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We present a theory for the D states in Ge and Si, including the effects of realistic

band structures. We obtain binding energies of these states, which are about twice as

large as those obtained from using a spherical model. This enhancement in binding is

due to the anisotropic, multivalley character of the conduction bands. We predict many

bound excited D states for Ge:Sb and Si:Li. Our binding energies are in substantial

disagreement with those obtained in recent submillimeter photoconductivity measure-

ments. This disagreement is attributed to the presence of compensating (A ) centers in

the sample which interact with the D center through Coulomb interaction.

I. INTRODUCTION

It is well known that an electron can bind to a
hydrogen atom to form a H system. ' The bind-

ing energy for this sytem is about 0.0555 times
that for the hydrogen atom. ' From a simple anal-

ogy to H, Lampert predicted that an electron in
a semiconductor can bind to a neutral donor to
form a D system with binding energy being
0.0555 times that for the neutral donor. In the

past, some experiments suggested that a trap-

ping center such as the D state exists in Si and
Ge. However, it was found that the electron affin-
ities of the center for Ge are about three times as

large as those predicted for the D state by Lam-
pert. Narita and Taniguchi suggested that this
increase in binding is due to the multivalley char-
acter of the conduction band of this system. How-

ever, more recent experimental studies7 indicated
that D states in Ge:Sb and Ge:As are bound by
about 0.625 and 0.75 meV, respectively. These
values are much closer to the binding energy for
the D predicted by Lampert. By studying the
concentration and temperature dependence of the
photoconductivity spectrum of Ge:Sb, Taniguchi
et al. concluded that the higher energy threshold
observed previously is due to the formation of
D complexes (one electron bound to two or more
neutral donors) and isolated D states can only be
observed at very low temperature ( &0.5 K) and

very low concentrations ( & 10' cm ). Similar re-

sults have also been observed in n-type Si. 9'
Theoretically, Natori arid Kamimua" have stud-

ied D states in multivalley semiconductors. They
include the multivalley effect by assigning the two
electrons in the D valleys along different axes,

thus obtaining an enhancement in binding by about
0.26 and 0.27 meV for Ge and Si, respectively.
However, they neglected the effects of the central-
cell correction and the intervalley exchange interac-
tion, which are important for treating D states in
the stress-free case. Moreover, they find that their
trial wave function yields only half of the total
binding energy of the H system.

In this paper, we develop a theory for D states
in two multivalley semiconductors, Si and Ge.
The anisotropy and the multivalley character of
the conduction-band structures as well as the
short-range core potential for the impurity are tak-
en into account properly. We use the standard
configuration-interaction (CI) method to compute
the energies of the lowest-lying states associated
with various "crystalline configurations, " in which
each electron is assigned to a single-particle state
transforming according to a certain irreducible rep-
resentation of the Tq point group. For the H
case, our method is able to produce 98% of the to-
tal binding energy. For D states in Ge and Si,
we obtain the binding energies, which are about
twice as large as those for the corresponding D
states obtained by Lampert. These values are
about 50% larger than those obtained experimen-
tally by Taniguchi and Narita. ' Our theoretical
results for the total energy should be an upper
bound to the exact values. We attribute this differ-
ence in binding to the existence of compensating
(A ) centers in Ge and Si. One reasonable expla-
nation for the difference between the observed
values and the theoretical ones for the binding en-

ergy is due to the presence of compensating centers
in the samples investigated so far. We find that a
concentration as low as 10' cm yields substan-
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tial reductions in the binding energy of the D
In Sec. II, we present the general theory for D

systems in multivalley semiconductors. We brief-
ly review the valley-orbit interaction of an electron
interacting with the donor, which has been dis-
cussed in detail in Ref. 12. Various scattering
mechanisms for the mutual interaction between the
two electrons in the D system are discussed.
This discussion of the mutual interaction between
electrons can also be applied to the calculation of
the electronic spectra of donor bound excitons
which we will carry out in a future publication. In
Sec. III we discuss the method of calculation and
derive the matrix elements for the total Hamiltoni-
an. In Sec. IV we discuss our theoretical results
and compare them with the available experimental
data. In Sec. V a summary is presented.

II. GENERAL THEORY

A. Basis problems

The D system consists of two electrons and a
positively charged impurity center. The total

Hamiltonian of this two-electron system can be
written as

HD =h, (1)+h,(2)+u(1,2),
where h, (1) and h, (2) are the single-particle Ham-

iltonians for the two electrons (labded by 1 and 2)

interacting with the donor. u (1,2} represents the
mutual interaction whose Fourier transform (in SI
111lltS) 18

2

u(q)= (2)
e(q)q

where e(q } is the q-dependent dielectric function. '

The exact eigenstate of H can be expanded in

terms of products of two pseudo-Bloch-functions
[denoted p'-„(r, ) and p'-„(r I)] as

y(r, , r )= y D(kl, kz)ly-„(rl)ly-„(rl). (3)
k)k2

The expansion coefficients D (kl, kz) (which are
antisymmetric with respect to the interchange of
particles 1 and 2) satisfy the Schrodinger equation

HD D(kl, kl)=ED(kl, kl), (4

where H is the integral operator defined as

HD D(kl, kp)=—[E,(kl)+E, (kl)]D(kl, kl)+ g(kl
~ Vp ~

kl }D(kl,kg)
+ Ikl

+y(kl
~ Vy ~

k2}D(kl,kl)+ y (klkl
~

u
~
klk2}D(kl, kl) .

In Eq. (5), E,(k) represents the dispersion relation
for the conduction bands in the extended-zone

scheme, V~ is the impurity pseudopotential, ' and

~

k } represents the pseudo-Bloch-function tI}'z (r )

associated with ihe conduction band. Comparing
Eqs. (1) and (5) one can see that the integral opera-

tor defined by

h, g(k):E,(k—)$(k)+g(k
~

Vp
~

k'}P(k')

(6)

describes the interaction of an electron with the
donor, and the kernel ( k1 kg

~

u
~

k 1 k' ) describes

the mutual interaction between two electrons. To
solve Eq. (5), we expand the total envelope func-

tloll D( k 1,kz) 111 terms of a sct of basis fllllctloIls. .

