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%'e present a theory for the fine structures in the electronic excitation spectra for exci-

tons bound to various donors in Si and Ge. These fine structures are produced by the

mixing of Hartree-Pock solutions through the interparticle interactions. We have calcu-

lated the excitation energies for the low-lying electronic excited states in the Hartree-Fock

approximation, and estimated the fine-structure splittings using the first-order degenerate

perturbation theory. The energy separatians between these states and the ground state are

in good agreement with the experimental data. The fine-structure terms are found to be

small relative to the separation between states fram different configurations for most

donors in Si and Ge, thus allowing an interpretation of the spectra in terms of a shell

model.

I. INTRODUCTION

Recently, there has been a considerable amount
of interest in the excitation spectrum of the bound
exciton (BE) and bound multiexciton complexes
(BMEC). The luminescence due to the radiative
recombination of excitons bound to neutral impuri-
ties in Si was first observed by Haynes' and later
studied more extensively by Dean et al. 2 Kamin-
skii et al. s observed a series of sharp lines (known
as the KAPS lines) in the luminescence spectra of
lightly doped Si, which they attributed to the
electron-hole recombination in the BMEC. The
explanation of the origin of the KAPS lines was
further strengthened by Sauer, Kosai and Gershen-
zon 5 and Dean et al. s Kirczenow proposed a
shell model for BE and BMEC, which appears to
account for the major features of the experimental
data. This model has recently been reviewed in
detail by Thewalt.

In the shell model, many states of the same con-
figuration are assumed to be degenerate; for exam-

ple, the I2rq, I'sI (Refs. 7 and 9) state is 16-fold
degenerate. In practice, the linear combinations of
these states, which transform according to dif-
ferent representations of the tetrahedral group for
the total Hamiltonian, are in general associated
with different energy eigenvalues. For instance,
the product states of two I

&
electrons can be

decomposed into states transforming according to
the I i, I 2, and I 3 representations. The products
of these states with the rs hole state can be further
decomposed into states transforming according to

the representations I"8, I 8, and I 6+I 7+I 8,
respectively. Without including the interparticle
interaction, it is not possible to predict these fine-
structure splittings. Some of these fine-structure
splittings have recently been observed for BE in
Ge:P and Ge:As by Mayer and Lightowlers. '

These lines cannot be explicitly identified without

going beyond the shell model.
In the present paper, we present a theoretical

calculation of the excitation spectrum for the
donor bound exciton system (D X) in which inter-

particle interactions are properly taken into ac-
count. Fine-structure splittings for states of vari-
ous configurations are obtained for several donors
in Si and Ge. We find that the charge density of
the electrons in the D X is ellipsoidally distributed.
When the major axes of the ellipsoids associated
with the two electrons are not oriented parallel to
each other (e.g., two electrons localized in valleys
on different axes) the mutual interaction between
them (the nonparallel mutual interaction) is a few
percent less than that for the case where the two
major axes are parallel to each other (the parallel
mutual interaction). This difference in parallel and
nonparallel mutual interactions is the major source
for the coupling between states of different config-
urations but of the same overall symmetry to
which the two-electron product states belong, for
example, the coupling between (I iI i)I'„
(r3I 3)I'i, and (I SI 5)I i states [where the notation
(r3I 3)ri means that two electrons of I s symmetry
couple together to form a preduct state of I'i sym-
metry]. " The strength of this coupling depends
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sensitively on the relative magnitude of thc differ-
ence in parallel and nonparallel mutual interaction
to the energy spacing between the states of various
configurations. For example, the coupling for the
ground state of configuration (I',I'i)I i with states
of other configurations but with I i total symmetry
in Si:P is negligibly small (less than 0.1%), because
this level is well separated in energy from the
states it couples to. For some of the excited states,
this coupling is substantial [e.g., the mixing be-

tween (I'31 3)I i and {I sI s)I i ~tate is about 10%].
In general, the hole wave function can be

described by a spherical (s-like) wave function plus

some admixture of a quadrupole (d-like) wave

function. The electron-hole interaction, which

mixes the s- and d-like components of the hole

state, produces the coupling between states of dif-

ferent configurations but the same overall symme-

try to which the total wave function belongs, for
examPle, the couPling between [(I iI &)I 3,1"s]I s

and [(I'iI i)I i, I's]1 s states (where the notation
[(I'iI &)I 5, I s]I s means that a I i electron and a
I 3 electron first couple together to form a product
tate of I s symmetry, which then couples to the

I s hole state to form a new product state of I &

symmetry). We find that the fine-structure split-

ting due to the electron-hole interaction is about 5

times smaller than the corresponding splitting in
the free-exciton system. Our results for the energy

spacings between various states are in good agree-
ment witli the experimental data available. + pre-
liminary report on this work was presented in Ref.
12.

This paper is organized in the following way. In
Sec. II, the general theory for solving the donor
bound exciton is presented. In Sec. III, the calcu-
lation method is discussed. In Sec. IV, the results

are discussed and the comparison with the experi-
mental data is made. Finally, in Scc. V, we

present our conclusion.

II. GENERAL THEORY

The D X is formed by attracting one hole to a D core." Therefore the total Hamiltonian is equal to the

sum of the Hamiltonian for a D system H, the single-particle Hamiltonian for a hole h)„ interacting

with the donor and the electron-hole interaction terms. Namely,

HDO» HD (1, 2)——+ Ii)( 3)
—U(1,3)—U(2, 3),

where we have labeled the coordinates of the two core electrons by 1,2, and those of the hole by 3; the

electron-hole interactions U(1,3) and u (2,3) have the same Fourier transform U( q),

u(q)= (2)
e(q)q'

where e(q) is the q-dependent dielectric function. ' ' We expand the exact eigenstate of Hn, » in terms of
products of two pseudo-Bloch-functioris associated with the conduction band, P'z and (()'k, and one

pseudo-Bloch-function associated with the valence band, P"z, as

%{ri,r2, r3)= g 8(ki, kp, k3)p'-„(ri)(()'k, (r2)$"i, ,(r3) ~

k I k2, k3

(3)

The coefficients B(kikzk3, ) m, ust satisfy the Schrodinger equation

HDO»8( ki, k2, k3) =EB(ki, ki, k3),

where Hn, » is an integral operator in k space defined by

H, 8(kik„k,3) Hn =(12)8(k„k„k3) E,(k—)83(k„k„k )+3g {k3~ y& ~
k3')g(k„k, k', )

—b)
k3

(4)

kl k3

{kik3
~

U
~
ki k3 }8(ki ki k3) y {kik3

~

U
~
k2k3 }8(ki ki k3)

+) +)
k2 k3

where H (1,2) is the corresponding integral operator for the D system defined in Ref. 11, E„(k3) is the

dispersion relation for the valence. band measured from the top of the valence band, and V~ is the impurity
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pseudopotential. Since the hole wave function is localized near the zone center, it is a good approximation
to replace (k3 I

I y I
ki ) by the point-charge potential V~(ki —k&) as defined in Ref. 16. Expanding the

products of the periodic parts of the pseudo-Bloch functions u-„, (ri)u -,(r, ) and u-„, (r&)u*-„(r&) in"3
Fourier series with coefficients c(ki, ki, Gi) and c(k&, k&, G&), respectively, we can write the elytron-hole in-
teraction as

(

haik)

~

U
~
ki k3 ) g u(Gi+ ki —ki )c(ki, ki', Gi )e'( ki, ki, Gi)5(Gi+ hi —ki —Gi —ki+ k3), (6)

G)63

where Gi, G3 are reciprocal-lattice vectors and 5( k } is the Dirac delta function. This term has appreciable
contribution only when k3 and ks are near the zone center; therefore, the momentum conservation can be
satisfied only if Gi ——0 and Gs ——0. Hence, we can write approximately

&kiks I
&

I kiki) =&~k1 ki)5(kl ki k3+k3)

Similarly, for the mutual interaction between the second electron and the hole,

(kik3
~

u
~

khaki) =u(ki —ki)5(kz —ki —ki+k3) .

