretical and experimental energy separa-
tions between the a,, +; and B,, lines plotted against the
number of electron-hole pairs bound to a donor. The
experimental data are taken from Ref. 9 for Si:P and
Ref. 8 for Si:Sb and Si:As (see text for reinterpretation).
The arrow indicates the range of the values of the
B,—aj; separation for Si:As.

B, line is hidden under the TO phonon-assisted a;
line. Hence, we cannot precisely locate the 3, line
as indicated by a range in the figure. This relabel-
ing of lines in Si:As results in the a,, 11— Bmn
separations being almost independent of the index
m as in Si:P and Si:Sb. Good agreement between
theory and experiment is found for all complexes.

We can make systematic studies of the correla-
tion energies of D°X,, in Si. We define the disso-
ciation energies 8E,, by

8E,,=(E,,_+E;)—E, , (20)

where E,, and E, are the ground-state energies for
D°X,, and a free exciton, respectively. Expanding
the free-exciton wave function on our basis set, we
obtain a value —14.2 meV for E,, which is slight-
ly higher than the experimental value —14.7 meV
(Ref. 18) and the theoretical value obtained with a
larger basis set.!® Taking the difference between
the experimental values for the dissociation ener-
gies, 8E,, (SM) (Refs. 8—10) (from the lumines-
cence data interpreted using the shell model’) and
the HF values 8E,, (HF), we can obtain the corre-
lation energies SE;;.™ for binding one EHP to the
(m —1) complex. In Fig. 2 the correlation energies
per EHP so obtained (8E;.™) are plotted against
the number of EHP in D°X,, for various donors in
Si. As shown in this figure, 8E; " increases mono-
tonically, reaching a limiting value 8EEp, the

S '8[ CORRELATION ENERGY PER s ]
> ADDITIONAL EHP VERSUS o _g )
= NUMBER OF EHP BOUND 3Egnp

= b TO A NEUTRAL DONOR s
Se

w

® .

% 1af- 4
5 ¢
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I 12t :
=z L]

o o
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Q o} .
g0

<
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>
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w

Z

S 4af ®-si:p -
5 4 -SitAs

— ® - Si:Sb

w

@ 2F 1
a

]

o

| 1 ! i
4

| 2 3
NUMBER OF ELECTRON-HOLE PAIRS (m)

Q

FIG. 2. Correlation energies per electron-hole pair
(EHP) plotted against the number of EHP bound to a
neutral donor for Si:P, Si:As, and Si:Sb. The arrow in-
dicates the range of the values of 8ES™™ for Si:As. The
experimental data used for obtaining these correlation
energies are taken from Ref. 9 for Si:P and Ref. 8 for
Si:Sb and Si:As (see text for reinterpretation).

correlation erergy per EHP in the electron-hole
droplet (EHD). The value 17 meV for SERfp is
obtained by taking the difference between the ex-
perimental binding energy®® and the binding energy

- calculated in the Hartree-Fock approximation.?!

For Si:As, we have relabeled the B,, B3, and S,
lines as before. The values of 8ES°™ are indicated
by a range in the figure, because we cannot precise-
ly locate the f3, line.

B. Ge

In Table II, we list the total energies of the
ground states [{2I';,(m —1)['s;mT}] and the
one-electron excited states ({I',mI's;mTg}) for
complexes D°X,, obtained in the present approxi-
mation for Ge:P, Ge:As, and Ge:Sb. For illustra-
tive purposes, we plot in Fig. 3 the energy separa-
tions between these one-electron excited states and
the ground states (8,, —a,, .| separations) for com-
plexes associated with various donors. As shown
in this figure, the energy separations for all donors
are approximately independent of the index m (the
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TABLE II. Total energies of the low-lying states for D°X,, in Ge:P, Ge:As, and Ge:Sb,
obtained in Hartree-Fock approximation. All energies are in meV.

