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We present a theory for the D~ states in Ge and Si, including the effects of realistic
band structures. We obtain binding energies of these states, which are about twice as
large as those obtained from using a spherical model. This enhancement in binding is
due to the anisotropic, multivalley character of the conduction bands. We predict many
bound excited D~ states for Ge:Sb and Si:Li. Our binding energies are in substantial
disagreement with those obtained in recent submillimeter photoconductivity measure-
ments. This disagreement is attributed to the presence of compensating (4 ~) centers in
the sample which interact with the D~ center through Coulomb interaction.

I. INTRODUCTION

It is well known that an electron can bind to a
hydrogen atom to form a H™ system.! The bind-
ing energy for this sytem is about 0.0555 times
that for the hydrogen atom.! From a simple anal-
ogy to H™, Lampert? predicted that an electron in
a semiconductor can bind to a neutral donor to
form a D~ system with binding energy being
0.0555 times that for the neutral donor. In the
past, some experiments®~® suggested that a trap-
ping center such as the D ~ state exists in Si and
Ge. However, it was found that the electron affin-
ities of the center for Ge are about three times as
large as those predicted for the D ~ state by Lam-
pert.? Narita and Taniguchi® suggested that this
increase in binding is due to the multivalley char-
acter of the conduction band of this system. How-
ever, more recent experimental studies’? indicated
that D~ states in Ge:Sb and Ge:As are bound by
about 0.625 and 0.75 meV, respectively. These
values are much closer to the binding energy for
the D~ predicted by Lampert.? By studying the
concentration and temperature dependence of the
photoconductivity spectrum of Ge:Sb, Taniguchi
et al.® concluded that the higher energy threshold
observed previously’ ¢ is due to the formation of
D~ complexes (one electron bound to two or more
neutral donors) and isolated D~ states can only be
observed at very low temperature (<0.5 K) and
very low concentrations (< 10" cm~—3). Similar re-
sults have also been observed in n-type Si.%%1°

Theoretically, Natori and Kamimua!! have stud-
ied D~ states in multivalley semiconductors. They
include the multivalley effect by assigning the two
electrons in the D~ valleys along different axes,
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thus obtaining an enhancement in binding by about
0.26 and 0.27 meV for Ge and Si, respectively.
However, they neglected the effects of the central-
cell correction and the intervalley exchange interac-
tion, which are important for treating D~ states in
the stress-free case. Moreover, they find that their
trial wave function yields only half of the total
binding energy of the H™ system.

In this paper, we develop a theory for D ~ states
in two multivalley semiconductors, Si and Ge.
The anisotropy and the multivalley character of
the conduction-band structures as well as the
short-range core potential for the impurity are tak-
en into account properly. We use the standard
configuration-interaction (CI) method to compute
the energies of the lowest-lying states associated
with various “crystalline configurations,” in which
each electron is assigned to a single-particle state
transforming according to a certain irreducible rep-
resentation of the T, point group. For the H™
case, our method is able to produce 98% of the to-
tal binding energy. For D~ states in Ge and Si,
we obtain the binding energies, which are about
twice as large as those for the corresponding D~
states obtained by Lampert.> These values are
about 50% larger than those obtained experimen-
tally by Taniguchi and Narita.>!° Our theoretical
results for the total energy should be an upper
bound to the exact values. We attribute this differ-
ence in binding to the existence of compensating
(4 7) centers in Ge and Si. One reasonable expla-
nation for the difference between the observed
values and the theoretical ones for the binding en-
ergy is due to the presence of compensating centers
in the samples investigated so far. We find that a
concentration as low as 10'2 cm~? yields substan-

3927 ©1982 The American Physical Society



3928 YIA-CHUNG CHANG AND T. C. McGILL 25

tial reductions in the binding energy of the D .

In Sec. II, we present the general theory for D~
systems in multivalley semiconductors. We brief-
ly review the valley-orbit interaction of an electron
interacting with the donor, which has been dis-
cussed in detail in Ref. 12. Various scattering
mechanisms for the mutual interaction between the
two electrons in the D~ system are discussed.

This discussion of the mutual interaction between
electrons can also be applied to the calculation of
the electronic spectra of donor bound excitons
which we will carry out in a future publication. In
Sec. IIT we discuss the method of calculation and
derive the matrix elements for the total Hamiltoni-
an. In Sec. IV we discuss our theoretical results
and compare them with the available experimental
data. In Sec. V a summary is presented.

II. GENERAL THEORY
A. Basis problems

The D~ system consists of two electrons and a
positively charged impurity center. The total

H_ _D(XK,Ky)=[E.(K)+E

Hamiltonian of this two-electron system can be
written as

=h,(1)+h,(2)+v(1,2), (D

where A,(1) and h,.(2) are the single-particle Ham-
iltonians for the two electrons (labeled by 1 and 2)
interacting with the donor. v(1,2) represents the
mutual interaction whose Fourier transform (in SI
units) is

0(q)=

2

- (2)
e(q)q

where €(q) is the §-dependent dielectric function.!?
The exact eigenstate of H__ can be expanded in
terms of products of two pseudo-Bloch-functions
[denoted ¢c;>‘(f’1) and df;*z(’f'z)] as

—

WL, T)= 3 DKL) (T (F) . ()

kiky

The expansion coefficients D(ky,k,) (which are
antisymmetric with respect to the interchange of
particles 1 and 2) satisfy the Schrddinger equation

H,_D(k,k)=ED(k},k,), @)

where H,,_ is the integral operator defined as

2)]D(k1,k2)+z<k1|V¢|k YD(K},Kk,)

+2< K2 | V4| K5)D (K, Kp)+ 2 (K,Ky|v | K1 K5 )D(K},K) . (5)

In Eq. (5), E.(k K) represents the dispersion relation
for the conductlon bands in the extended-zone
scheme, V4 is the impurity pseudopotential,'® and

l K) represents the pseudo-Bloch-function ¢5(
associated with the conduction band. Comparmg
Egs. (1) and (5) one can see that the integral opera-
tor defined by

—»

h,¢(K)=E, (E’)+Z<E|V¢|E')¢(R")
<

(6)
describes the interaction of an electron with the
donor, and the kernel (kk,|v | kik3) describes
the mutual interaction between two electrons. To
solve Eq. (5), we expand the total envelope func-
tion D ( k,,kz) in terms of a set of basis functions.
Since the single-particle Hamiltonians A,(1) and
h.(2) and the mutual interaction v(1,2) are invari-
ant under the operations of the point group Ty, it
is convenient to choose basis functions that
transform according to the irreducible representa-