Since the single-particle Hamiltonians h, (1) and

h, (2) and the mutual interaction u(1,2) are invari-

ant under the operations of the point group T~, it
is convenient to choose basis functions that
transform according to the irreducible representa-

tions of Td. We can choose these basis functions
as linear combinations of products of single-

particle wave functions, while also transform ac-

cording to the irreducible representations of Td.
To avoid confusion, we will use v to label the ir-

reducible representation associated with single-

particle states and I, label the irreducible repre-
sentation associated with the two dectron product
states. If we denote the single-particle states as

~
m;rl)LII ) and

~
n;rzpl) for particles 1 and 2,

respectively (where pl and pz label the partners of
the representations w& and ~2', m and n label the
rcma1nlng qualltllln numbers fol tllc two partlclcs),
then we can write the product basis states
(transforming as a basis vector p, of the represen-

tation I,) as

mn( sir)lz, p, =}gC, , (ply', l",p, )
PlPg
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C...,(pip&, i',p, ) are the coupling coefficients

for the group T~, and can be found in Ref. 14.
For Si, ri, r2 can be any of the representations I i,
I 3, I 5, and I, can be any of the representations
I „r„13?4 or l5 For Qe, w&, ~2 can be either
I &, or I 5, and I, can be I &, I 3, I 4, or I 5.

'4

Since the total Hamiltonian is spin independent, we
may choose the basis states to be eigenstates of the
total spin operator. This can be accomplished by
using symmetric (labeled by + ) or antisymmetric
(labeled by —) (if the two electrons are in different
orbitals) combinations of the states defined in Eq.
(7). Namely,

1 2

I
mn;(riri)I, +-p, ) = [ I mn;( rir2)I;p, , )8 8

+ I nm( rr2)il;p, ) ]

T

, 1/v 2 if m =n aild ri =1i
1 otherwise,

where we have assumed implicitly that a singlet
(triplet) two-electron spinor is multiplied by a sym-
metric (antisymmetric) space state to make the to-
tal wave function antisymmetric under the ex-

change of the two electrons.
The total envelope function D (k i, ki) can be ex-

panded in terms of the above basis states. Then,
the expansion coefficients C(mn, (rirq)1"Pp, ) will
be determined by the standard configuration-inter-
action matrix equation

g(m n;(rir2)I, p, IH I
mn, (rir2)I, p, ) C( mn, (r ri2)l Pp, )=EC( m' n', (r ir i)l,+p, ), -

where the states of different symmetries have been decoupled. The Hamiltonian matrix elements in Eq. (10)
involve the matrix elements of the single-particle Hamiltonians [Ii,(1) and h, (2)] for the two electron in-
teracting with donor and the matrix elements for the mutual interaction, viz. ,

(m'n';(rirz)I;+p, , I H~ I mn;(riri)I ~p, )=f '„'f'„'[,, (m'
I
Ii, (1) I

m ),,5„„5,5

+,,(n'
I
h, (2)

I
n ),,5 5,5

+,, (n'
I h, (1)

I
m ), 5~„5,5

+,,(m I~, (2) In),,5.„.5, 5, ]

+ (m'n';(r', rz)I"e'pe
I U(1,2)

I mn;(r, r, )l p, ), (1 la)

where we have used the relations

(m';r', p',
I Ii,(1) I m;r~i) =r, (m'

I
lie(1) I

m )~i5„i.
(1lb)

and the orthonormalization property of the cou-
pling coefficients C...,(pi@2,1',p, ). We shall clas-

sify the states associated with the same single-
particle symmetries (rirq) as belonging to the cry-
stalhne configuration labeled by (rir2). From Eqs.
(11), it is noted that the states of different configu-
rations are coupled together through the mutual in-
teraction term only. In the following subsections,
we will discuss the matrix elements for the single-

I

particle Hamiltonian h, and the mutual interaction
separately.

B. Interaction of an eiectron with the donor

The single-particle Hamiltonian h, for the elec-
tron in the D system, interacting with the donor
is the same as that for a neutral donor system.
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The solutions for neutral donors in Si and Ge have
been studied by several authors' ' and are briefly
reviewed here. In indirect materials, the conduc-
tion band has several equivalent minima. The
number of equivalent minima N is 4 in Ge and 6
in Si. The bound eigenstates of the donor Hamil-
tonian are constructed from linear combinations of
wave functions localized at the N equivalent mini-

ma, the expansion coefficients being determined by
group theory. The bound states for donors in Ge
are then classified as I i (singlet) states and I 5 (tri-
plet) states, and those in Si are classified as I',
(singlet), I'i (doublet), and I ~ (triplet) states. ' If
we denote the single-particle basis functions

~
m;rp ) in k representation as g~"(k ), then g"(k )

can be written as linear combinations of wave
functions localized at the N equivalent minima
denoted by k;, i = 1, . . . ,N, viz. ,

(12)

where the wave functions g~(k —k;), i =1, . . . ,N,
are transformed into each other under certain
operations of T~, and the coefficients a,'(p) are
deterxnined entirely by group theory. Substituting
Eq. (12) into Eq. (11b), we obtain after application
of symmetry,

,(I [ a, [ ~ ),= gg, (~}(p'
~
a,

~

p, ),
where A, =1, 2, and 3 for the intravalley (k; =kj ),
intertransverse (k; and kj along different axes) and
interlongitudinal (k; and kj along the same axis)
scattering terms, respectively. The coefficients

gi (v) can be found in Ref. 17 for Si and Ref. 18
for Ge. Each matrix element in Eq. (13) can be
written as the sum of the kinetic energy (KE) and
potential energy (PE} matrix elements. The KE
matrix elements may be evaluated by carrying out
the integral

Jp' (k —k;)E,(k)p' (k —kj. )
(2ir)i

in k space. The conduction-band energy expres-
sion E,(k ) may be approximated by the sum of
several truncated valleys, each valley being
described by an ellipsoidal expression. ' The PE
matrix elements may be evaluated in real space,
where the kernel associated with the PE operator is
written approximately as

& k
~ V, ~

k &-~,+V„(k—k )Z, ,

with k and k ' restricted in the neighborhood of
the center of the ith and jth valleys, respectively.
The Ji 's represent the short-range interaction
strength factors as defined in Ref. 12. For noniso-

coric impurities, they are taken as empirical
parameters fitted to the binding energies of the
donor ground states. The values of Ji have been

previously given in Ref. 12. However, in the cal-
culation of D states, we have adjusted the J~
parameters so that the use of a smaller set of basis

functions reproduce the ionization energies for the
lowest-lying donor states for various sysmmetries.