Equations (7) and (8) correspond to the operators e /e(r ii)r, 3 and ez/e(ri3)ri3, respectively, where 1/e(r)r
is the Fourier transform of 1/e(q)q in real space. The valence-band dispersion function E„(ki~ is very an-
isotropic. If we transform Eq. (5) in real space, the kinetic energy operator for the hole can be written in
the following form as introduced by Baldereschi and Lipari (BL) in the limit of strong spin-orbit interac-
tion

=a'[ Vi —,p(p—' '—J' ')+case , 5((p'~—'XJ' ')4 '+, ~70(p' 'XJ' ')' '+(p' 'XJ' ')' ')]

(9)

where o is the ratio of electron transverse effective mass to hole effective mass defined as o —=yim,*/mo (mo
is the free-electron mass); p =(6y3+4yi)/5yi and 5=(y3 —yz)/yi, with yi, yq, and yi being parameters pro-
posed by Luttinger for the description of the valence-band dispersion relation near the center of the Bril-
louin zone; P' ' and J' ' are the second-rank symmetric tensors for the linear and angular momentum,
respectively, as introduced by Bj .'

In the limit of strong spin-orbit interaction, the hole wave function transforms according to the double

group representations of T~. We shall label the representations associated with the hole state and the two-
electron product state by I «and I'„respectively. The basis wave functions which have overall symmetry
I'+-can be made by linear combinations of products of two-electron states [of symmetry (riri}I';+] and hole
states (of symmetry I'«). We shall denote our basis functions as

~
mnp[(rir2)l;+1 «]I +-p ), where the sym-

bol [(rirz)l';+I'«]I +-p, indicates how the total-wave-function transforming as the basis vector labeled p of
the overall symmetry I'-+ is made by the two-electron product states [of symmetry (rirz)I,+-] and the hole
states (of symmetry 1 «). The indices mn and p represent the remaining quantum numbers for the two elec-
trons and the hole, respectively. The total envelope wave function 8(ki, ki, ks) can be expanded in terms of
these basis states. The coefficients for expansion, C(mnp, [(rirz)I', I «]I'„+-}can be determined by the stand-
ard configuation-interaction matrix equation,

(m'n'p', [(r', r' )I,"'r„+']I '-~ -~ a.-..~
mnp;[(rr )I',+-I «]I +-p)

NSNP

&~&2 ~e~a

X C(mnp, [(riri)1';I'«]I''-p, )=E" C(m'n'p', [(r,r, )1 I'«]I +@) .

The Hamiltonian matrix elements for the D X involve the matrix elements for the single-particle Hamiltoni-
ans, h, for the two electrons and h„ for the hole, the matrix elements for the electron-electron mutual in-
teraction u (1,2), and the matrix elements for the electron-hole mutual interactions U (1,3) and u (2,3). The
matrix elements for h, and U(1,2} are treated in the same way as in Ref. 11. The electron-electron interac-
tion u(1,2} plays an important role in determining the fine structures in the electronic spectrum of the D X.
Recalling the results obtained in Ref. 11, we can write



(m'n'p', f(r'Ir2)I", I'«]I ~p
I
u(1,2)

I mnp;[(zir2)1;I «]I'+p, &

U u(
m' n', mn)5, 5,+ g U«(m'n', mn)G«'(rir2 I Ir2) 5& z 5& z f~'„'f~'„'+

~1~1 ~2~2
A, =l

%vhcrc thc ellipsis Icplescnts an exchange term and w1th

I/v 2 if m =n and ~I =r2
otherw1se . (12)

UII is the intravalley mutual interaction between two electrons with charge distributions along the same axis
and ( Uz —Ui ) represents the intravalley mutual interaction between two electrons with charge distributions
along different axes. U2 and Us are the contributions from the momentum-conserving intervalley scattering
schemes (longitudinal and transverse). U4 is the contribution from momentum-nonconserving intervalley

scattering schemes. For Ge, there is no U2 term. The exchange term is obtained from the direct term by
exchanging the roles of the two electrons in the final state. The 6 matrices describing the electron-electron
couphngs are given in Tables V and VI of Ref. 11 for Si and Ge, respectively. As will be shown in Sec.
III„ the net contribution from the Ui, U2, Us, and Uz term is less than 5% of the total energy. In the
zeroth-order approximation, the terins involving Ui, U2, Us, and U4 are neglected. The energy levels can
therefore be labeled by the symmetry representation of single-particle states. For Si:P, the ordering of the
energy levels for the lowest states of various configurations is (starting from the lowest): (I II'I), (I il 5),
(I"sl 5), (I sl 5), and (I II I). For Ge:As, it is (I'II'I), (I'II'5), and (I'zl 5). This ordering is mainly deter-
mined by the sum of energI'es in single-particle states as predicted by the shell model. However, the sparing
between energy levels of various configurations is much smaller than that between the sum of one-particle
energies in donor states belonging to various representations. The matrix elements for II«are the same as
those for an acceptor system except for a reversed sign in the potential energy part. Hence, we can treat
tllcIil iii tllc SRIIic way Rs in Rcf. 17. T11c clcctl'Oii-liolc IIltcI'Rctioii tcrins lcRd to fllrtllcl' coIilplication Rild

will be treated in more detail here. In Appendix A, we derive the matrix elements for the electron-hole in-

teraction with the dectron states restricted to s-like (ellipsoidal) orbitals and the hole states restricted to s-

like and do-like orbitals. We obtain a general expression for the electron-hole interaction term

(m 'n'p'; [(r'I r2)I';+ I «]I -+p
I u(1,3) I mnp;[(I Ir2)I;-+I «]I'~p &

T2g2=&"([(~III)1,'I'«], [(~irz)1;I'«])I'Iz(m'p' mp)5„5~n fmm fan~ + ' ' ' (13)

where the clhpsis represents an exchange term and wlici'c Vis(m p, mp ) is thc matrix for the Coul™~~-
tual interaction, i.e.,

V»(m'p', mp)=(m'p'
I
u(1,3)

I
mp& .