[
tions of T;. We can choose these basis functions
as linear combinations of products of single-
particle wave functions, while also transform ac-
cording to the irreducible representations of T,.
To avoid confusion, we will use 7 to label the ir-
reducible representation associated with single-
particle states and I, label the irreducible repre-
sentation associated with the two electron product
states. If we denote the single-particle states as
|m;rye) and | n;7op,) for particles 1 and 2,
respectively (where u; and u, label the partners of
the representations 7; and 75; m and n label the
remaining quantum numbers for the two particles),
then we can write the product basis states
(transforming as a basis vector p, of the represen-
tation I",) as

[ mn; (17T opte )= z CT]TZ(“IIJQ’ Cepe)
8L}
X | m ;i) |nsmaps)
0))
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C‘rl‘r2(“"ll‘l‘2;re”e) are the coupling coefficients

for the group T, and can be found in Ref. 14.
For Si, 7,7, can be any of the representations I';,
I'3, I's, and T, can be any of the representations
Iy, Ty, T3, Ty, or T's.'* For Ge, 71,7, can be either
Iy, or T's, and T, can be I'y, T'3, T, or T's. 1
Since the total Hamiltonian is spin independent, we
may choose the basis states to be eigenstates of the
total spin operator. This can be accomplished by
using symmetric (labeled by + ) or antisymmetric
(labeled by —) (if the two electrons are in different
orbitals) combinations of the states defined in Eq.
(7). Namely,
1'11'2

| mn; (1) ip, ) = ‘;% [ |mn;(rim)Tep, )

+ [nm HEPT0) INTH >]

S (m'n’;(r175)Tu, | H

mn
1T

p— | M3 ()T, YCmn,(

with

"y 1/V2 if m =n and 71=7,

Jmn =11 otherwise , ©)

where we have assumed implicitly that a singlet
(triplet) two-electron spinor is multiplied by a sym-
metric (antisymmetric) space state to make the to-
tal wave function antisymmetric under the ex-
change of the two electrons.

The total envelope function D ( K b kz) can be ex-
panded in terms of the above basis states. Then,
the expansion coefficients C(mn,(r,7,)TZu,) will
be determined by the standard configuration-inter-
action matrix equation

111 )=EC(m'n’ (ry75)Tp,) , (10)

where the states of different symmetries have been decoupled. The Hamiltonian matrix elements in Eq. (10)

involve the matrix elements of the single-particle Hamiltonians [A,(1)

and A,(2)] for the two electron in-

teracting with donor and the matrix elements for the mutual interaction, viz.,

Iy 4Ty

m’2[71< | he

<m'n’;(7'17'2)rétﬂe !HD- lmn;(TlTZ)Fét#e>— mn

where we have used the relations

(msripd | he(D) | m3mipy ) = (m [ (D) |m )78

(n';Tyus |h(2)|n; Tz,uz)—- (n'|h, (2)|n),-2 #2#

and the orthonormalization property of the cou-
pling coefficients Crn (12, Tepte). We shall clas-

sify the states associated with the same single-
particle symmetries (7,7,) as belonging to the cry-
stalline configuration labeled by (7,7,). From Eqgs.
(11), it is noted that the states of different configu-
rations are coupled together through the mutual in-
teraction term only. In the following subsections,
we will discuss the matrix elements for the single-

4., (m" | (2

T "'1 1

1)|m ),‘5,,,, 5, 8

T

(1 [5e(2) 1), Sy, .8

TT 1'1'2

t, (0" [ Bo(1) [ M), BB, 8

TT TT‘

Mn)rBmd, 8, 1

T‘l' TT2

+{m'n";(7i75)Tiu, |v(1,2) | mn;(ryr)Tu, ) , (112)

b4

(11b)

’

|
particle Hamiltonian 4, and the mutual interaction
separately.

B. Interaction of an electron with the donor

The single-particle Hamiltonian A, for the elec-
tron in the D~ system, interacting with the donor
is the same as that for a neutral donor system.
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The solutions for neutral donors in Si and Ge have
been studied by several authors!*~1® and are briefly
reviewed here. In indirect materials, the conduc-
tion band has several equivalent minima. The
number of equivalent minima N is 4 in Ge and 6
in Si. The bound eigenstates of the donor Hamil-
tonian are constructed from linear combinations of
wave functions localized at the N equivalent mini-
ma, the expansion coefficients being determined by
group theory. The bound states for donors in Ge
are then classified as I'; (singlet) states and I's (tri-
plet) states, and those in Si are classified as I';
(singlet), T's (doublet), and T's (triplet) states.!* If
we denote the single-particle basis functions
|m;mu) in K representation as B7%(K), then B#(K)
can be written as linear combinations of wave
functions localized at the N equivalent minima

denoted by k;, i =1,...,N, viz.,
N o
=Y ai(u)Bu(k—k;), (12)
where the wave functions B’;,,(iz—igi), i=1,...,N,

are transformed into each other under certain
operations of T, and the coefficients aj(u) are
determined entirely by group theory. Substituting
Eq. (12) into Eq. (11b), we obtain after application
of symmetry,

3 . :
‘r<m Ihelml)fz zgk(7)<3‘m |he|ﬁ’m’) » (13)

where A=1, 2, and 3 for the intravalley (k;=k i)
intertransverse (k; _and k _along different axes) and
interlongitudinal (K; and k along the same axis)
scattering terms, respectlvely The coefficients
g..(7) can be found in Ref. 17 for Si and Ref. 18
for Ge. Each matrix element in Eq. (13) can be
written as the sum of the kinetic energy (KE) and
potential energy (PE) matrix elements. The KE
matrix elements may be evaluated by carrying out
the integral

d’k
(2m)3

in k space. The conduction-band energy expres-
sion E, (K) may be approximated by the sum of
several truncated valleys, each valley being
described by an ellipsoidal expression.!> The PE
matrix elements may be evaluated in real space,
where the kernel associated with the PE operator is
written approximately as'?

(K| V4| K')~I34+Vpc(K—K )Ry, (14)

with K and K’ restricted in the neighborhood of
the center of the ith and jth valleys, respectively.
The J,’s represent the short-range interaction
strength factors as defined in Ref. 12. For noniso-
coric impurities, they are taken as empirical
parameters fitted to the binding energies of the
donor ground states. The values of J; have been
previously given in Ref. 12. However, in the cal-
culation of D~ states, we have adjusted the J
parameters so that the use of a smaller set of basis
functions reproduce the ionization energies for the
lowest-lying donor states for various sysmmetries.
The adjusted values are given in Table I.