The adjusted values are given in Table I.
The Ri,s are umklapp renormalization factors as

defined in Ref. 16; the index A, = 1, 2, and 3 corre-

sponds to the intravalley, intertransverse and inter-

longitudinal valley terms, respectively. Their
values are given in Ref. 12. The function Vpc(q)
is the Fourier transform of the screened point

charge potential. '

C. Mutual interaction
between two electrons in the D system

The mutual interaction for electrons in multival-

ley semiconductors are complicated by two factors.

(1} Ele:tron states are described by the sum of

TABLE I. Values of semiempirical parameters, Jq (A, =1,2,3), for Si and Ge doped with
various impurities. The unit of Jq is 10 3 Ry bohr'.

Si:As Sc Sb Si:Li Ge:P Ge:As Ge:Sb

1.53
5.83
6.13

18.52
—4.98

2.52

36.33
—3.92
25.83

54.01
88.17
80.37

—8.95
4.05

—7.69
2.31

0.55
10.55
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envelope functions localized in k space near the N
equivalent minima. The mutual interactions be-
tween these electron states result in terms coupling
electrons in the various valleys, the intra-intra,
intra-inter, and inter-inter scattering terms. In the
intra-intra scattering term, the final states of the
two mutually interacting electrons remain in the
same valleys as those of the initial states. In the
intra-inter scattering term, one electron is scattered
into a valley other than the original one (occupied
by the initial state) while the other electron
remains in the same valley. In the inter-inter
scattering term, both electrons are scattered into
valleys which differ from the original valleys.
These envelope functions are well localized in the
N valleys, separated by some wave vectors that are
large compared to the spreading of the envelope
functions in k space. Therefore, the mutual in-
teraction is appreciable only for the scattering pro-
cesses in which the wave vector is conserved, e.g.,
the intra-intra term and some inter-inter scattering
terms. The intra-inter scattering term does not
satisfy the wave-vector conservation and hence can
be neglected. For the D states in Si and Ge, it
can be shown that the intra-intra term is about 2
orders of magnitude larger than the sum of the

remaining scattering terms, and therefore dom-
inates the mutual interaction.

(2) Since the constant energy surfaces in Si and
Ge are ellipsoids near the X equivalent minima,
the envelope function localized in each valley for a
given electron will also be ellipsoidal. , The intra-
intra term of the mutual interaction between two
electrons with ellipsoidally distributed charge den-
sities takes on two different values depending on
whether or not the major axes of the ellipsoids as-
sociated with the two electrons are oriented parallel
to each other. We shall refer to these two values
as the "parallel" and "nonparallel" mutual interac-
tions, respectively. The difference between the
parallel and nonparallel mutual interactions is
about a few percent of the total mutual interac(ion.
However, this difference determines the coupling
of states associated with the same overall symme-
try but different crystalline configurations labeled

by (TiTq). We will return to this point below.
Based on the above discussions, we can derive an
expression for the matrix elements for the interac-
tion between the two-electron product states,

~
mn;(TiTq)r;+p, ) and

~

m'n ', (T'i' )r;+p, ). We
obtain (see Appendix A for the details of this
derivation)

(iTi 5 '(TiTg)r+-P, , ~

U (1,2)
~
mn;(TiTz)l;+P, )

4
[Uo(m'n', mn)5, 5,+ g Ui(m'n', mn)Gi'(TiTg TiTy)]f~'„'f~'„'+,(l5)11 22

A, =1

where the ellipsis represents an exchange term, Uo
represents the intra-intra parallel mutual-
interaction term, and U, represents the difference
between the intra-intra parallel and nonparallel
mutual interaction terms; U& and U3 represent the
contributions from the wave-vector conserving
inter-inter scattering schemes (longitudinal and
transverse) and U4 the contribution from momen-
tum nonconserving intervalley scattering schemes.
For Si, the U4 term is negligibly small. For Ge,
there is no Uq term, and the U3 and U4 terms are
found to be negligibly small. The exchange term is
obtained from the direct term by exchanging the
roles of the two electrons in the final state. The G
matrices describing the electron-electron couplings
are listed in Tables V and VI for Si and Ge,
respectively. As will be shown in Sec. III, the total
contribution of U~, Uq, U3, and U4 is less than
5% of the total energy. In the zeroth-order ap-
proximation, the terms involving U~, Uq, U3, and

I

U4 are neglected, hence the states of different con-
figurations are decoupled. The energy levels can
then be labeled by the symmetry representation of
single-particle states (TiTz).

In the absence of the coupling terms U&, U&,
U3, and U4, the spin singlet and triplet states for
the mixed configurations [i.e., (I iI 3), (I'iI 5), and
(r,r3)] are degenerate. For the symmetric config-
urations [i.e., (I'iri), (I 5I 5), and (I'3I'3)], the spin
triplet states lie at much higher energies than the
spin singlet states in analogy to the 2S3/p and
1S~~q states in the He system. ' When the coupling
terms (Ui ', A, ) 1) are included, the states originally
labeled by the symmetry representation of single-
particle states are now split into several states la-
beled by the symmetry representation of the total
Hamiltonian. For the mixed configurations, these
states are also split into spin singlet and triplet
states.

The above symmetry arguments can also be ap-
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plied to the donor bound exciton (DOX) system,
which we will discuss in a future publication.
However, the B X is further complicated by the
presence of a I s-symmetry hole.

III. CALCULATION METHOD

The present calculation is based on the
configuration-interaction (CI) method. The pro-
cedure of our calculation is divided into two steps.
In the first step (zeroth-order approximation), all
the electron-electron coupling terms (Ui,'
A, =1,. . .,4) are neglected. The effect of these cou-

pling terms are included in the second step using
the first-order degenerate perturbation theory. In
the zeroth-order approximation, Eqs. (11) are
decoupled for various crystalline configurations;
therefore, we can perform the CI calculation for
each crystalline configuration (rir2) separately.
For convenience, we introduce normalized units in
which distance and energy are measured in units of
eo/i /m, e (the bohr), and e m, /2eofP (the ryd-
berg), respectively, where eo and m, are the ma-
croscopic dielectric constant and the transverse ef-
fective mass, respectively.