J"represents the electron-hole coupling matrix between states of different configurations but the same
overall symmetry, I'. The exchange term is obtained from the first term by exchanging the roles of the two
electrons in the final state. The J' matrices depend on the orbital symmetry of the hole states p and p'. For
hole states p,p' of the same orbital symmetry (i.e., same angular momentum), all the Jmatrices are equal to
the identity matrix. For hole states p,p of different orbital symmetries (e.g., one s-like and the other d-like),
the Jmatrices are nontrivial and are listed in Table VI for Si and Table VII for Ge, respectively. It is no-
ti~ that all the matrices given in Table VI and Table VII can be diagonahzed with the resulting eigen-
values equal to either 1 or —1. This is the same as one would have obtained if the electron in each of the N
equivalent valleys had been considered to interact with the hole independently. To illustrate the use of
Tables VI and Vll, we take the states associated with the configuration [(15)l 5I s]I'+-in Si as an example.
Herewe u,se (ij) to denote the electronic configuration (I;I J). The electron-hole interaction coupling an s-
like and a d-like hole state can be written as

([{15)l5I's]I +-
I
u(13)+u(23)

I
[(15)151 s]1'-+

&

= [ ([(15)I'sl s]I I
u(13)+u(2» I [(1&)151 s]1'&+ & [(51)1'P'sll

I
u(1»+u(2»

I
[(51)1'51'sl&) ~2
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where we have used the relation [(15)I5I's]I +-=1M 2[[(15)15I s]I +[(51)151's]I'J and the fact that all
cross terms vanish as indicated in Table VI. We can write the above matrix elements in terms of J matrices
and the electron-hole coupling strength V,s, where V,i, =—2a, a~ V~. a, and a~ are the coefficients associated
with the s-like and d-like components, respectively, in the hole ground state. V,~ is the electron-hole interac-
tion coupling the s-like and d-like components of the hole states with the electron enveloped function cen-
tered at a valley along the z axis. %e obtain

{[(15}151sI'+-~ (1,3)+ (23)
~
[(15)I I ]I'-+ }=J"([(51)I I s],[(51)l &1 s])V,i, ,

which equals V,i„—V,~, —,V,~, and —, V,—i, for
I =I 6, I 7, I 8, and I 8, respectively. Herc, V,~ is
the electron-hole coupIing strength for a I 5-

symmetqr electron. There is also an off-diagonal
term ——, V,~ for the coupling between state with

I =I 8 and I =I 8. Since the two states are degen-
erate in the absence of electron-hole interaction, we

can simply diagonalize the J-matrix coupling the
states [(51}I'5Is]I's and [(51)l ql s]I s and obtain
the eigenvalues —1 and 1. We therefore also ob-
tain the values V,i, and —V,i, for the two mixed
states associated with I =I 8 and I 8, which diago-
nalize the J matrix. In other words, the initially
fourfold-degenerate hole states are now split into
two levels (one classified as I'6+1 s, another classi-
fled as I 7+ I s) due to the presence of a I 5 elec-
tron. This is as expected, since the I 5 electron in
Si only occupies valleys along the same axis and
hence produces an electron-hole splitting in the
same manner as in a free-exciton system. If we

apply this argument to the states associated with
the same configuration in Ge, we obtain the values

V,~, V,~, ——, V,~, and ——,V,~ for the diagonal
terms with I =I 6, I 7, I 8, and I 8, respectively,
and a value ——, V,i, for the off-diagonal term of
the J-matrix coupling the I =I 8 and I =I 8 states.
This J matrix also couples the above two states
with the [(11)IiI s]I's state as shown in Table
VII. If we neglect the coupling between the
[(11)IiI's]I's state and the [(51)I'5I's]I s
states {this is approximately valid due to the fact
that the energy of the [(11)IiI's]I's state is lower
than the [(51)I5I's]I's state by a large value com-
pared to V,s },we can diagonalize the submatrix
which couples the two states of the same electronic
symmetry (51)I'q, and obtain the eigenvalues 0 and
—1. We therefore conclude that the I 5 electron
will split the hole state into three almost equally
spaced levels with the highest level classified as
I 6+I 7 and the lower two level classified as I s
symmetry. This is particularly interesting because
it reflects the fact that the I'5 electrons in Si and
in Ge are intrinsically different in that the former

occupies valleys along the same axis and the latter
has the same probability being in valleys along
four different axes.

III. CALCULATION METHOD

Our calculation is based on the Hartree-Fock ap-
proximation. It is assumed that the fine structure
in the excitation spectrum is approximately unaf-
fected by the correlation effect, although this effect
plays an important role in the binding of the sys-
tem. The procedure of our calculation is divided
into three steps. In the first step (zeroth-order ap-
proximation), both the electron-electron coupling
terms (Ui, Ui, Ui, and Uq) and the elctron-hole
coupling term ( V,i, ) are neglected. In the second
step, the electron-electron coupling terms are in-
cluded. In the final step, all coupling terms are in-

cluded. In the first step, the states of different
electronic configurations, denoted as (rirz), are
completely decoupled. We can therefore carry out
the calculation for each configuration separately.
For convenience, we introduce the normalized
units in which distance and energy are measured in
units of e,fF/m;e, the Bohr and e m, /2e fP, the
Rydberg. eq and m, are the static dielectric con-
stant and the transverse effective mass, respective-
ly.

The Hartree-Pock solutions are expanded in
terms of linear combinations of Sister-type orbitals
(STO). For each of the two electrons, we use seven
s-like basis functions defined by 0

{17)

where f„(r') is obtained from the radial part of the

STQ, e ',' i =1,...,7 by the Schmidt othogonali-
zation procedure. ' These STO are defined in an
ellipsoidal coordinate system with eccentricity fac-
tor g, i.e., with coordinate r '=(x,y,z/g}. The ex-
ponents b; are given by

bg belz;, i=1, . . .——, 7
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with

2 bohr ' for Si
0

4 bohr ' for Ge

zi ——(1,2,4,8, 16,—,, —,) .

The eccentricity factor g is determined by minim-

izing the energy expectation value of the effective
mass Hamiltonian in the ground-state trial wave
function given by Eq. (17) with respect to the ex-

ponent. The best value of g was found to be 0.57
for Si and 0.355 for Ge. The fact that the
ground state in the neutral donor system has very
little admixture ( (1%) of higher angular-
momentum state2 (defined in ellipsoidal coordi-
nates) makes it a good approximation to expand
the electron wave function in terms of s-like orbi-

tals.
For the hole, however, the mixing of s-like and

d-like orbitals is appreciable, and hence we use
seven s-like and seven d-like Slater orbitals de6ned
by17

(4c;)'~ e ' for /=0
g;(r)= -, in

3
re ' for /=2

(18b)

by the Schmidt orthogonalization procedure.
The exponents c; are given by c;=cp/zi, i=1,...,7
with co —0.5 bohr ' and z s being the same as
used for the electrons.