The R, ;s are umklapp renormalization factors as
defined in Ref. 16; the index A=1, 2, and 3 corre-
sponds to the intravalley, intertransverse and inter-
longitudinal valley terms, respectively. Their
values are given in Ref. 12. The function Vpc(q)
is the Fourier transform of the screened point

charge potential.!”

[ Bon(K—K,)E.(K)Bl,(K—K)

C. Mutual interaction

between two electrons in the D ~ system

The mutual interaction for electrons in multival-
ley semiconductors are complicated by two factors.

(1) Electron states are described by the sum of

TABLE 1. Values of semiempirical parameters, J, (A=1,2,3), for Si and Ge doped with
various impurities. The unit of J; is 10~3 Ry bohr>.

Material
Parameter Si:P Si:As Si:Sb

Si:Li Ge:P Ge:As Ge:Sb
Ji 1.53 18.52 36.33 54.01 —8.95 —7.69 0.55
J, 5.83 —4.98 —3.92 88.17 4.05 2.31 10.55
Js3 6.13 2.52 25.83 80.37
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envelope functions localized in K space near the N
equivalent minima. The mutual interactions be-
tween these electron states result in terms coupling
electrons in the various valleys, the intra-intra,
intra-inter, and inter-inter scattering terms. In the
intra-intra scattering term, the final states of the
two mutually interacting electrons remain in the
same valleys as those of the initial states. In the
intra-inter scattering term, one electron is scattered
into a valley other than the original one (occupied
by the initial state) while the other electron
remains in the same valley. In the inter-inter
scattering term, both electrons are scattered into
valleys which differ from the original valleys.
These envelope functions are well localized in the
N valleys, separated by some wave vectors that are
large compared to the spreading of the envelope
functions in k space. Therefore, the mutual in-
teraction is appreciable only for the scattering pro-
cesses in which the wave vector is conserved, e.g.;
the intra-intra term and some inter-inter scattering
terms. The intra-inter scattering term does not
satisfy the wave-vector conservation and hence can
be neglected. For the D~ states in Si and Ge, it
can be shown that the intra-intra term is about 2
orders of magnitude larger than the sum of the

(m'n';(rym)TEp, |v(1,2) | mn;(rm)Tig, )

~[Uy(m'n',mn)d_,8

M

where the ellipsis represents an exchange term, U,
represents the intra-intra parallel mutual-
interaction term, and U, represents the difference
between the intra-intra parallel and nonparallel
mutual interaction terms; U, and Uj represent the
contributions from the wave-vector conserving
inter-inter scattering schemes (longitudinal and
transverse) and U, the contribution from momen-
tum nonconserving intervalley scattering schemes.
For Si, the U, term is negligibly small. For Ge,
there is no U, term, and the U; and U, terms are
found to be negligibly small. The exchange term is
obtained from the direct term by exchanging the
roles of the two electrons in the final state. The G
matrices describing the electron-electron couplings
are listed in Tables V and VI for Si and Ge,
respectively. As will be shown in Sec. III, the total
contribution of Uy, U,, U;, and U, is less than
5% of the total energy. In the zeroth-order ap-
proximation, the terms involving U,, U,, Us, and

remaining scattering terms, and therefore dom-
inates the mutual interaction.

(2) Since the constant energy surfaces in Si and
Ge are ellipsoids near the N equivalent minima,
the envelope function localized in each valley for a
given electron will also be ellipsoidal. . The intra-
intra term of the mutual interaction between two
electrons with ellipsoidally distributed charge den-
sities takes on two different values depending on
whether or not the major axes of the ellipsoids as-
sociated with the two electrons are oriented parallel
to each other. We shall refer to these two values
as the “parallel” and “nonparallel” mutual interac-
tions, respectively. The difference between the
parallel and nonparallel mutual interactions is
about a few percent of the total mutual interaction.
However, this difference determines the coupling
of states associated with the same overall symme-
try but different crystalline configurations labeled
by (717,). We will return to this point below.
Based on the above discussions, we can derive an
expression for the matrix elements for the interac-
tion between the two-electron product states,
| mn;(rym)TFp, ) and |m'n’;(7i75) T, ). We
obtain (see Appendix A for the details of this
derivation)

J
7172

4 r
 + 2 Ul.(m'n"mn)er(717277.’17',2)].,‘;1:2 mnt (15)
A=1

I
U, are neglected, hence the states of different con-
figurations are decoupled. The energy levels can
then be labeled by the symmetry representation of
single-particle states (r,7,).

In the absence of the coupling terms U, U,,
Us, and Uy, the spin singlet and triplet states for
the mixed configurations [i.e., ([',T'3), (I';T's), and
(['sI'3)] are degenerate. For the symmetric config-
urations [i.e., ([';T")), (I'sI's), and ('3T3)], the spin
triplet states lie at much higher energies than the
spin singlet states in analogy to the 2S3,, and
1S, states in the He system.! When the coupling
terms (Uy; A > 1) are included, the states originally
labeled by the symmetry representation of single-
particle states are now split into several states la-
beled by the symmetry representation of the total
Hamiltonian. For the mixed configurations, these
states are also split into spin singlet and triplet
states.

The above symmetry arguments can also be ap-
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plied to the donor bound exciton (D°X) system,
which we will discuss in a future publication.
However, the D°X is further complicated by the
presence of a I'g-symmetry hole.

III. CALCULATION METHOD

The present calculation is based on the
configuration-interaction (CI) method. The pro-
cedure of our calculation is divided into two steps.
In the first step (zeroth-order approximation), all
the electron-electron coupling terms (U, ;
A=1,...,4) are neglected. The effect of these cou-
pling terms are included in the second step using
the first-order degenerate perturbation theory. In
the zeroth-order approximation, Egs. (11) are
decoupled for various crystalline configurations;
therefore, we can perform the CI calculation for
each crystalline configuration (7,7,) separately.
For convenience, we introduce normalized units in
which distance and energy are measured in units of
€oh>/my,e? (the bohr), and e*m,/2eX# (the ryd-
berg), respectively, where €, and m, are the ma-
croscopic dielectric constant and the transverse ef-
fective mass, respectively.