A. 8881c fQQct1ons

We choose the single-particle basis functions of
symmetry (rp) to be the linear combination of
Slater-type orbitals (STO) defined in an ellipsoidal
coordinate system, viz. ,

r '=(x,y,z/g),

where g is the eccentricity factor used for describ-
ing the donor states, kJ denotes the positions of
the N equivalent minima in k space, and aj'(p) are
coefficients determined by group theory. The ex-
ponents bPI are selected to be

b~i=bp/Zp, p =1,. . .,7

The A~„'sare the transformation matrix elements,
which make the orbitals f„i(r')orthogonalized to
each other. The intervalley overlap matrix ele-
ments are negligibly small for the exponents
chosen here and are neglected. '

The basis functions for the D states are con-
structed from the linear combinations of the pro-
ducts of the single-particle basis functions for the
two electrons. These two-electron product basis
functions can be selected to be eigenstates of the
total angular nomentum I. =/l+l2, labeled by the
quantum number (LM). It should be noted that
these angular momenta are defined in an ellipsoidal
coordinate system. According to the symmetry of
the total Hamiltonian, these two-electron product
states with L differing by an even integer but the
sane M are coupled together. Since we are con-
cerned with the lowest-lying states for each crystal-
line configuration only, we can restrict these basis
functions to have M =0 and L=even integers. If
we denote these states by the notation

~
/i, /i,'L,M), then the product basis functions are

classified as the ~0,0;0,0},
~
0,2;2,0},

~
1,1;0,0),

i
1, 1;2,0), i 1,2;2,O),

i
2, Z;0,O), i 2,Z;2, O&, ~d

~
2,2;4,0) states when the single-partide states

with /=0, 1,2 are used. The states constructed
from two non-s-like single-particle states (e.g.,
~1,1;0,0), ~2, 2;0,0), and ~,2;22, 0), tee) arecou-

pled to the state
~
00;00} only through the

mutual-interaction term. In Appendix 8, we
derive a general expression for the parallel
mutual-interaction term. We find that the contri-
but1on to thc ground-state cncrgy duc to thc mix-
ing with L+0 states (i.e., the

~
1,1;2,0},

~
1,2;2,0}, ~2,2;2,0},and ~2, 2;,4,0}states} are

only a few percent of that due to the mixing with
the

~
1,1;0,0) and

~
2,2;0,0} states. The state

~
0,2;2,0) is coupled to the state

~

00;00}mainly
through the single-particle Hamiltonian h, . The
contribution of this state to the total energy of the
D ground state can be included in large part by
adjusting the empirical parameters, J~ s in the
single-particle Hamiltonian h„such that the use of
seven s-like ellipsodial STO's yields the same bind-

ing energies for the lowest-lying donor states as the
experimental values. Therefore, we select the pro-
duct states with total angular momentum I. =0
(i.e., ~

//;00 };/ =0, 1,2) as our basis functions. We
define

with bo ——2 bohr ' for Si and 4 bohr ' for Ge and

Z i
——(1,2,4,8, 16, 2, 4 ) for / =0, 1,2 . (17b)

I
("i "z}/~&i Pi~&2P2}

1 i

y p I&i (~ )p 2I'z (~ )(2/+1)'" (18)
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where g~ (r) is defined in Eq. (16). The product
basis functions which transform according to the
irreducible representation I'„denoted

~
(n in2)l;

(rp2)I pp, ), are taken as linear combinations of
the states

~
(nin2)l; ri p»r2 p2) according to Eqs.

(7) and (8). The total number of product basis

states constructed from seven single-particle states
for l =0, 1, and 2 is 147 for mixed configurations
[i.e., (I', I'2), (I 1I'5), and (I'&I'5)] and 84 for sym-
nlctflc confliglll'ations [1.e., (I 1I 1), (I 21 2}, a11d
(I 5I 5)].

8. Matrix elements

The matrix elements of Hz within the zeroth-order approximation for each configuration (r)~z) is given

by

{(nin2)l;(r)r2)I;-p, , ~

H
~
(n(nz )1';(g'irz)I';+(I, )

+ U(){(nin2)l, (Iiin2)l')+ (19)

b2l8 bpbp+ +

where the enipsis represents an exchange te~ that is obtainA from the dirmt te~ by exchmg ng the rolM
of the two electrons in the final state. The matrix elements for ()I, is given by Eq. (13). For the g-ljke states,
the expression of the matrix elements had been derived in Ref. 12. For the non-s-like states, we neglect the
intervalley scattering terms and approximate the q-dependent dielectric function e(q) by the static dielectric
constant eo; therefore the intravalley matrix elements are given by

21+3-

g&«III /li, /Ii'1II1&=g Ap„Ap„, (20a)
Nl . PP

pN p tJ

Nlg8=—2+
mg

with m, and mI being the transverse and 1ongitudinal masses, respectively,

ao ——(sin 'g)/g,

with

g ( 1 (2)1/2

(20b)

b = (bp+b~ )/2 .

A general expression for the matrix elements for the parallel mutual interaction is derived in Appendix B.
We find that these matrix elements for the L =0 states defined in an ellipsoidal coordinate system are sim-
ply that for the L =0 states defined in a spherical coordinate system multiplied by a factor IIO [defined in
Eq. (20c}]. Therefore, we have'

2

Uo{(n)n2)l, (n )n2 )l') =2(—1) + [(2l ~1)(2l'+1)]' aog () {) ()
L

(21a)

(4b b )I+3/2(4b~b~ )I'+3/2
CiI"(bib2 b'ib2 }=

l .—. . f exp[ —(bi+bi } i —(b2+b2)&2]

r'
2+(I+I')„2+(I+I')d

I"2 I') P2
f»
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and

l l'L,
0 0 0

is given in Ref. 20. In Eq. (21},we have approxi-
mated the q-dependent dielectric function e(q) by
the macroscopic dielectric constant eo. This is a
good approximation, since the Fourier transform
(in q space) of the product of the electron wave

functions is locahzed near q =0. '

The Hamiltonian matrix given in Eq. (19) is di-

agonalized numerically with the lowest eigenvalue

denoted by Eo(rir2) for each configuration (vi~2).
The electron-electron coupling terms (Ui,' A, ) 1)
are evaluated on the lowest-lying states for each
configuration (rir2) obtained in the zeroth-order

approximation. For simplicity, the non-s-like com-
ponents (l= 1 and 2) (about 1%) of these lowest-

lying states are not included in the evaluation of
the electron-electron couplings. In the evaluation
of Uz and U3 terms for Si, we have used the Bloch
function (('i'k (k; denotes the position of the ith

f

minimum of the conduction band) obtained from
Altarelli and Hsu. For Ge, we have only includ-

ed the Ui term for evaluating the electron-electron

coupling. The sub-Hamiltonians, defined for each
overall symmetry I,+-

by

H (7 i72~ Tir2 ) ='Eo(rir2)5
11 22

4 r+
+ g Ui„G ' (riri~rir2) (22)

A, =1

are then diagonalized separately to obtain the final
r+

results for the energy values [denoted E ' (ri1 2)].