In the first step, the expansion coefficients in

Eq. (10) are decomposed into the product of three
terms, viz. ,

C(mnp, [(rir2)I, I i, tl +-p)

=C, (m)C, (n)Cr (p) . (19)

Then, Eq. (10) can be simphfied to

fp——(r) iL =/, J=—,, E= , , —F,=gii, &,

(18a)1=0.2,
where F=L+ J, with J and L denoting the spin
and orbital angular momentum for the hole,
respectively. The radial part f~(r) is obtained
from seven STO's (in spherical coordinates)

y &m a p ~ H...~
map &„„C„(m)C,,(n)C,„(p)=E.(r„r,)C„(m')C„(u')C.„(p'), (20a)

&
m' 'n'pl H~oz 1m'�&.,;=., &m'I H"'I m &.5»'5in+;&&'I H'"

I
n &.ppp5

+ i'i, &p'
I

H"'
I p &ri 4~'5»' +&

m'ii'
I
"(1 2)

I
m" & ~~~'

&m'p'
i
U(1, 3)

i
mp &5„„5, —&ii p i

it(2, 3)
i itp &5 '5i i (20b)

with /z, /3 indicating the angular momentum quantum numbe«f the hole states Equation g0a) can be
solved for the coefficients C (m), C (n), and C (p) self-consistently by iteration.

In the second step, the correction due to the electron-electron coupling is included. %e evaluate the con-
tributions due to the terms Ui (A, =1,2,3,4)t on the zeroth-order ground-state wave functions obtained in the
first step. It is found that, for Ge, the intervalley scattering terms U3 and Uq are 2 orders of magnitude
smaller than the Ui term and can be neglected. The zeroth-order ground states of various configurations
are now coupled together through the off-diagonal matrix elements of Gi 's. The sub-Hamiltoniansm are
defined for each symmetry I;+—by"

+
H ' (~i', rir2)=ED(ri, ri)5,5,+ g UiGi'(rpz, r'ir'i)+ g U'i"Gi'(~irz rzv'))(1 —5,5, ),

A, =1 A, =1 (21)

where Ui" is the exchange term associated with Ui. Eo(r,rz) are the eigenvalues obtained in the zeroth-

order approximation. These energy levels except Ep(I iI i) are now split into several states, each one associ-

ated with an irreducible representation of the group Te. The coupling coefficients between states of dif-

ferent electronic configurations are also obtained. ~e shall denote the energy eigenvalues of H ' (rp2 ritz)
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as Ei [(rir2)I';+]. In the final step, the electron-hole coupling term V,~ is included. As shown in Tables VI
and VII this term only couples states separated by an energy large compared to V,I, or states associated with
the same electronic configuration. For the former case, the coupling can be neglected. For the latter case,
the zeroth-order energies are degenerate. If we diagonalize the submatrices which couple states associated
with the same electronic configurations, we obtain the eignvalues —1 and 1 for most of them, the others be-

ing between —1 and 1. We therefore repeat the Hartree-Fock calculations for each electronic configuration
(rir2) with the J matrices set equal to 1 and —1. The contributions of V,l, to the Hamiltonian matrix when
the J coefficients are between —1 and 1 can be obtained simply by interpolation.

We have expanded the hole wave function in terms of s-like and d-like orbitals (with total angular
momentum F=L+—J=—,). Therefore, the contributions due to the other orbitals (e.g. , with L =2 and

F= —,, —,, —,, and I.=4,6, ..., etc., ' are not included. For simplicity, we will include the correction due to
these orbitals by multiplying the values of V,i, obtained above by a correction factor f„where f, is the ratio
of the electron-hole splitting for the free exciton system obtained with and without these orbitals. For this
purpose, we have calculated the ground-state splitting of the free exciton for Si and Ge, using the basis set
given by Eqs. (18). We obtain a value for the splitting 0.58 meV for Ge and 0.92 meV for Si. Comparing
our results with the accurate results obtained by I.ipari and Altarelli, ' we obtain that f,=2 and 0.5 for
Ge and Si, respectively.

The remaining task is to diagonalize the sub-Hamiltonian defined by

8 ((ritz)I, I's, (ritz)1,'I's)=Ei((rir2)I';+)5 „,+ Vs J"([(rir2)1,1 s],[(rir2)I",I's])
e e

+VhJ ([( 2 1)~ ~8] [( 2 1)(~ ~ ]) (22)

where Ei((ritz)I;+) is the eigenvalue of 0 ' (ri
electron-hole coupling strengths associated with
results for the energy eigenvalues will be denoted

IV. RESULTS AND DISCUSSION

We will discuss our results for Si and Ge
separately.

A. Si

Tables I—IV show the ground-state energies for
various configurations obtained in three steps
(denoted by Eo, Ei, and E, respectively) for Si
doped by the impurities P, As, Sb, and I.i, respec-
tively. For illustration, the theoretical spectrum
for Si:P is plotted in Fig. 1, showing the systematic
change of the energy levels in various approxima-
tions. The smallness of the fine-structure splitting,
as coinpared to the total-binding energies, justifies
the validity of the first-order approximation used
to evaluate the various fine-structure terms. For
example, for the (I il 5) states in Si:P, we have
V,i, =U =Us ———, U, =, E (I', I ). As shown in
Fig. 1, when the electron-electron and electron-hole
coupling terms are neglected, we obtain one energy
level for each configuration and the ordering is the
same as predicted by the shell model. When the
electron-electron coupling (dominated by Ui is in-
cluded, all levels except the (I iI i) state are split
into several states. We find that the mixing of

rz, i'i') obtained in the previous step. V,q and V,'q are the
the ~~- and ~2-symmetry electrons, respectively. The final

as E((r,r, )I I',]r"-).
I

configuration is appreciable only for states of the
same overall symmetry and close in energy. The
admixture of (I iI i)I i+ and (I 5I 5)I'i+ in the
ground state (I iI i)l i+ is less than 0.1%, whereas
the mixing between (I &I'&)I i+ and (I 5I 5) I'i+

states is substantial (about 9%). The (I'&I's)I'i+
state also couples strongly with the (I'5I'5)I i+ state
(about 8% mixing). The remaining states only
couple with each other weakly (less than 1%).
When the electron-hole coupling is included, the
states are split further, and mixing is only impor-
tant between states associated with the same elec-
tronic configuration. The splitting due to the
electron-hole coupling is an order of magnitude
smaller than the splitting due to the electron-
electron coupling and difficult to observe experi-
mentally. It should be noted that the results
presented here are slightly different (by about 1%)
than the results presented previously. ' In the
present calculation, we have adjusted the empirical
parameters, Ji for the short-range core potentials"
so that the use of a restricted basis set (consisting
of seven s-like ellipsoidal STO) can reproduce the
experimental values for the binding energies for the
low-lying donor states. In the previous calculation,
we did not make this adjustment and did not in-
clude the q dependence of the dielectric function
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TABLE I. Total energies of the low'est-lying states of various configurations of the D X calculated in three steps

(Eo, Ei, and E) for Si:P. All energies are in meV. The notation I,—in the fourth column stands for the irreducible

representation to which the toro-electron product wave function belongs; + indicates a spin singlet or triplet.