A. Basic functions

We choose the single-particle basis functions of
symmetry (71) to be the linear combination of
Slater-type orbitals (STO) defined in an ellipsoidal
coordinate system, viz.,

Wm(?)=§la}( fnl Y (Q),
j=
with (16a)
f,.z(r')=2(r')’e_b‘°’r‘AIf,, , (16b)
)
and
r'=x,2/8),

where § is the eccentrlmty factor used for describ-
ing the donor states,’ k denotes the positions of
the N equivalent mlmma ink space, and aj(u) are
coefficients determined by group theory. The ex-
ponents by, are selected to be

bp1=b0/Zp, p=1,...,7 (173)
with by =2 bohr~! for Si and 4 bohr~! for Ge and

Zpl=(1,2’498’167%’%) for 1=0,1,2. (170)

The A;,, ’s are the transformation matrix elements,
which make the orbitals f,,;(r') orthogonalized to
each other. The intervalley overlap matrix ele-
ments are negligibly small for the exponents
chosen here and are neglected. '?

The basis functions for the D~ states are con-
structed from the linear combinations of the pro-
ducts of the single-particle basis functions for the
two electrons. These two-electron product basis
functions can be selected to be eigenstates of the
total angular momentum L =/, +/,, labeled by the
quantum number (LM). It should be noted that
these angular momenta are defined in an ellipsoidal
coordinate system. According to the symmetry of
the total Hamiltonian, these two-electron product
states with L differing by an even integer but the
same M are coupled together. Since we are con-
cerned with the lowest-lying states for each crystal-
line configuration only, we can restrict these basis
functions to have M =0 and L=even integers. If
we denote these states by the notation
| 1,15;L,M ), then the product basis functions are
classified as the |0,0;0,0), |0,2;2,0), | 1,1;0,0),

11,1;2,0), |1,2;2,0), |2,2;0,0), |2,2;2,0), and
|2,2;4,0) states when the single-particle states
with [=0,1,2 are used. The states constructed
from two non-s-like single-particle states (e.g.,
|1,1;0,0), |2,2;0,0), and |2,2;2,0), etc.) are cou-
pled to the state |00;00) only through the
mutual-interaction term. In Appendix B, we
derive a general expression for the parallel
mutual-interaction term. We find that the contri-
bution to the ground-state energy due to the mix-
ing with L=£0 states (i.e., the | 1,1;2,0),
[1,2;2,0), |2,2;2,0), and |2,2;,4,0) states) are
only a few percent of that due to the mixing with
the | 1,1;0,0) and |2,2;0,0) states. The state
|0,2;2,0) is coupled to the state | 00;00) mainly
through the single-particle Hamiltonian h,. The
contribution of this state to the total energy of the
D~ ground state can be included in large part by
adjusting the empirical parameters, J,’s in the
single-particle Hamiltonian 4,, such that the use of
seven s-like ellipsodial STO’s yields the same bind-
ing energies for the lowest-lying donor states as the
experimental values. Therefore, we select the pro-
duct states with total angular momentum L =0
(i.e., |21;00); 1 =0,1,2) as our basis functions. We
define

'(nlnz)l""l#l,‘f'zﬂz)

B T;t
21+1)1/2 ZBnl,Irln nzzlrit(rz) ) (18)
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where B, (T) is defined in Eq. (16). The product states constructed from seven single-particle states
basis functions which transform according to the for 1 =0, 1, and 2 is 147 for mixed configurations
irreducible representation I',, denoted | (nn,)/; [i.e.,, (T'yT3), (TTs), and (I'3Is)] and 84 for sym-
(ry7)TZu, ), are taken as linear combinations of metric configurations [i.e., (T';T'y), (I'3I'3), and
the states |(n;ny)l; 7{p1,m1,) according to Egs. (I'sTs)].

(7) and (8). The total number of product basis

B. Matrix elements

The matrix elements of H, _ within the zeroth-order approximation for each configuration (7,r,) is given
by

(o) (ryr) T | Hpy | ()57 7)) T g, )

Sy
1Ty TiT2 1l ’ !
= nlnrfn',ng 2+ %[Tl<nllm [he(D) | nilm), Snzn; +r,{nalm | h(2)| njlm ),28"1";]

+Uo((n1n2)l,(n'1n'2)l')i ) (19)

where the ellipsis represents an exchange term that is obtained from the direct term by exchanging the roles

of the two electrons in the final state. The matrix elements for A, is given by Eq. (13). For the s-like states,
the expression of the matrix elements had been derived in Ref. 12. For the non-s-like states, we neglect the

intervalley scattering terms and approximate the g-dependent dielectric function €(q) by the static dielectric
constant €; therefore the intravalley matrix elements are given by

2043

S (nim | he [ 'lm) =3 [@’—f— B b,,b,,,+% ]_ fi’i’ A4l (202)
where |

B E% [2+ m”l';z ] (20b)
with m, and m; being the transverse and longitudinal masses, respectively,

ag=(sin"'g)/g , (20c)
with

g=(1-£H'"2, (20d)
and

b=(b,+b,)/2 .

A general expression for the matrix elements for the paréllel mutual interaction is derived in Appendix B.
We find that these matrix elements for the L=0 states defined in an ellipsoidal coordinate system are sim-
ply that for the L =0 states defined in a spherical coordinate system multiplied by a factor a, [defined in

Eq. (20c)]. Therefore, we have'’
2

’

UO«nlnz)l,(n;n;)1'):2(—1)’“'[(21+1)(21'+1>]'/2a0§ 0 0 0|5 ba,bayb, b,,) (21a)
where
(4b1b,) +372(4b'b) ) 4372
EiF (b 1ba,b by ) =—— 2 [ expl—(by+b7)r,— (b +b3)r,]

(21420021 +2)!

L
r g '
X _L_i_l_r%+(l+1 )r%+(l+1 )drldrz (21b)
r >
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and

1 I'L
000

is given in Ref. 20. In Eq. (21), we have approxi-
mated the §-dependent dielectric function e(q) by
the macroscopic dielectric constant €,. This is a
good approximation, since the Fourier transform
(in q space) of the product of the electron wave
functions is localized near g =0.2!