IV. RESULTS AND DISCUSSION

A. H system

To examine the convergence of the expansion for
the ground state, we first compute the ground-state

energy of the H system using the present basis

set. We obtain a ground-state energy of 1.0546

Ry, which is in good agreement with the experi-

mental value of 1.0555 Ry. '

B. D states in Ge

In Table II, we list the total energies of the
lowest-lying states for the donor (obtained experi-

mentally) i and each configuration (~i') of the

D obtained in the zeroth-order approximation
(ZOA) Ep(rir2} (upper half), and ZOA plus the

r+
electron-electron coupling, E ' (rir2) (lower half)
for Ge:P, Ge:As and Ge:Sb. As defined in Sec.
II C the ZOA includes only the interaction between
the electrons when they are initially in valleys on
the same axis and scatter into states in the original
valleys. The additional electron-electron coupling
terms are found to be small (-0.3 meV} compared
to the total binding energies. Therefore the first-
order perturbation method used to obtain

E ' (riri) is a good approximation. We find that
the coupling between states of different configura-
tions but the same overall symmetry is negligibly
small ((,0.2%} for Ge:P and Ge:As, but is sub-

stantial for Ge:Sb. For Ge:Sb, the mixing of
(I'&I'&)I i+ state in the ground state is about 6%
and the mixing of the (I &I 5)I'~+ in the (I il'q)I 5+

state is about 26%. The theoretical and experi-
mental values for the binding energies are present-
ed in Table III. As shown in Table III, the
theoretical values lie between the two sets of exper-
imental values marked a and b. The set marked a
is obtained at both higher temperature and higher
impurity concentration than the other, and there-
fore includes more contribution from the D com-
plexes. This effect will shift the threshold of the
photoconductivity spectrum up to higher energies.
The set marked b is obtained at 0.38 K, with im-

purity concentration -5&10' cm, and D
states under this condition were considered to be
isolated. However, although not mentioned in
Ref. 7, it is reasonable to assume that the sample is
slightly compensated with 10' cm D+ and A

charged centers. Although the average separation

(R,„)between a D center and an A center is
0

quite large (about 5000 A), the Coulomb interac-
tion (e~/eoR, „)between them can be appreciable
(about 0.2 meV). Hence, we might expect correc-
tion of this magnitude to the results in Ref. 7.
This phenomenon is capable of explaining the
differences in measured and theoretical values of
the binding energy.

Considering the excited states of D listed in
Table II, we find the (I iI 5)I'5+ and (I iI 5)I 5+

states are barely bound (by about 0.05 and 0.02
meV, respectively) for Ge:P. For Ge:As, no bound

excited states are obtained. For Ge:Sb, the lowest-

lying states of all possible configurations are
bound. This is because the I

&
and I 5 donor states

in Ge:Sb are separated by only 0.3 meV. We find
a group of excited states lying in the region of
0.10—0.25 meV above the ground state.
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TABLE II. Total energies of the lowest-lying states for donors and for various configura-
tions (~~~2) of the D obtained in the zeroth-order approximation (ZOA), Eo(~@2) and ZOA

plus the electron-electron coupling E ' (v ~~2) for Ge doped with P, As, and Sb. All energies
are in meV.

Config

nt

As Sb

Donor
states

I 5
—10.1'

—12.9'

—10.0'

—14.2'

—10.0'

—10.3'

Zeroth-order
approximation
Eo(~i&2)

—10.75

—12.89
—13.65

—10.63

—14.14
—15.01

—10.63

—10.78
—10.91

Final
r+

(&$~2)

—10.81

—10.88
—11.02
—11.02

—10.69

—10.76
—10.90
—10.90

—10.67

—10.68
—10.90
—10.90

—12.93
—12.96

—14.16
—14.16

—10.99
—11.05

(I )I ))I 2+ —13.89 —15.25 —11.15

'Reuszer and Fisher (Ref. 23) [revised by Faulkner (Ref. 24)j.

C. D state in Si

TABLE III. Binding energies of the D states for
Ge doped with P, As, and Sb. All energies are in meV.

Materials Experiment

Ge:P
Ge:As
Ge:Sb

0.99
1.05
0.85

1.2'
1 55' 075
0.95,a 0.625b

'Gershenzon et al. (Ref. 3).
'Taniguchi and Narita (Ref. 7).

In Table IV, we list the total energies of the
lowest-lying states for the donor (obtained experi-
mentally) ' s and each configuration (rir2} of the
D obtained in the zeroth-order approximation
(ZOA) Eo(rirq} (upper half) and ZOA plus the

r+
electron-electron coupling, E ' (rir z) (lower half)
for Si:P, Si:As, Si:Sb, and Si:Li, respectively.
Again, the additional electron-electron coupling
term is found to be small (-0.5 meV) compared to

the total binding energies. This justifies the validi-

ty of the first-order perturbation method used to

obtain E ' (rirz). The coupling between states of
different configurations but the same overall sym-
metry is weak (3%) for Si:P, Si:As, and Si:Sb, but
is substantial for Si:Li. The mixing between the
(I'sI's)I'i+ and (I sI s)I i+ is about 40%, and simi-
larly between the (I'&I s)I s+ and (I &I's)l s+ states
for Si:Li. This is due to the fact that the I's and
I s donor states for Si:Li are nearly degenerate,
while these states for Si:P, Si:As, and Si:Sb are
separated by about 2—3 meV. If we included the

q dependence of the dielectric function for the
mutual-interaction term, these binding energies
would be reduced to 2.6, 3.1, 2.5, and 2.1 meV,
respectively. The photoconductivity spectra ob-
tained by Taniguchi and Narita ' ' suggest that
the binding energies for D states for Si:P, Si:As,
and Si:Li are 1.7, 2.0, and 1.7 meV, respectively.
Hence, the experimental value for the binding is
substantially smaller than that obtained theoretical-
ly. As in Ge, this difference in binding can be at-
tributed to the existence of residual acceptors.
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TAM, E IV. The total energies of the lowest-lying states for donors and for various con-
figurations (~p.2) of the D obtained in the zeroth-order approximation (ZOA) Ep(~]72) and

ZOA plus the electron-electron coupling, - E ' (v p2) for Si doped with P, As, Sb, and Li. All
energies are in meV.