Material
First step

Configuration

Second step
I—+ . E)

Final E

Si:P

[rsrs,'rs j

[I'sl s,'rsj

[r,r, ;r, j

[1 (1 s', rsj

—42.59

—43.39

I+
p+
I2

I+
I 4

I 4

I 5

I+
I+
I+
I4

I+
I3

—42.58
—42.89
—43.25

—43.16
—43.96
—44.04
—44.06
—44.08
—44.16
—44.67
—44.76

—53.13
—53.35

—43.21
—43.94
—44,03
—44.11

—44.10
—44.64
—44.80

—53.09
—53.31

—43.12
—43.97
—44.06
—44.02

—44.23
—44.71
—44.73

—53.17
—53.39

—42.57
—42.90

—43.12
—43.97
—44.06
—44, 11
—44.04
—44.20
—44.71
—44.8-

—53.13
—53.35

—43.25

—43.12
—43.95
—44.03
—44.02

—44.64
—44.73

[r)rs,'rs j
—53.34
—53.64

—53.38
—53.68

—53.30
—53.60

—53.38
—53.68

—53.30
—53.60

[r)I (,'rsj

TABLE II. Total energies of thc lowest-lying states of various configurations of thc D X, calculated in three steps

(Eo, Ei, and E) for Si:As.

Material
Pirst step

Configuration Eo
Second step

I e+-

Si:As

[rsrs, I'Sj

[rsrs', rsj

[rsrs, rsj

[r(rs, rsj

—41.09

—41.92

—42.65

I+
I+
I2

r+
I4
r+
I )

r+
I 3+

I+
I4

—41.09
—41.39
—41.72

—41.71
—42.48
—42.55
—42.57

—42.65
—42.73
—43.22
—43.30

—60.76
—60.91

—41.76
—42.47
—42.54
—42.62

—42.67
—42.19
—43.33

—60.72
—60.87

—41.39

—4$.76
—42.29
—42.57
—42.54

—42.80
—43.25
—43.27

—60.80
—60.95

—41.08
—41.40

—41.75
—42.29
—42.56
—42.61

—42.61
—42.77
—43.25
—43.33

—41.68
—42.47
—42.54
—42.54

—43.19
—43.27

[I (rs', rsj
—60.88
—61.07

—60.92
—61.11

—60.84
—61.03

—60.92
—61.11

—60.84
—61.03

r+
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TABLE III. Total energies of the lowest-lying states of various configurations of the D X, calculated in three steps
(Eo, E», and E) for Si:Sb.

Material
First step

Configuration
Second step

I,— E» Is r's

[rsrs,'rs} I3'
Iz

I 5

I 4I+
I5

—40.33
—40.61
—40.89

—41.57
—42.32
—42.39
—42.40

—40.61

—41.61
—42.31
—42.38
—42.44

—40.61

—41.53
—42.33
—42.40
—42.37

—40.32
—40.62

—41.61
—42.33
—42AO
—42.44

—41.53
—42.31
—42.38
—42.37

Si:Sb

}rsrs', rs} —42.96

I 1

I +

p+
j4

—42.91
—42.99
—43.53
—43.62

—42.93
—43.50
—43.65

—43.05
—43.56
—43.59

—42.88
—43.02
—43.56
—43.65

—43.50
—43.59

t roars,'I' s}
—50.25
—50.46

—50.21
—50A2

—50.29
—50.50

—50.25
—50.46

[roars'rs} —50.54
—50.67

50.99
—50.71
—51.03

—50.63
—50.96

—50.71
—51.03

—50.63
—50.96

}riri'rs}

TABLE IV. Total energies of the lowest-lying states of various configurations of the D X, calculated in three steps
(Eo, El and E) for Si:Li.

Material
First step

Configuration
Second step

I El
Final E

r's

fI srs, I's} —43.01

I+
I +

I2

—43A7
—43.68
—43.67

—43.68

—43.46
—43.69

Si:Li

—41.79

—43.06

-43.10

p+
I4
I +
I's

p+
r+
r+
I4

—43.22
—43.63
—43.72
—43.73

—42.79
—43.13
—43.68
—43.76

—43.27
—43.61
—43.70
—43.78

—43.07
—43.65
—43.79

—43.17
—43.64
—43.74
—43.69

—43,20
—43.71
—43.73

—43.27
—43.64
—43.74
—43.78

—42.78
—43.14
—43.71
—43.79

—43.17
—43.61
—43.70
—43.69

—43.65
—43.72

f r(rs, I s}
—42.13
—42.85

—42.10
—42.82

-42.16
—42.88

—42.13
—42.85

}rirs', rs}
—42.06
—42.90

—42.09
—42.93

—42.03
—42.87

—42.09
—42.93

—42.03
—42.87

—41.25
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FIG. 1. Theoretical electronic spectrum for D"Xin

Si:P plotted in three consecutive steps: zeroth-order ap-
proximation (ZOA), ZOA plus electron-electron cou-

pling, and ZOA plus all coupling terms. The notations

for the symmetry labels are defined in the text.

for the intravalley mutual interaction terms. How-
ever, there is no qualitative difference between
these two calculations.

To compare our theoretical results with the ex-

perimental data, we have plotted the energy-level

scheme obtained in the second step (zeroth-order
approximation plus the electron-electron coupling)
for DcX and D in Si:P in Fig. 2, along with the
experimental data obtained by Lightowlers et al.
The fine-structure splittings due to the electron-
hole coupling are not shown here, since they are
too small to be resolved experimentally (see Fig. 1).
All possible optical transitions are indicated by ar-
rows. The whole exritation spectrum has been
shifted by a uniform correlation energy. As shown
in this figure, the agreement between theory and
experiment is very good. All the peaks except the
aI linc observed in the luminescence data are a su-

perposition of several lines. Our theoretical spec-
trum predicts a line duc to the optical transition
from the (I iI q)1 q state of DcX to the I, state of
D at approximately the same energy position of
the 6' line. This line was first observed by
Thcwalt and cannot be explained by the shell

model. For Si;As and Si:Sb, similar theoretical
spectra can be obtained using Tables II and III,
and are again in good agreement with the cxperi-

I090 I l00
PHOTON ENERGY (rneV)

FIG. 2. Theoretically predicted transition lines (indi-

cated by arrows) plotted accompanied with the experi-
mental data for DoX in Si:P. The symmetry labels of
the type (I I")I, represent a state associated with the
configuration I I I";I rr) with I",—denoting the symmetry
of the two-electron product states. + ( —) indicate a
spin singlet (triplet) state. The data are taken from
I.ightowlers et al. (Ref. 23).

mental data. For Si:As, the energy spacings be-
tween the group of states associated with the
(I rl"i) and (I iI 5) configurations and the ground
state obtained in the present calculation are about
1.5 meV larger than the experimental value for the
sparing between the 5 line and the a& line. On the
other hand, by looking at the optical transitions
from the {111 &) and {1rI'&)D X excited states to
the 1 i and I'~ donor excited states (y lines), Elliott
er al. have obtained a value of =5.8 meV for the
energy separation between the (I 11 &) and (I il 5)

excited states and the ground state in Si:As. This
value is in good agreement with the plcscnt calcu-
lati.on. %e therefore attribute the 5 line observed
in Si:As to the optical transition involving a p-like
hole cxritcd state.