The Hamiltonian matrix given in Eq. (19) is di-
agonalized numerically with the lowest eigenvalue
denoted by E(1,7,) for each configuration (7;7,).
The electron-electron coupling terms (Uj; A > 1)
are evaluated on the lowest-lying states for each
configuration (77,) obtained in the zeroth-order
approximation. For simplicity, the non-s-like com-
ponents (/=1 and 2) (about 1%) of these lowest-
lying states are not included in the evaluation of
the electron-electron couplings. In the evaluation
of U, and U; terms for Si, we have used the Bloch
function ¢% v, (K; denotes the position of the ith
minimum of the conduction band) obtained from
Altarelli and Hsu.?? For Ge, we have only includ-
ed the U; term for evaluating the electron-electron
coupling. The sub-Hamiltonians, defined for each
overall symmetry 'Y by

+

Hre_(Tsz,T']T'z)= Eo(ri7)8_ .8

!
T 172

4 r+
+ D UG ¢ (mymp,7iT2) (22)

A=1

are then diagonalized separately to obtam the final
results for the energy values [denoted E" ()]

IV. RESULTS AND DISCUSSION
A. H™ system

To examine the convergence of the expansion for
the ground state, we first compute the ground-state
energy of the H™ system using the present basis
set. We obtain a ground-state energy of 1.0546
Ry, which is in good agreement with the experi-
mental value of 1.0555 Ry.!

B. D~ states in Ge

In Table II, we list the total energies of the
lowest-lying states for the donor (obtained experi-
mentally)?® and each configuration (7,7,) of the

D~ obtained in the zeroth-order approximation
(ZOA) Ey(71,) (upper half), aEd ZOA plus the

electron-electron coupling, E e (7,7,) (lower half)
for Ge:P, Ge:As and Ge:Sb. As defined in Sec.
IIC the ZOA includes only the interaction between
the electrons when they are initially in valleys on
the same axis and scatter into states in the original
valleys. The additional electron-electron coupling
terms are found to be small (~0.3 meV) compared
to the total binding energies. Therefore the first-
order perturbation method used to obtain

(T]Tz) is a good approximation. We find that
the coupling between states of different configura-
tions but the same overall symmetry is negligibly
small (<0.2%) for Ge:P and Ge:As, but is sub-
stantial for Ge:Sb. For Ge:Sb, the mixing of
(I'sT's)T' state in the ground state is about 6%
and the mixing of the (I's's)I'5" in the (I';T5)I
state is about 26%. The theoretical and experi-
mental values for the binding energies are present-
ed in Table III. As shown in Table III, the
theoretical values lie between the two sets of exper-
imental values marked a and b. The set marked a
is obtained at both higher temperature and higher
impurity concentration than the other, and there-
fore includes more contribution from the D~ com-
plexes.® This effect will shift the threshold of the
photoconductivity spectrum up to higher energies.
The set marked b is obtained at 0.38 K, with im-
purity concentration ~5X10'* cm—3, and D~
states under this condition were considered to be
isolated.” However, although not mentioned in
Ref. 7, it is reasonable to assume that the sample is
slightly compensated with 102 cm™3 D+ and 4 ~
charged centers. Although the average separation
(R,,) between a D~ center and an 4~ center is
quite large (about 5000 A), the Coulomb interac-
tion (e?/€yR,,) between them can be appreciable
(about 0.2 meV). Hence, we might expect correc-
tion of this magnitude to the results in Ref. 7.
This phenomenon is capable of explaining the
differences in measured and theoretical values of
the binding energy.

Considering the excited states of D~ listed in
Table II, we find the (I',['5)I'§ and (I T5)T'5
states are barely bound (by about 0.05 and 0.02
meV, respectively) for Ge:P. For Ge:As, no bound
excited states are obtained. For Ge:Sb, the lowest-
lying states of all possible configurations are
bound. This is because the I'; and I's donor states
in Ge:Sb are separated by only 0.3 meV.?> We find
a group of excited states lying in the region of
0.10—0.25 meV above the ground state.
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TABLE II. Total energies of the lowest-lying states for donors and for various configura-
tions (7;7,) of the D~ obtained in the zeroth-order approximation (ZOA), Eo(7r,) and ZOA

+
plus the electron-electron coupling E fe (7,7,) for Ge doped with P, As, and Sb. All energies

are in meV.
Dopant
Configuration P As Sb
Donor | —10.1% —10.0° —10.0*
states
I —12.9* —14.2° —10.3%
Zeroth-order (IsCs) —10.75 —10.63 —10.63
approximation
Ey(m7m3) (IyIs) —12.89 —14.14 —10.78
(r,ry —13.65 —15.01 —10.91
Fmal (IsTs)I'f —10.81 —10.69 —10.67
& (7172) (DsTs)T5 —10.88 —10.76 —10.68
(TsTs)TF —11.02 —10.90 —10.90
(IsTs)s —11.02 —10.90 —10.90
(T L) —12.93 —14.16 —10.99
(ITs)Is —12.96 —14.16 —11.05
(rrrs —13.89 —15.25 —11.15

*Reuszer and Fisher (Ref. 23) [revised by Faulkner (Ref. 24)].

C. D~ state in Si

In Table IV, we list the total energies of the
lowest-lying states for the donor (obtained experi-
mentally)?>?® and each configuration (7,7,) of the
D~ obtained in the zeroth-order approximation
(ZOA) E((17;) (upper half) and ZOA plus the
electron-electron coupling, E l“+(1'11'2) (lower half)
for Si:P, Si:As, Si:Sb, and Si:Li, respectively.
Again, the additional electron-electron coupling
term is found to be small (~0.5 meV) compared to

TABLE III. Binding energies of the D~ states for
Ge doped with P, As, and Sb. All energies are in meV.

Materials Theory Experiment
Ge:P 0.99 1.2°
Ge:As 1.05 1.55,2 0.75°
Ge:Sb 0.85 0.95,* 0.625°

2Gershenzon et al. (Ref. 3).
®Taniguchi and Narita (Ref. 7).

the total binding energies. This justifies the validi-
ty of the ﬁrst-order perturbation method used to

obtain E r (7173). The coupling between states of
different configurations but the same overall sym-
metry is weak (3%) for Si:P, Si:As, and Si:Sb, but
is substantial for Si:Li. The mixing between the
(D3T3)Tf and (D) is about 40%, and simi-
larly between the (I';3)I'T and (I'sI's)T'5 states
for Si:Li. This is due to the fact that the I'; and
I's donor states for Si:Li are nearly degenerate,z‘S
while these states for Si:P, Si:As, and Si:Sb are
separated by about 2—3 meV.? If we included the
g dependence of the dielectric function for the
mutual-interaction term, these binding energies
would be reduced to 2.6, 3.1, 2.5, and 2.1 meV,
respectively. The photoconductivity spectra ob-
tained by Taniguchi and Narita>*1° suggest that
the binding energies for D~ states for Si:P, Si:As,
and Si:Li are 1.7, 2.0, and 1.7 meV, respectively.
Hence, the experimental value for the binding is
substantially smaller than that obtained theoretical-
ly. As in Ge, this difference in binding can be at-
tributed to the existence of residual acceptors.
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TABLE IV. The total energies of the lowest-lying states for donors and for various con-
figurations (77,) of the D~ obtained in the zeroth-order approximation (ZOA) Ey(77;) and