Impurit
Configuration

Donor
states —33.9'

—45.5'

—31.2'
—32.6
—53.7'

—30.5'
—32.9'
—42.7'

—33.0
—33.0
—31.2"

Zeroth-order
Approximation
Eo(r)v2)

(I.,r, )

(I 3I s)
(I'sI s)
(I )I3)
(r,r, )

(I )I ))

-35.19
—35.82
—45.41
—45.42
—48.03

—33.82
—34.47
—53.60
—53.60
—56.82

—33.73
—34.76
—42.64
—42.67
-45.10

—34.89
—34.91
—34.10
—34.12
—33.12

Final
r+

E '
(~)w2)

(I 3I 3)I 3+

(I 3I 3)I p

(I 3I s)I s+

(I,r, )r;
(I 3I s)I ~

(I,r, )I;

—34.48
—34.63
—34.79

—35.08
—35.50
—35.53
—35,53

—33.08
—33.08
—33.38

—33.71
—34.12
—34.15
-34.16

—32.34
—32.48
—32.62

—33.63
—34.00
—34.03
—34.03

—35.14
—35.21
—35.22

—34.90
—35.20
—35.23
—35.24

(I sI s)I ]+

(I,r, )I+
(I,r, )I+
(I sI s)I g

-35.81
—35.85
—36.13
—36.17

—34.47
—34.47
—34.78
—34.81

—34.78
—34.78
—35.08
—35.11

—34.71
—34.88
—35.22
—35.25

—45.41
—45.42

—53.60
-53.61

—42.65
—42.65

—34.1 1
—34.42

(I iI s)I s+

(I ]I s)I s

—45.42
—45.44

—53.60
—53.61

—42.68
—42.71

—34.09
—34.44

—48.23 —33.28

'Aggarwal and Ramdas (Ref. 25) [revised by Faulkner (Ref. 24)].
"Aggarwal et al. (Ref. 26) [revised by Faulkner (Ref. 24)].

Since the samples used in Refs. 9 and 10 are
prepared with a concentration —10'5 cm 3, it is
reasonable to assume the existence of —10' cm
A centers. With this assumption, a shift in ener-

gy of approximately 0.6 meV can occur in the pho-
toconductivity spectrum due to the Coulomb repul-
sion between the D and the nearby A centers.
This shift in energy brings the experimental data
obtained in Ref. 10 in reasonable agreement with
our theoretical results. In Ref. 9, it is also found

that B states are bound by about 1.1 meV for
both Si:P and Si:As under a high-stress limit.
Theoretically, it is believed that under a high-stress
limit the D system can be well described by a
single-valley modd, " and the binding energy
should be about 1.7 meV. This difference in bind-

ing can also be accounted for by the introduction
of residual acceptors.

From Table IV, we see that the present calcula-

tion predicts that all the excited states for the D
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system in Si:P, Si:As, and Si:Sb are not bound but
that the lowest-lying states associated with all pos-
sible configurations for the D system in Si:Li are
bound. The bound states for Si:Li are due to the
fact that the I i, I 5, and I i donor states are
separated by only 1.8 meV, which is overcome by
the binding energy for the D states (2.2 meV),
hence, producing many bound states.

V. CONCLUSION

We have developed a theory for the D states in
Ge and Si, including the effect of realistic band
structures. By considering the valley-orbit interac-
tion and mass anistropy for each electron interact-
ing with the donor and the mutual interaction
simultaneously, we obtain binding energy for the
D states in Ge and Si, which are about twice as
large as those obt81ned m a spheIMal model. This
enhancement in binding energy is in disagreement
with the recent experimental data. ' The differ-
ence between theory and experiment is accounted
for by the existence of compensating (A ) centers.

We also find that the energy separation between

the excited and ground donor states in Ge:Sb and
Si:Li are smaller than the energy required. to bind a
D state, and hence, we obtain many bound excit-
ed states. Our study for the electron-electron mu-

tual interaction can be applied to the electronic
spectra of the donor bound exciton (D X) in Ge
and Si, and provide an understanding for the
electron-electron coupling scheme between the
states belonging to different configurations in the
D X. This application will be discussed in a future
publication.
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APPENDIX A: MUTUAL INTERACTION BETWEEN T%0 ELECTRONS IN D

In this appendix, we derive the expression for the matrix elements of the mutual interaction between two-

electron product states denoted by

)mn;(~i~2)I';+@, ) and ~m'n';(~)~2)IPp, )

According to the definition of these states [see Eqs. (7) and (8)t we can write the matrix elements of the mu-
tual interaction as

&
ui'n', (r', g'2)1;+p,

~
u(1,2}

~
mn; (~i~x)I;+p, )

=—g C, (p', p,', I'p)C„,,(pip„I'JM}(&ui'ii',p'i~&
I
~

I
indi PiP~&

Pt,P2

&pipe I
~

I pi@2& = 2 P' "'(ki)P' "'(k2)& ki kz I
u

I
kik2&P"'(ki)P '(kz) . (A2)

k2k~

In Eq. (A2) the indices mn and m'n' have been dropped for simplicity. Using the Fourier expansion in the
reciprocal-lattice vector space for the product of the periodic parts of the Bloch functions

~

k', ) and
~
k, )

(or
~
k2) and

~
k2)), with coefficients c (k i, ki', Gi) [or c(k2, kq, G2)j, we can write the kernal for the mutu-

al interaction as

kik2 I
u

I kik2) = g u(Gi+ki —k'i)e(ki, ki', Gi)c (k2, k2tG2)5(G+ki —ki —G2+k2 —k'i) . (A3)
G)62
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Substituting Eq. (5) and Eq. (A3) into Eq. (A2), we obtain

&P'Pi
l
II'IP P &=/;(P');(Pl);(P ),(P»~« 'j j'}, (A4)

where

II'(i, &',jj')—:g g p,' (ki —k; )p' (k2 —k')u(Gi+k) —k'i)c(ki, ki, Gi)c'(k2, k2;G~)
6162k

1 k1
~r

k~k2
+

&(5(Gi+ki —ki —Go+kg —k2)p (k) —k. )p (k2 —k ) . (A5)

The right-hand side of Eq. (A5) can be sorted into three classes: (1) Ak, =hk2 ——0, (2) b, k
~

——Ak2@0, and

(3}4k ~@b,k2, where b, k&
—=k; —k; and b, k2 =—kj —kj . We will discuss the three classes separately.

(1) b, k~ ——b, kq ——0 (intra intra) -Only . the terms with G&
——0 and G2 ——0 have appreciable contributions.