Complex Configuration Ge:P Ge:As Ge:Sb
oY {2T;Tg) —16.12 —17.73 —13.35
{T,Ts;T) ~15.10 —16.43 —13.20

DOX {21, T5;2 )} —18.11 —19.56 —15.09

2 {T},2T5;20g} —17.02 —18.15 —14.98

DY {2I'},2T5;3T} —19.81 —21.26 —16.82

3 {T,305;30) —18.71 —19.81 —16.69

D% {2I'},3T5;4Ts} —21.36 —22.81 —18.49

¢ {I,4T5;4Tg} —20.25 —21.34 —18.27

number of EHP in D°X,,). For Ge:Sb, these
separations are of the same order of magnitude as
the electron-electron coupling (about 0.1 meV).®
Hence we expect a substantial mixing between the
one-electron excited states and the ground states
for m >2 complexes. Therefore the shell model is
not a good description for BMEC in Ge:Sb. The
energy separations for the first one-electron excited
states for bound excitons (D%X) in Ge:P and Ge:As
are in good agreement (to within 0.05 meV) with
the experimental data [the separations between the
a; (1sT's) and yf lines] observed by Mayer and
Lightowlers.!! The experimental data for the other
Bm —am 1 Separations are not available for a com-
parison with our theoretical results. The observa-
tion of the luminescence from higher complexes in
Ge is difficult because these lines are mixed with

o-Ge:P
< 2.0
% &-Ge:As
E F  0-Ge:sb R
* L6l 1
tsE L a s & 4
! a
of 12f 1
w o [¢] o
o - o] -
z2 0.8} B
Q
5 oF
T oaf -
o
L o
& o o a {
1 1 1 L

Q

| 2 3 4
NUMBER OF ELECTRON-HOLE PAIRS (m)

FIG. 3. Energy separations between the one-electron
excited states and the ground state for D°X,, in Ge:P,
Ge:As, and Ge:Sb, plotted against the number of EHP.

the luminescence associated with electron-hole dro-
plets and are difficult to resolve.?

V. CONCLUSION

We have calculated the electronic excitation
spectra of the BE and BMEC’s for donors in Si
and Ge. Good agreement between our calculation
and the experimental data interpreted using the
shell model strongly suggests that the BE and
BMEC can be understood in terms of a shell-like
model. Throughout this calculation we have
neglected correlation effects which are essential in
obtaining the correct binding energies. These
correlation energies are estimated to be approxi-
mately 10 meV for each EHP in the D°X,, in Si.
The correlation effect could be included by expand-
ing the total wave function in terms of the HF
solutions. However, we expect the splittings
evaluated on the “correlated” states to be still of
the same order of magnitude as above. Hence, we
conclude that the correlation effect, although sub-
stantial in magnitude, does not affect the splittings
substantially. Our calculation provides a better
understanding of the BMEC’s in multivalley sem-
iconductors.
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APPENDIX A: MATRIX ELEMENTS FOR HOLE-HOLE INTERACTION

In this appendix, we derive the expression for the hole-hole interaction matrix elements of the type
Capez | omn | ips3 ) =B 57 | om(1,2)| B, B2 (A1)

where B}’s are given by Eq. (14) with b and u denoting the exponent and symmetry (index for the I'g repre-
sentation), respectively. More specifically, we can write

m

where

e b for1=0
(r)= (A3)
T re=b forl=2.

The coefficients C;_o(u,m =0)=1 for all u. The coefficients V'5C;_,(u,m) are listed in Table III. Substi-
tuting Eq. (A2) into Eq. (A1) and using the relation
L
2 87 s oa
vpp(1,2)= = Yin( Q)Y (Q5), A4)
hh ey %(2L+1) JLH Im ()Y (Q5) (

We obtain

(aptn | vpn | pipa ) =4 3, Cll(ﬂl,ml)cyl (11,11 —#1+m1)C12(I‘2,m2)C,5 (12,12 —p2+m;)

mym,

X%JL(blybz’b'l»blz) [ Vim Q0¥ o, (@)Y (014
X [ Vi QY o, (00)VEn(0)dD,
(AS5)
where
2 ’12 2.2

Ji(by,by,b1,b) )EZL—-H ffbl(r, )fb’l (ry )Fsz(rz)fb,z (ry)rirydridr, . (A6)
In Eq. (AS), the integrals over dQ; and d (), yield coefficients proportional to 8“,1 M and 8“2_”,2’ M
respectively. Therefore (uu; | vy, |10y ) vanishes unless

B1—B1=H2—2 - . (A7)

TABLE III. Expansion coefficients V'5C;(i,m) for the I =2 hole basis functions on the
products of spherical harmonics and j =% spinors.