ZOA plus the electron-electron coupling,
energies are in meV.

rt+
E ¢ (y1,) for Si doped with P, As, Sb, and Li. All

Impurity

Configuration As Sb Li
Donor T, —32.6° —31.28 —30.5% —33.0°
states s —33.9° —32.6 —32.9° —33.0°
r, —45.5° —53.7° —42.7° —31.2°
Zeroth-order (I'5Ty) —34.45 —33.04 —32.28 —34.88
Approximation ([sTs) —35.19 —33.82 —33.73 —34.89
Eo(m173) (T'sTs) —35.82 —34.47 —34.76 —34.91
(TyT3) —45.41 —53.60 —42.64 —34.10
(TyTs) —45.42 —53.60 —42.67 —34.12
(rry) —48.03 —56.82 —45.10 —33.12
Final (50T —34.48 —33.08 —32.34 —35.14
r¥ (117) (L5Ty)0F —34.63 —33.08 —32.48 —35.21
iy —34.79 —33.38 —32.62 —35.22
(D3Ts)CH —35.08 —33.71 —33.63 —34.90
(D3Ts5)C —35.50 —34.12 —34.00 —35.20
(D3T5)0F —35.53 —34.15 —34.03 —35.23
T 0%) oy —35.53 —34.16 —34.03 —35.24
(DsTs)TY —35.81 —34.47 —34.78 —34.71
(D)0 —35.85 —34.47 —34.78 —34.88
(DsTs)0H —36.13 —3478 —35.08 —35.22
(DsTs)T5 —36.17 —34.81 —35.11 —35.25
(s —45.41 —53.60 —42.65 —34.11
(T\5)7 —45.42 —53.61 —42.65 —34.42
(DT —45.42 —53.60 —42.68 —34.09
(D)5 —45.44 —53.61 —42.71 —34.44
(T,rri —48.23 —57.00 —45.31 —33.28

2Aggarwal and Ramdas (Ref. 25) [revised by Faulkner (Ref. 24)].
bAggarwal et al. (Ref. 26) [revised by Faulkner (Ref. 24)].

Since the samples used in Refs. 9 and 10 are
prepared with a concentration ~ 1015 cm™3, it is
reasonable to assume the existence of ~10'* cm®
A~ centers. With this assumption, a shift in ener-
gy of approximately 0.6 meV can occur in the pho-
toconductivity spectrum due to the Coulomb repul-
sion between the D~ and the nearby 4 ~ centers.
This shift in energy brings the experimental data
obtained in Ref. 10 in reasonable agreement with
our theoretical results. In Ref. 9, it is also found

that D~ states are bound by about 1.1 meV for
both Si:P and Si:As under a high-stress limit.
Theoretically, it is believed that under a high-stress
limit the D~ system can be well described by a
single-valley model,'" and the binding energy
should be about 1.7 meV.2 This difference in bind-
ing can also be accounted for by the introduction
of residual acceptors.

From Table IV, we see that the present calcula-

tion predicts that all the excited states for the D~
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system in Si:P, Si:As, and Si:Sb are not bound but
that the lowest-lying states associated with all pos-
sible configurations for the D~ system in Si:Li are
bound. The bound states for Si:Li are due to the
fact that the I';, I's, and I"; donor states are
separated by only 1.8 meV, which is overcome by
the binding energy for the D~ states (2.2 meV),
hence, producing many bound states.

V. CONCLUSION

We have developed a theory for the D~ states in
Ge and Si, including the effect of realistic band
structures. By considering the valley-orbit interac-
tion and mass anistropy for each electron interact-
ing with the donor and the mutual interaction
simultaneously, we obtain binding energy for the
D~ states in Ge and Si, which are about twice as
large as those obtained in a spherical model.? This
enhancement in binding energy is in disagreement
with the recent experimental data.”~'© The differ-
ence between theory and experiment is accounted
for by the existence of compensating (4 ~) centers.

3937

We also find that the energy separation between
the excited and ground donor states in Ge:Sb and
Si:Li are smaller than the energy required to bind a
D~ state, and hence, we obtain many bound excit-
ed states. Our study for the electron-electron mu-
tual interaction can be applied to the electronic
spectra of the donor bound exciton (D°X) in Ge
and Si, and provide an understanding for the
electron-electron coupling scheme between the
states belonging to different configurations in the
D°X. This application will be discussed in a future
publication.
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APPENDIX A: MUTUAL INTERACTION BETWEEN TWO ELECTRONS IN D~

In this appendix, we derive the expression for the matrix elements of the mutual interaction between two-

electron product states denoted by

| mn;(rir)Tip,) and |m'n'(1i7)T5H,) -

According to the definition of these states [see Eqgs. (7) and (8)] we can write the matrix elements of the mu-

tual interaction as

(m'n'’y(r)75)T 2, |v(1,2) | mn;(r)Tip, )

= 3 C,, (Wiph TBICqn (appg, TR ' iy | W | mis i)

Bty
Bk
m iy | W | nmpuge D f b f (A1)
s | W L) = 3 B EDEHER(ER 0 | €EDBEDBH(E,) . a2

In Eq. (A2) the indices mn and m’n’ have been dropped for simplicity. Using the Fourier e)_{pansmn in the
recxprocal lattice vector space for the product of the periodic parts of the Bloch functions |k} ) and | Kp)
(or | K,) and | k2>) with coefficients c(k,,kl,Gl) [or ¢ k2,k2,G2)], we can write the kernal for the mutu-
al interaction as

(k k2 IU l_’ ) _’2_, ﬁ(al+il~ﬁi )C(E],l—(’i;al)ct(E;,Ez;az)a(a'i' EI—E;—62+E2—E,2) . (A3)
GG,
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Substituting Eq. (5) and Eq. (A3) into Eq. (A2), we obtain

(i | W | s = 3 a; (uye) (pa)ey (e () WL, j,j7) (A4)
ii'jj’
where
Wi, ), = 3 BHK —Kp)B* (ks —K;)5(Gy+ Ky — K e(K 1, K136y )e* (K5, KGy)
G 132?@1
T,%)
X 8(Gy+K;—Kj — G+ Kp— K3)Bi(K; — KB (K —K;) (A5)

The right-hand side of Eq. (A5) can be sorted into three classes: (1) AE1=AE2=O, (2) AEI =Aﬁﬁéo, and
(3) AkliA kz, where Ak1 = k — k and Akz— k — k _We will discuss the three classes separately.
(1) Akl _Akz_O (mtra-mtra) Only the terms w1th G1—0 and GZ—O have appreciable contributions.
Transforming Eq. (AS5) into real space, we readily obtain

Wi,ij, )= [ d3rid’rB*(FDB;* (F)o(rp)Bi(T)B; () (A6)

which takes on two different values depending on whether the major axes of the ellipsoidal charge distribu-
tions of two particles are parallel to each other.
We define

Uy if K;||k;
W (i,i,j,j)= . . (A7)
U,—U,; if k; not parallel k; .