For I.i, an interstitial donor in Si, the energy
spectrum is qualitatively different than that for the
other' donors (substltutlonal). Tile inajoi' difference
is that in Si:I i, the ordering for the donors states
are inverted, i.e., the I 3 and I 5 states have lower
energies than the I

&
state. In the upper part of

Fig. 3, wc plot our theoretical spcctruIn for B X in
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FIG. 3. Theoretical electronic spectrum in Si:I.i plot-
ted in two steps: zeroth-order approximation (ZOA),
ZOA plus electron-electron coupling. The energy-level
scheme for the neutral donor is plotted in the middle
panel (after Ref. 26). Theoretically predicted transition
lines are indicated by arrows. The experimental data
taken from Themalt (Ref. 27) are plotted in thc bottom
panel for comparison.

)/l
Li

Si:Li, showing the systematic change for energy
levels obtained in the zeroth-order approximation
(ZOA) and ZOA plus electron-electron coupling.
As shown in this figure, in the zeroth-order ap-
proximation, the states {21 i;I sl and {21'q,'I' s) are
nearly degenerate, so are the states {I iI'5; I'qj and

{Iil'q, I sI. This is expected, since the I i and I 5

donor states in Si:Li are nearly degenerate. When
the electron-electron coupling term is included,
these levels split into a group of states whose ener-

gy spreading is approximately 1 meV. To compare
with the experimental data, we plot the energy lev-

el scheme for the D in the middle of Fig. 3 and
the experimental spectrum obtained by Thewalt at
the bottom of Fig. 3. The possible optical transi-
tions are indicated by arrows. The whole spectrum
is shifted by the correlation energy of about 7.3
meV. The number of nearly degenerate states as-

sociated with a line is indicated in parentheses. It
is found that the main bound exciton line, marked
Li', corresponds to the transition from a group of
156 states associated with tile configuration
{21'q 5,1 sI and a group of 60 states associated
with the configuration {I'il q, q,'I s) (plus 4 states

associated with the configuration {2I'& 5,I'sj),
respectively, to the I q 5 donor ground state. The
line marked Li" corresponds to the transition
from a group of 60 states associated with the con-
figuration {I il'q &,I s) to the I i excited donor
state. There is a small hump between the lines
marked Li' and Li', which may correspond to the
transition from a group of 20 states associated
with the {I'il'q q', I sJ configuration (which are
separated from the gound states by approximately
1 meV) to the donor ground state. This point has
to be examined by further experiment. The hne
marked Li' cannot be identified with any transi-
tions from an electronic excited state obtained in
the present calculation and therefore is attributed
to the transition from a hole excited state as pro-
posed by several authors.

We can estimate the correlation energy for the
ground state by taking the difference between the
experimental and the theoretical value for the dis-

sociation energy. The theoretical dissociation ener-

gy is obtained by subtracting the binding energy
for the neutral donor and for the free exciton from
the total binding energy for the donor bound exci-
ton. The binding energy for the neutral donors are
45.5, 53.7, 42.7, and 33.0 meV for Si:P, Si:As,
Si:Sb, and Si:Li, respectively. The binding ener-

gy for the free exciton is about 14.7 meV. ' Com-
bining these results with the Hartree-Pock calcula-
tion for the total energy, we obtain the dissociation
energies —2.5, —1.5, —2.8, and —3.9 meV for
Si:P, Si:As, Si:Sb, and Si:Li, respectively. The
negative values of the dissociation energy indicated
that the system is not bound in the Hartree-Pock
approximation. The experimental value for the
dissociation energy is about 4.5, 5.5, 4.2, and 3.6
meV for Si:P, Si:As, Si:Sb, , and Si:Li,
respectively. Taking the difference between the ex-

perimental and theoretical values for the dissocia-
tion energy, we obtain approximately the same
correlation energy, 7 meV for Si doped with P, As,
and Sb, and 7.3 meV for Li. In a previous calcula-
tion for the ground-state energy of bound excitons
in a spherical model, we obtained a correlation
energy about 0.2 Ry for an electron-to-hole mass
ratio of about 1. Taking a Rydberg to be the bind-
ing energy of the donor in Si (31.2 meV) calculatedI the Kohn-Luttlnger effect1ve mass approxIma-
tion (EMA), 3 we obtain a correlation energy 6.3
meV, which is in reasonably good agreement with
the value estimated from comparing our Hartree-
Fock calculation with the experimental data for
practical systems.
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TABLE V. Total energies of the lowest-lying states of various configurations, calculated in three steps (Eo, E~, and

E) for Ge:P, Ge:As, and Ge:Sb. All energies are in meV.

First step
Configuration

Second step
I,—+ El

Final E

GeP

[I'sl 5'I'sj

I +

p+
p+
I g

—13.18
—13.28
—13.53
—13.53

—13.25
—13.56
—13.44

—13.35
—13.56
—13.44

—13.07
—13.18
—13.55
—13.63

—13.19

—13.53

I I'F's I's j —15.19
—15.37
—15.52

—15.49
—15.64

—15.26
—15.41

—15.37
—15.52

I I'(I ),'I gj —16.20 —16.62

Ge As

I rsl's.,rs j

Ir,r„r,j

—12.94

—16.34

—13.04
-13.16
—13.40
—13.40

—16.48
—16,60

—13.22
—13.43
—13.31

—16.60
—16.72

—13.22
—13.43
—13.31

—16.60
—16.72

—12.94
—13.06
—13.42
—13.50

—16.36
—16.49

—13.40

—16.48
—16.60

Il ll 1~I &j
—17.61 —18.05

Ge:Sb

I I'5l s', I'sj

II')I 5', I'gj —13.10

—12.99
—13.01
—13.40
—13.40

—13.50
—13.57

—13.09
—13.42
—13.31

—13.60
—13.67

—13.09
—13.42
—13.31

—13.41
—13.67

—12.85
—12.91
—13.41
—13.50

—13.41
—13.48

—13.15

—13.40

—13.50
—13.57

t I'il'i'I'8 j —13.67

In Table V the ground-state energies obtained in
three steps [denoted by Eo, E&, and E for the
xeroth-order approximation (ZOA), (ZOA} plus
electron-electron couphng, and ZOA plus all cou-

pling terms, respectively] for various configura-
tions are listed for Ge:P, Ge:As, and Ge:Sb. The
theoretical spectrum for Ge:P showing the sys-

tematic change for the energy levels in various

steps is plotted in Fig. 4. Again, it is found that
the electron-electron and electron-hole coupling
terms are small compared to the total binding ener-

gy. For example, for the (I,I,) states in Ge:P, we
have Vs -20U3-20U4 —,U) ——,~-Eo(I'(I'5). The
terms U3 and U4 are negligibly small, and have
been completely ignored in our calculation. The
spectrum of Ge is relatively simpler than Si. The