V5C;_alp,m) -3 - < 2
—2 V2 V2 0 0
—1 -2 0 V2 0

m 0 1 —1 -1 1
1 0 V2 0 Vo)
2 0 0 V2 V2
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We discuss the diagonal terms (u;=p] and p,=p)) and off-diagonal terms (u 5417 and p,54u,) separate-
v
(1) Diagonal term (u,=p and p,=pu3).
(@) I,=I] and I, =15:

(paptn | Vp | ) = 4 2T (by,by,bY b >f2 | C1 (15m 1) Yy (D) | 2X Y1o(Qy)dQy
L m,
X [ 31 Cly{p2,m2) iy, (Q3) | *¥1.o( D) d Qs
my
=J0(bl,b2’b'1’b'2) ’ (A8)

where we have used the relation (see Table III)

21 a1
§|C1(,u,m)Y,,,,(ﬂ)l ‘(21+1)§|Y""(m‘ = (A9)
(b) 11¢l'1 and 12#1’2.
(paps | vng |I‘W2)=%2JL(b1’bz,b'1,b'z)f Yool )Yz ol Q1) Dy [ Yoo(02)Y1o(0) d Y,
L
=+J,(by,b3,b1,b5) . (A10)

(c) For the other cases (I, =17 and [,5415) and (I,5£]} and I, =13),

(it | vpn | papt2) =0
Substituting Eq. (A3) into Egs. (A8) and (A10), we obtain

’ ’ 1 1
64(b,b1byb5)"? | —

for =1} =1,=1,=0
ala%(al+a2) aa(ay+as) ! R

(Alla)
256(b;f;f;?i > [2(at+ad)x?+ 10a,ax* —25aia3] for Iy =11 =l =I5=2
(ByBs2 | vmn | By B2 Y= o (A11b)
128(b1b;:;;i(?2b12)5/2(x4+a2x3+a1a§x+2a1ag) for ;=11=0, L=I}=2
2¢1
(Allc)
256(b,b,)3"(b)b} ) for I, =1, =0, I} =1} =2 (A11d)

aarx 5
where

ay=b,+b}, ay=by+b3, x=a,+a,.
The other cases can be obtained from Eq. (A11) by symmetry.

(2) Off-diagonal terms (u\54p} and p,5u3). Let M =p| —p 50, then p,—p) =M [from Eq. (A7)].
Equation (AS5) can be written as
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(gt | vgs | wips ) = 21+ D21 + 1214+ 1215 + 1))
X 2 C,(p,my)C, (.ull,M+m1)Clz(#z,mz)cz'z(ﬂi,mz—M)(“l)ml(“l)mz(*lw

’
1

mym,
X 3 (2L +1)Jp(by,by,bY,b3)
L>|M|
I JAREIAN AN ANEA L, L[, L
X|\—my m—M —M||0 0 O||—m, my—M M||0 0 O
(A12)
where we have used the relation
@ +ner+1D)RL+1) rrrLprriL

[ Vi Yiom Yiyd Q= - 000!lmm al: (A13)

The right-hand side of Eq. (A12) vanishes for /, =1} =0 or I, =1, =0, since the coefficient

0 0 L

mm' M =0 unless L=M=0.

Therefore, the most important contribution to (i, | va, | i3 ) [Eq. (A12)] comes from /=1, =0 and
11 =13 =2 (or equivalent cases, e.g., [; =13 =0 and /] =1, =2, etc.). For this case, we obtain

Cpapsa | vmn | iy ) =Calpi, MICol, — M (b1, b2, b1,b3 ) < $J2(b1,by,b1,b3 ) -

(A14)

We can compare the size of the contribution for Eq. (A14) to that from Eq. (A11). If we assume that in the

ground state, the hole wave function ¢, is described by

¢h =as¢s +ad¢d »

(A15)

with ¢; and ¢, being the s-like and d-like components of ¢,, respectively, then Eq. (A14) will yield a contri-

bution to the total energy of magnitude

$,845(bg, by bg,bg)

(A16)

with b and 4bd being the exponent associated with the wave functions ¢, and @,, respectively. Taking
by=b, and sa;a4~0.3, we obtain a contribution from (A16) about 2% of that from the hole-hole interac-

tion given by Eq. (Alla).
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