This case contributes a term to {uiu) | W |uu,) as

Wi (nipa,pips)=U 08, 1 5,12“' + U, G (pipa,pis) (A8)

where

! +2az Ml)a;(ﬂz)az(m)a](ﬂz) (A9)
i|lj

Gl(.ullu“Z’.ullJ'Z)E I‘ll‘ ;l.?}l,

The summation is over terms with K;|| Ej only.
(2) Akl-—AkﬁéO (znter—mter) We must have either (E —E and E' —-l? ) or (E = -—E and E = —l_{ ).
Only the terms with G1-G2 have appreciable contribution, due to the restrlctlon of the 8 functlon in Eq.

(A3). Analogous to the umklapp renormalization factor introduced for the single-particle potential energy
term,'® we define

RG,i%jN =S e (K, K, G)e* (K, K ;8)00(G+ Ky — Kp) /5(K; — Ky (A10)
g

as the renormalization factors for the mutual interaction term. With the restriction AK;=AK,, it is easy to

prove that ¢(K;,k;;G) =c(K;,k;,G), and Eq. (A10) is simplified to

R(,iN=3|e(K;,K;G) | W(G—AK,)/B(AK)) , (A11)
G

where we have dropped the dependence on j and j’. With the use of the renormalization factors R (i,i’) and
transforming Eq. (AS) into real space, we readily obtain

—iAK T,

W (i,i'j,j) =R (i) [ dPridry B (EDB(T e o) B (BB, (Fae (A12)

ink T -
(

Introducing the Fourier transforms for the function B;*(¥1)B;(T))e as I;;(G —AK;) and similarly for
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Bi* (T3) B;j(Ty)e mikyr 2 we can rewrite Eq. (A12) as

3
W(i,i’,j,j'):R(i,i’)f(‘;—ﬂ%ﬁ(q),,(fi —ARI(G—AK)) . (A13)

The function I;;(§—Ak;) I 7/(d—Ak,) is sharply peaked at G=AK;, and 5(q) is a smooth function there.
Therefore, we can write approximately

R 3

Wi V=R ' AR [ e @13y (14
We define

U, for longitudinal scattering scheme

WL,i',j,J")= U, for transverse scattering scheme .
For longitudinal scattering, we must have k = k and k =—K; j» and the restriction Akl—Akz requires
K= —k;. This case contributes a term U,G,(p i, p1i2) to W (@i, pips), with

Gy(piph,pipa) =2, o (py)ay (s )y (e (p1,) (A15)

i

where a_;(u}) is the component associated with ﬁ,-:: — 1_{,-, similarly for a_;(u,). For the transverse

scattering, we obtain a contribution UsG3(piu),nit,) to Wipipms,mip,) with

G (i pin) = 3, oy (p e (ph e (e () (Al6)

where the sum is over all transverse scattering terms satlsfymg the restriction Akl_Ak2
(3) AkﬁéAkz With the change of variables kl——>k1— G1 and k2—>k2+G2, Eq. (A5) can be rewritten
as

- =, =

Wiihii= 3 3 B*Ki—KB*(Ky— KoK —Ke(Ky— Gy, Ki;Gi)e* (Kp, K+ Gy Gy)

X8(K —Kj —K,—K3)B;(K; — G — K )B;(K,—K;+Gy) . (A17)

_, Replacing c(kl—Gl, kl,Gl) and ¢ (kz, k2+G2,G2) by their values at kl—Gl_k,, kl_k, ’y
k2+GZ— kj, and k2 =K j» respectively, and transforming Eq. (A17) into real space, we obtain

wW(i,i' oJsJ "= 2 C(ki,kj';Gl)C*(kj”kj;Gz)
3%,

i(A¥ ;-G -7, —i(A¥,— G T,

X [ d*rid’ryBi* (FIB,(Fye v(r B} (F2)B)(T)e

= 3 (K, KpGpe*(ky, ,,Gz)f —sln(d- —AK, -GG —AK+G)U(@), (Al8)
GG,

where I;;;(q) and I j:j(q) are the Fourier transforms of B (rl)ﬁ,(rl ) and B;*(T,)B;( T3), respectively. Since
I (4 — Ak1+G1) and I j(q Ak2+G2) are sharply peaked at = Gl—Akl and g = Gz—Akz, respectively.
The integral appearing in the right-hand side of Eq. (A18) is negligibly small unless the momentum is ap-
proximately conserved, i.e.,

G,—Ak;=G,—Ak, . (A19)

In Si, Eq. (A19) can be satisfied only for _some very special cases. For example, if Ak,—O and Akz
=(0,0,2)k, then the term with Gl =0 and Gz—(O 0,2)(27ra) leads to appreciable contribution to the integral
in Eq. (A18). However the coefficient ¢*( K J K J,Gz) in these cases happens to be nearly zero (less than
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10~%), which renders the net contribution to W (i,i’,j,j’') negligible.