electron-electron coupling is very small compared
to the energy separation. The mixing between the
(I ~ I ~ )I'~+ state and the ( I'&I"z)I'5+ state is about
0.38%. There is no mixing between the other
states shown in this figure. The further splitting
due to the electron-hole coupling is explicitly
shown in this figure. Again, only mixing between
states associated with the same electronic configu-
ration is included. The splitting due to the
electron-hole coupling is found to be comparable to
the splitting due to the electron-electron coupling,
and can be observed experimentally. To compare
our results with the experimental data, we have
plotted the energy-level scheme and the theoretical
spectrum in Fig. 5 for Ge:P and in Fig. 6 for
Ge:As, accompanied with the experimental spectra
obtained by Mayer and Lightowlers. ' The whole
theoretical spectrum is shifted by a correlation en-
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FIG. 6. Theoretical spectrum of optical transitions
from D X for Ge:As, plotted accompanied with the ex-
perimental luminescence spectrum. The theoretically
predicted transitions are indicated by arrows. The data
are taken from Mayer et al. (Ref. 10).
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FIG. 5. Theoretical spectrum of the optical transition
from donor bound exciton to neutral donor in Ge:P plot-
ted accompanied with the experimental luminenscence
spectrum. The theoretical predicted transitions are indi-
cated by arrows. The data are taekn from Mayer et al.
(Ref. 10).

ergy (of about 1.7 meV) so that the main bound ex-
citon line matches with experimental results (the ai
line). With this assignment, the theoretical spec-
trum agrees with the experimental data quite well.
The spacing between the first excited state and the
ground state agrees with the experimental value for
the separation between the ai and yi line within
0.05 meV. In the phonon-assisted absorption spec-
trum obtained by Henry and Lightowlers, a line la-
beled 5'(LA) is observed, which is due to the tran-
sition from the ground state of the neutral donor
to the first excited state of the bound exciton. The
position of this excited state is about 0.2 meV for
Ge:P and OA5 meV for Ge:As below the lowest
electronic excited state obtained in our calculation.
Since the no-phonon transitions from this state to
the donor I 5 state are not observed, we attribute
this state to the first hole-excited state (denote as
2P3/2) in the donor bound-exciton system. The
no-phonon transition between the ground state and
this 2P3/2 hole-excited state is forbidden, because
the overlap of the electron and hole envelope func-
tion vanishes according to symmetry. This fact
has recently been confirmed experimentally by
Mayer and Lightowlers.

We can also estimate the correlation energy in
the same way as we did for Si. The binding ener-
gies for the neutral donor are 12.72, 13.87, and
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10.3 meV for Gc:P, Ge:As, and Ge:Sb,' respective-
ly. The binding energy for the free exciton is
about 4.15 meV. Accordingly, we obtain the dis-
sociation energy —0.43, —0.30, and —0.78 meV
for Ge:P, Ge:As, and Ge:Sb, respectively. The ex-

perimental value for the dissociation energy for
Ge:P and Ge:As are 1.3 and 1.45 meV, respective-
ly. ' Thus we obtain a correlation energy about
1.73 meV for Ge:P and 1.75 IneV for Ge:As. Us-

ing the result from our previous calculation in a
spherical model and taking a Rydberg to be 9.8
meV (the binding energy calculated in EMA33), we

obtain a correlation energy 1.96 meV for the bound
exciton with electron-to-hole mass ratio equal to 1.
This is again in reasonable agreement with the
value estimated above for a practical system.

for donor bound excitons observed in Si and Ge
doped with most impurities. Using the energy
eigenvalues calculated in the Hartree-Pock approxi-
mation, we obtain the theoretical excitation spec-
trum in good agreement with the available experi-
mental data. Therefore, we conclude that the
correlation energy has little effect on the energy
differences between the low-lying electronic excited
states discussed here and the ground state, al-

though it is important in determining the binding
energy. The present work has provided a better
understanding for the electronic properties of exci-
tons bound to neutral donors in multivalley semi-
conductors. The present theory can be also applied
to donor bound excitons in GaP with proper treat-
ment of the camel's back structure appearing in
the conduction band. Th18 appl1cat1on will be dis-
cussed in a future publication.

We have developed the theory for the fine struc-
ture in the excitation spectrum of donor bound ex-
citons for Si and Ge doped by various impurities.
This fine structure is produced mainly by the
valley-orbit interaction for the two electrons and

the splitting due to the electron-hole interaction.
This theory allow us to go beyond the shell model
and interpret the detailed structure of the spectrum
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APPENDIX A: MATRIX ELEMENTS FOR ELECTRON-HOLE INTERACTION

In this appendix we derive an expression for the matrix elements for the electron-hole interaction in Dox.
The electron states are restricted to s-like (defined in an ellipsoidal coordinate system) orbitals and the hole
states restricted to s-like and d-like (in a spherical coordinate system) orbitals. The single-particle basis wave
functions for the hole are chosen to be eigenstates of the total angular momentum defined as

F= J+L,
where J is the spin and L is the orbital angular momentum of the hole. For the ground state (of I s sym-
metry)i tllc s-11kc Rnd d-like ol'bl'tRls give thc Illost llllportallt, contribution to flic cxpaflsloll. T11csc basis
functions are denoted by

pI":fI, (r3) ~0, »»—I2S& or f~(r3) ~2, —,; —,,ys&, (Al)

I
o —, '* —, lux &

= I'oo(~3»„„ I2s =+—„+—,

1
~
» I i I i+ I & = I 20(Il3)&+3/2 —v 2/5[I 2+1(f13)&+I/2 I 2+2(f13)&+I/2i i

I » —,
' —, + I &

= - I'20(O3»+I/2+&2/'5t I'2+2(O3~'-3/2+ I"2-1«3»+3/2l

with X&„being the spin- —, spinor.
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TABLE VI. Coupling matrices J ((ri rq )I', rq, (rir2)r, rq) of the electron-hole interaction u(1, 3) calculated for Si;
the states in various configurations [(I';I J )I „I's] are denoted by the simplified notation (ij)I,.

(31)I 3

6

(13)I 3

(33)I 3

(31)I 3

(13}I3

0
1

(51)r,

(33)I 3

1

0

(51)I 5

1

6

(55)I 4

(55)I 5

(53)r,

(55)I 4

1

(55)r,
—v 3/2

(53}I5

(15)I'5

(35)I'5

(35)I 4

(15)l 5 (35)r,

1/v 2

(55)I 3

—1

(35)l 4

I/v 2
1

(31)I'3

(31)I 3

(51)I 5

(51)I"5

(53)r4

(53)I 4

(53)I 5 (55)l 3

(55}l 3

(13)I 3

(33)I 3

(13)I 3 (33)I 3

(55)I 4

(55)r,
(15)r,
(35)I 5

(35)I 5

—I /i/2 I /v'2
1

2
1

2

(11)I 1

(31)I 3

(31)I"3

(55)I 1

(55}I"3

(51)I 5

[(51)I' s]'

(51)I 5

4

[(51)rsl'

5
4
5

(53)I 5

[(53)1s]'