Transforming Eq. (A5) into real space, we readily obtain

8'{i,ijj)=fd'r, d'r2p' (r))pj*(r2)u(ri, )p;{r,)p;(r, ), (A

which tak~ on two different valum depending on whether the inajor mm of the ellipsoidal charge distribu-

tions of two particles are parallel to each other.
%e define

Uu if k;~(k;
8'(i, i,j,j )=

U, —U, nfl. notparallel k .
(A7}

This case contributes a term to &P'iP2
~

W
~ PiPz& as

~i(w'Pz Pi 2)=I've& ~ ~ +UiGi(PlP2 PiPi»P)P) 8+2,

where

(A8)

61(P1P2 P1P2)= —& 5 +/& (Pi)& (PZ)& (Pl)& (P2} (A9
I &2

The summation is over terms with k;
I Iki only.

(2) hk~ ——Ak2+0 (inter inter) We-must .have either (k;=kj' and k; =kj) or (k;= —kj and k; = —kj ).
Only the terms with G~ ——02 have appreciable contribution, due to the restriction of the 5 function in Eq.
(A3). Analogous to the umklapp renormalization factor introduced for the single-particle potential energy

term, "we define

R(i,i',j j')=pc( ;k, ;k, )Gc( kjk GJ)u(G k+; —k; )/u{k; —k; )

6

as the renormalization factors for the mutual interaction term. %ith the restriction Lkl ——Lkz, it is easy to
prove that e( k ', k .;G) =c ( k;, k;,G), and Eq. (A10) is simplified to

8 (i i') =g
~
c(k;, k;;G)

~

u(G —b k&)/u{b k&), (A 1 1

(A12)

where we have dropped the dependence on j and j '. With the use of the renormalization factors R (i,i') and

transforming Eq. (A5) into real space, we readily obtain

8'(i,i',jj')=R(i,i') Jd rid r2P,'*(ri)P;(ri)e ' 'u(r&2)PJ*(r2)Pi(r2)e
a

4

Introducing the Fourier transforms for the function p,'*(r~)p;(ri)e ' ' as I;;(q hk, ) —and similarly for
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Pz'(r2) Pz(rq)e
' ', we can rewrite Eq. (A12) as

(A13)
3

W(i,i'jj')=R(i, i') f ~
v(q)I;;(q —bk&)Ij j(q —hk&} .

(2m )

The function I;;(q —b, k~) Ij'j(q h—k& ) is sharply peaked at q =b, k~, and v(q) is a smooth function there.

Therefore, we can write approximately

3

W(i, i',jj')=R(i, i',j j')v(6k~) I ~I;;(q)Ij'j(q) .
(2n. )

We define

(A14)

U2 for longitudinal scattering scheme
~ ~ g ~ ~ p

Uq for transverse scattering scheme .

For longitudinal scattering, we must have k;.=—k; and kj'= —kj, and the restriction b, k& ——b, k2 requires
k;= —kj. This case contributes a term U2G2(jj&pz, jj&p2) to W(p&pz, p~jj2), with

G2(jj'1jj'2 jj'Ijj2)=+a—;(p~)a~(jj2)a;(p~)a;(jj2) (A15}

where a;(jj,& ) is the component associated with k; = —k;, similarly for a;(p2). For the transverse

scattering, we obtain a contribution U&G&(jj&p2, p~p2) to W(p, '~p, 2, jj~ jjz) with

G3(p1p2 plp2) =+ i(p1 }aj(p2)a'(p] )aj(pg) (A16)

where the sum is over all transverse scattering terms satisfying the restriction hk, =b,k2.
(3) b, k&+hk2. With the change of variables k&~k& —G& and k2~k2+G2, Eq. (A5) can be rewritten

+ ~ ~ + +

W(i i',jj')= g g p,"(k', —k; )p,"(k,' —k; )v(k, —k', }c(k,—G„kI,G, )c'(k2, k,+G„G,)
+ +

k2k2

X5(k, —k't —k2 —k2)P;(k& —6& —k;)P)(k2 —kj+62) . (A17)

~l
Replacing c(k ~

—G~, k ~,6~ ) and c'(kq, k2+ G2, 62) by their values at k
~
—6& ——k kI ——k;,

k2+Gq ——kj, and k2 ——kj, respectively, and transforming Eq. (A17) into real space, we obtain

W(i,i'j j')= g c(k;,kj';G~)c'(kj, kj;G2)
G)62

+

c(k;,k;;6&)c~(kj', kj;62}I I~;(q —hk& —6, )Ij'j(q —hk2+Gz}v(q), (A18)2m'G)62

where I;;(q) and Ij j(q) are the Fourier transforms of P,'. (r, )P;(r&) and P,"(rz)Pj(rz), respectively. Since

I;;(q —bk&+6&) and Ij'j(q hk2+62) are sha—rply peaked at q=G& —bk& and q =62—bk2, respectively.
The integral appearing in the right-hand side of Eq. (A18) is negligibly small unless the momentum is ap-
proximately conserved, i.e.,

6)—hk) ——G2 —hk2 . (A19)

In Si, Eq. (A19) can be satisfied only for some very special cases. For example, if b,k
&
——0 and b, k2

=(0,0,2)ko, then the term with G& ——0 and G2 ——(0,0,2)(2ma) leads to appreciable contribution to the integral
in Eq. (A18). However the coefficient c'(kj, kj;62) in these cases happens to be nearly zero (less than
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10 ), which renders the net contribution to W(i, i',j,j') negligible.
In Ge, the restriction ski ——b, ki and Eq. (A19) can be satisfied simultaneously only if k;, k;, kj, and kj

are at four different minima. Combining Eq. (A18) and Eq. (A19), and replacing u(q) by its value at

q =6~—6k~, we obtain

3
~(~;i',jj')=pc(k;, k;;Gi)c (k.,k';G, —k, +k, )u(G, k, )f — y..,(q)I., {q)=U

{2ir)'

This class contributes a term U&64(pip&, pip&) to (pip2 ~

W
~ pipz& with

G4(pi p2 pip2) = y— +'(pl )ixj(p2)+ (pl)&J(pi) ~

«P«'Xj Ai
'

Collecting all the contributions to (pip2 ~

8'
~
pipq& from various terms, we obtain

4

&pip2 I
~

I pip2&=U05 5 + X UiGx{pipz pii z)

(A20)

(A21)

Substituting this equation into (Al), we obtain the final expression with the indices mn and m'n' written ex-

plicitly

&
m'n';( i', r,

') I p, ~u(1,2) ~{r,r, )1",-p„mn&
4

e=f '„'f'„'Uu(m'n', mn)5, 5r2r2+ g Ux(m'n', mn)Gx'(r'i', rir2)
A, =1

(A22)

where the ellipsis represents an exchange term and where

Gx ($1%2~$1%2)= g C~' r (plp2~Pp)C~i~2(pip2rp)Gx(pip2ypipi)~
P ]82

p))p2i

(A23)

The exchange term is obtained from the direct term by exchanging the roles of the two electrons. The non-

vanishing submatrices for the matrices Gi are listed in Table V for Si and Table VI for Ge, respectively.