In Ge, the restriction Ak1 —Ak2 and Eq. (A19) can be satisfied simultaneously only if k,, k, K j» and kj
are at four different minima. Combining Eq. (A18) and Eq. (A19), and replacing 5(q) by its value at
q=G;—Ak/, we obtain :

W11 = 3 (Ko psGle® () s~ Ko — R [ L5ttty @) =v

Gl
This class contributes a term U,G (i), iitty) to {uiph | W |y, ) with
Gylpiphpip)= 3 ai(pi)a)(py)e;(p)e;(u,) . (A20)
i FjE)
Collecting all the contributions to {uju) | W |uii,) from various terms, we obtain

(i | W | papa) =Uopd  + 2 UrGalpipa,mips) - (A21)

() u;,u

Substituting this equation into (A1), we obtain the final expression with the indices mn and m’'n’ written ex-
plicitly

(m'n";(\75) T, |v(1,2) | (1) T ;mn )

y 4
—fnn ;,1 *|Ug(m'n ,mn)S 81-27'2+2 U,(m'n mn)G;L (775, 7172) -, (A22)

=Jmn
A=1

where the ellipsis represents an exchange term and where

Gl (rr,mnm)= % C st (W12 D) Corr sty CA i ats2), A=1,2,3,4. (A23)
Hik
Bybey
The exchange term is obtained from the dlrect term by exchanging the roles of the two electrons. The non-
vanishing submatrices for the matrices G! 2 are listed in Table V for Si and Table VI for Ge, respectively.

APPENDIX B: MATRIX ELEMENTS FOR THE PARALLEL MUTUAL INTERACTION

In this appendix, we derive the general expression of the matrix elements for the parallel mutual interac-
tion U, between two-electron product states denoted by |/,/;;L0) and |I1/5;L'0). We first introduce the
notation w(l,l,;LM) for a general two-electron product state, viz.,

(l IZ,LM 2 C(l lzL mlmZM)Yllml(Q'l)YIzm (Qz)Rzl(ﬁ)R[z(rz) (B1)

mym,

where C(I,1,L ;m;m,M) is the Clebsch-Gordon coefficient,?’ coupling the product of two spherical harmon-
ics |I;,m,) and |I,,m,) with the state |L,M ). Ry (ry) and R (r;) are the radial parts for the two-
electron states. If ¥;=T|=T, we obtain a useful relatlon 20

w(l,lz;LM)=f(11IZ,L)YLM(Q)Rzl(r)RIZ(r) , (B2)

where ”
2L+ D21 +1)
= C(141,L;000) . (B3)

Sf(L1,L) 4rOL 1 D) (L1, )
Then the matrix elements concerned here can be written as

(l,lz;L0|v(1,2)[l}li;L’O):fw(lllz;LO) E 2 | o(l11l5;L0)d3rd%r, , (B4)

r—r

where the arguments for the two-electron product wave functions w(/,/,;L0) and w(l113;L0) are T’} and
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TABLE VI. The electron-electron coupling matrices for Ge; the notation is the same as used in Table II.
Ty - Ty Ty
G, (1) (55 G, (11) (55) G.' | ay (55)
any | -3 Vi (11) 7 —5V3/4 an | 3 —Vain
(55) -+ (55) L 0
G* | 6% G | 69 G, | 59
55 [ —1 (55) 1 65 |
G+ | 59 Gt | 3 G, | 3
55 | —1 (55) —1 (55) 0
T Ty Ty
G, (15 (51) (55) G, (15) (51) (55) G, (15) (51) (55)
(15 | —3 < v/4 18 | —4 = —v2/4 (19 | —5 - 1/vV2
(51) 2 Z i -+ —V2/4  (51) - V2
(55) -1 59 12 (59 -3

T,', which are defined in an ellipsoidal coordinate system with an eccentricity factor £ It will be more con-
venient to express the product wave functions w(/,/,;L0) w(l115;L0) in Eq. (B4) as linear combinations of
product wave functions of the form w(l,17;LM)w(l,15;L,M,) in which the two-electron states having the
same coordinate are combined together. We use the relation?®

o(ll;L0)(lily;L'0)= S D(,LIILL,L,L,F)
L\L,F

X 3 o(l{l;LiMa(lyly;L,M,)C (L L, F; M M,0) ,

where MMy (B5)
I, I, L

D(1,1,1115LL";L\L,F)=C(LL'F;000)[(2] +1)2L' +1)(2L,+1)2L,+ D]*2{1y 15 L’ (B6)
L, L, F

The last factor appearing in Eq. (B6) is the standard 9-j symbol.? Substituting Eq. (B5) into Eq. (B4), we
find that these matrix elements can be expressed as linear combinations of the integrals

=] w(lll',;LlMl)—I:—szuzz; LMy dr . (B7)
T

1— I

Equation (B7) can be readily carried out in momentum space (q space). Using Eq. (B2), we can express the
Fourier transform of w(/,/';LM) in q space as

S LM)=¢y1(q) Yy (Qy) , (B8)

with

¢1pL(q’)E4'rr(i)Lle(r’)Rp(r’)jL(q’r')r’zdr'f(ll',L) ) (B9)
where the coordinates q ' are defined in an ellipsoidal system q '=(gy,qy,5q;) and j is the spherical Bessel
function. Carrying out Eq. (B7) in d space, we find that

I= [ a1 L, M) ST a1, ,My) - — (L L 1L [
q

Sq YLlMl('Q)YLzMz(‘Q)
(27)?

E[14(£72—1)cos?0]

daQ, (B10)
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with

’ ’ ’ ! d !
ELILLIL)= [[6) 0 (@8], (@)

Substituting Eqgs. (B5) and (B10) into Eq. (B4), we find the final expression

where we have used the relation [see Egs. (B1) and (B2)]

2 C(LlLZF;MlMZO)YLIMI(Q)YLzMZ(Q)zf(L1L2’F)YF0(Q)

MM,
and defined the coefficients
Yro(Q) d§)

(B11)
’ITZ
(LIuLO0|v(1,2) | 1315;L'0) =Var S, D (11l 15LL L LyF)f (LyLy, )WL ;1,151 ,)ap(E)
FL|L,
(B12)
(B13)

aF(g)Ef§[1+(§—2—1)cos2e] Var

Using Eq. (B12), we can estimate the ratio for the square of the coupling of the states |//;L0) and |1I;00)

with the state |00;00). We obtain
2
(II;L0|v(1,2)]00;00) |

C(IIL,000)

a (&) [P

(11;00|v(1,2) ] 00;00)

Explicitly, we find

2
(11;20]v(1,2) | 00;00)

(11;00|v(1,2) | 00;00)

R

0.0408 for Si
0.1198 for Ge,

(22;20v(1,2)|00;00)
(22;00|v(1,2)|00;00)

R

> [0.0291 for Si
0.0855 for Ge,

C(110;000)[ (2L +1)]'7? ao(&)

f

and

(22;40| v(1,2) | 00;00)
(22;00 | v(1,2) | 00;00)

2
- 0.0032 for Si
0.0278 for Ge,

From Eq. (B12), we also find that
(12;20|v(1,2)]00;20) o« C(122;000)=0 .
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