8

(53)rs [(53)rsl'
4
5

(15)r, [(ls)r, ]'

(53)I 4

[(53)14]'

(53)I'4 [(53)14]'
4
5

(35)1 s [(35)rs]' (35)I'4

(13)l-,

(33)I 1

(33)I 3

[(35)I 4]'

(13)I 3 (33)I'1

I/v 2

(33)I 3

(15)r,
[(15)1s]'

(35)l 5

[(35)I s]'

(35)I 4

[(3S)I4]'

3

10
2

0
—1/~2

0
1

2
2

(55)I 5

[(S5)1s]'

(55)I 4

[(55)I 4]'

2

5 10
2

5

(55)I's [(5S)I s]' (55)I,

i/3/2

0

[(55)I 4]'

0
v S/2

3

10
2

'For I,=I 4 or I 5, the product I, )& I 8 includes two I 8 representations; the two corresponding product states for arbi-
trary electron configurations [(ij)I „r&]rq and [(ij)r„rs]r' are denoted by (ij)r, and [(ij)r,]', respectively.
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TABLE VII. Coupling matrices of the electron-hole interaction u (1,3}calculated for Ge; all notations are the same
r, I6as in Table VI. The J 7 matrices are omitted, because they are the same as the J matrices.

(51)I 5

1

(15)I,
(55)l 5

(55)l 3

(55)I 4

(15)I 5

0

(55)I 5

i/v 2
1

(55)I 3

1/v 3
—I/v 6

0

(55)I 4

I/v 6
—I /2V 3

I/vs

8

(11)r,
(51)r,

[(51)I'5]'

(55)I 1

(55)I 3

(55)r,

[(55)I 4]'

(55)I 5

[(55)I g]'

(15)I 5

[(15)rg]'

(55)I,

(51}I5

—i/v s
4

(55)I 3

[(51)I'5]'

2/v S

5
1

5

(55)r,

1/v 10
1

5

1

10

—V2/15
—v2/ iS

&3/5
—I/Sv 3

2

5

[(55)I'4]' (55)1 g [(55)I g]'

2VZ/V 15
—1/v 30

1/sv 3

3v3/iO

5
1

10

(15)I,

—I/v 15
2/v 15
—v'6y5

v2/Sv 3

2v 2/5
—v 2/S

0

[(Is)r,]

2/v IS
1/v 15

V2/Sv 3

—3v 6/10
—v 2/5
—v2/10

0
0

I„et us now consider the electron-hole interaction with the electron (labeled 1) Ming in a valley (labeled by

i), with an envelope wave function denoted by g ( r, ), where the major axis of the ellipsoidal charge distri-
bution is taken to be z;. If we choose the quantization axis of the hole zq to be parallel to z;, then the po-
tential seen by the hole, defined by

Vg (r&)=—Ig'(ri)g (ri)u(1, 3)d ri (A2

1 3
will not mix its four partners (labeled by + —, and + —,) of the I's representation. Namely, we can write

t

(g Pt "lv(1,3)lg P 't)=V (i3mp', m)p5, ( —1)

d f3
ft'(r3) VP (r~)ft(ri) when I'=I

Vis m'p', mp = ~

Ift (ri)VP (ri)ft(ri)Y~(Qs)X~0(Q3)d ri/V5 when 1'Ql,

with /' and I (restricted to 0 or 2) being the angular momenta associated with p' and p, respectively. Since

the electron basis functions I)~'( r i) [defined in Eq. (17)] are linear combinations of the envelope functions
g~(r i) localized at different valleys and oriented along different axes z;, the electron-hole interaction can be
written in general as

t t

&CP,' lu(1, 3) INN,
"

& =J(Vi ) iV s,~s)V»(m'p' mp), (A5
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where the coupling coefficients j(pi,p, i',p,h, p,h) can be determined by symmetry. To obtain these j coeffi-
cients, we need to know the transformation properties of the matrix elements under the operations in T~.
For simplicity, we drop out the indices (m'J), mp) in Eq. (A5) and denote V)3{m'J)',mJ)) as V, V~, and V~,
respectively, for the cases (l'=l =0), (l'= l =2), and (l'Ql). If we transform the coordinate frame of the
hole by a rotation about the y axis of an angle p, and then followed by a rotation about the new z axis of an
angle y, the potential Vh(r3) will mix the four partners of the hole state in the following way:

(p "
~

Vh{ r3)
~ p "=V 5 „ for o =s,d,

(({'-""
~

V (")
~

y-"")— W2d,",', (P)V

(pI +3/2
~

V (~ )
~

/+1/2) ~2d(2) (p)V e+lr

(y +1/2
~
y ( )

~

~~3/2) ~2d(2) (p)y +2ir

(
'+ I h 3 Ikf. ') ~2d(2) (p)y

where the d matrices are defined in Ref. 37. Substituting Eqs. (17), (A2), and (A6) into Eq. (AS), we readily
obtain the j coefficients. For the s-s and d-d terms, we obtain no couplings, i.e.,

J(P( P i'Ph Ph )=&„„)'P»h)'h

The couphng occurs for the s-d term, and these coefficients j((M(,((hi',ph, (uh ) can be found in Ref. 38.
The basis states for the D X are linear combinations of the products of two-electron states and hole states,

which transform according to irreducible representation of T~, i.e.,

1m''[(~ir2)l'.'-I'h]I''-(
& = X &r,r, (V'( h, l( )

I
ma'(r(~2)l'.-'(, & ll 'I

hl h &,
&e&1(I

where
~
mn;{rir2)I;p, , ) is the two-electron product states defined in the text and

~ p; I'h(uh ) is the hole
state given by (Al). Therefore, the matrix elements for electron-hole interaction are

(m'n'p', [(r', r', )I",-'r'„]I'-lh
~
u(1,3)

~
miil3;[(r, r, )l",-I'„]r'-lh)

= g &r,r„(pEphII'p) g CT(T, (p(p2II'epe) g Cr r„(pephII'p')
I e&I(I &e&a

X g &...(P'(122,1,'I"h)

PIP2

I

'5~'~„'„J(P'1 PI P'h P'h)v)3( pm' mrp)f ', 'f ','+

where the ellipsis represents an exchange te—s, f '„' is given by Eq. (12), and all the C coefficients can be
. found in Ref. 9. The exchange term is obtained from the first term by exchanging the roles of the two elec-
trons in the final state. If we define an electron-hole coupling matrix for e'ach overall symmetry I' by

J"([( l&z)l'I'hl [{ (&2)l'.Ih]= g Cr, r„(((h'(uh 1((h) g C.,;(((2)((221.1'.) g c „„((M'((hh I'((2)

&e&I(I &&2 &e&A

XX&;,;,(l il »I'l')J{ i J'(V hI h).
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then Eq. (AS) reduces to

(m'n'p';[(r'~r2)I;-I'p, ]l''-)ts
~

o(13)rrtnp;[(rir2)l I s]l '-p
&

where the ellipsis represents an exchange term. The electron-hole coupling matrices (J matrices) are listed in
Tables VI for Si and VII for Ge, respectively.
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