APPENDIX 8: MATRIX ELEMENTS FOR THE PARALLEL MUTUAL INTERACTION

In this appendix, we derive the general expression of the matrix elements for the parallel mutual interac-
tion Uo between two-electron product states denoted by

~

I il2, L 0 & and
~

I i 1q,L'0&. ~e first introduce the
notation co(lili,'LM) for a general two-electron product state, viz. ,

(I, I,;LM)= g C(I, I,L;m, m, M)r. . .(II, )I'i, ,(II2)Ri, (ri)Ri, (r2),

where C(lil2L;mim2M) is the Clebsch-Gordon coefficient, coupling the product of two spherical harmon-

ics
~
Ii,m i & and

~
12,m2 & witli the state

~
L,M & ~ R/ {ri) alid Ri {ri) are the radial parts for tile two-

electron states. If r, = r, = r, we obtain a useful relation

co(l, li', LM)=f(lil2, L)YES(Q)Ri (r)Ri, (r),

f(l ilp, L)= C(I,I,L;000) .
4ir(2L + 1)

(83)

Then the matrix elements concerned here can be written as

(IiI2,LO
~
u(1,2)

~

I'ilq', L'0& =f co(lily ,LO) 'co(1'il2, LO)d rid r2,
I
ri —r2I

where the arguments for the two-electron product wave functions m(l i 12,LO) and co(l i 12,.L 0) are r i and
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I I

M

8
CO

8
blj

~ ~

0
8

I

0

V

V)

U
V
C4
5

'a
c5

0
~ W

V
5

0
bQ



3942 YIA-CHUNG CHANG AND T. C. McGILL 25

TABLE VI. The electron-electron coupling matrices for Ge; the notation is the same as used in Table II.

6 1

(11)

(SS)

6 3

(55)

6 4r

(55)

I

(15)

(51)

(55)

(55)
—1

(55)
—1

(55)

v 3/4

(S1)
1

4
3

4

(55)

v 2/4

v 2/4

r,
63
(11)

(55)

6 3

(55)

6 4

(55)

6 5

(15)

(51)

(55)

(55)

1

{55)
—1

(15)

(5S)
—5V 3/4

(51)
3

4
1

(55)

-v 2/4

r,
64
(11)

r3
64
(55)

r4
64
(55)

r,
64
(15)

{51)

(55)

(SS)

(SS)

0

(15)

(55)

-v 3/2

(51)
1

2
1

2

(55)

1/W2

1/v 2
3

rz, which are defined in an ellipsoidal coordinate system with an eccentricity factor g. It will be more con-

venient to express the product wave functions co(l ilz', L 0) co(l i Iz,L 0) in Eq. (84) as linear combinations of
product wave functions of the form co(lili ,L,Mi)co'(lzlz, LzMz) in which the two-electron states having the
same coordinate are combined together. We use the relation

a)(lilz, LO)co(lilz', L'0)= g D(lilzl'ilzLL', LiLzF)
L )L2F

where

X g co(l, l', ;LiMi )co(lzlz;LzMz)C(L, LzF;M, Mz0),
M)M~ (85)

l] l2 I.
D(lilz!ilzLL';LiLzF): C(LL'F;00—0)[(21+1)(2L'+1)(2Li+1)(2Lz+1)]' I'i lz L' . .

I.] L2 Ii

(86)

The last factor appearing in Eq. (86) is the standard 9-j symbol. Substituting Eq. (85) into Eq. (84), we

find that these matrix elements can be expressed as linear combinations of the integrals

r= f~(1 I&,LiMi) ~(Izlz, LzMz)d'r, d'r, .
r) —r2

(87)

Equation (87) can be readily carried out in momentum space (q space). Using Eq. (82), we can express the

Fourier transform of co(I,I';LM) in q space as

with

N(ll'~LM) =ps I ( q')YIM(Q& ) &

$01.(q'):4m(i) JRi(r')Ri(—r')jL, (q'r')r' dr'f(ll', L),

(88)

(89)

where the coordinates q
' are defined in an ellipsoidal system q '=(q„,q~, gq, ) and jI is the spherical Bessel

function. Carrying out Eq. (87) in q space, we find thatg„d Yl. ,~,«)YL,~,«)
I= J~(lili;LiMi) z a)(lzlz, LzMz) 3

——g(lil'iLi, lzlzLz) I z z dQ,
q (2')3 /[1+(g —1)cos 8]

(810)
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with

dgP/1/jLli/2/2L2): 0t t'I, (q'}
t t'I (1')

11 1 22 2
(811)

Substituting Eqs. (85) and (810) into Eq. (84), we find the final expression

(/)/p, .LO
~
u(1,2)

~

l j/'2L'0} =v 4tr y D(l, /2/ j/'2LL', L,L2F)f (LtL2, F)5(/, /jL$,'/2/2L2)aF(g),
I'I. )L,2

where we have used the relation [see Eqs. (81) and (82)]

(812)

C(L1L2F~™1M20)~c,M, (~)~r.,M, (~}')=f«iL2~F) ~FO(~}

and defined the coefficients

(813)

C (llL, OOO) ar. (4)

C(llO;000)[(2L +1)]'~ ao(g)

l'Fo«) dn
aF(g) —=

([1+(g —1)cos 8] v 4m

Using Eq. (812), we can estimate the ratio for the square of the coupling of the states
~
ll;LO} and

~

ll;00}
with the state ~00;00}. We obtain

(ll;L0 i u(1,2) i 00;00}
(/l;00 [ u (1,2}

~

00;00}

Exphcltly, we flind

(11;20
~
u(1,2)

~
00;00} 0.0408 for Si

(11;00
~

u(1,2)
~
00;00} 0.119g for Ge,

(22;20
~
u(1,2)

~
00;00} 0.0291 for Si

O.ogss for Ge,

2
(22;40

~
u (1,2}

~
00;00} 0.0032 for Si

(2»00
I
u(1»)

1
00 00} 0.0278 foroe,

From Eq. (812), we also find that

(12'20
~
u(1,2)

~

00;20}cc C(122;000)=0 .
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