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Theory of donor-bound multiexciton complexes in germanium and silicon
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The energetics of exciton complexes bound to donors in silicon and germanium are in-

vestigated using the density-functional method. Two sets of calculations are reported.
First, with the use of a simplified model for the semiconductor band structure, energies
and densities are calculated for complexes of size M up to about 250 electron-hole pairs.
From this, surface and curvature energies and the energy of binding of the complex to
the donor are extracted. Second, the energies of the ground and low-lying excited states
for small (M (6) complexes are calculated, with band-structure effects being taken into
account. The results are in good agreement with experimental recombination spectra.
Assumptions used in the calculation are critically examined and unanswered theoretical
questions discussed.

I. INTRODUCTION

With the discovery of large electron-hole
droplets and bound excitons, much interest has
developed in the problem of aggregates of inter-
mediate size, such as bound multiexciton com-
plexes (BMEC's) and small droplets. A number of
experiments have resulted in detailed line spectra
for silicon' and germanium doped with a
variety of elements. These lines have been attribut-
ed to the recombination of electrons and holes in
BMEC's attrached to donor or acceptor atoms.

Kirczenow has proposed a shell model for
BMEC's to account for the experimental spectra.
In this model, each electron or hole goes into a dis-
tinct single-particle orbital, and therefore the elec-
tron and the hole which recombine to produce a
spectral line can each be assigned to a definite or-
bital. The electrons and holes do not form exciton-
like pairs inside a BMEC. Instead, the shell model
treats a BMEC constructed from a neutral donor
and M excitons as a system consisting of a central
positive charge, M holes, and M +1 electrons, each
in independent orbitals.

In this paper we report two methods for calcu-
lating the energies of BMEC's; one for large corn-
plexes and another, more detailed and accurate, for
srn. all complexes. Both methods employ the den-
sity-functional theory described in Sec. II and
Refs. 9 and 10.

The method we use for large complexes enables

us to calculate the energies of BMEC's of size
M & 200, and compare the results with calculations
and experiments with electron-hole droplets. We
compare a variety of properties, such as surface en-

ergy, bulk density, and others in Sec. III.
For this simple method, we use an effective-

mass approximation to describe the band structure
of the host semiconductor, using density-of-states
masses for the electrons, the light holes, and the
heavy holes, which we treat as three kinds of parti-
cles. We have previously published" the energies
of BMEC's in germanium for size M & 10, and
Rose, Sander, and ourselves' ' have discussed the
properties of large unbound complexes in germam-
um. %unsche et ~I.'4 have also calculated BMEC
energies for small complexes using the density-
functional method, approximating the band struc-
ture with a single optical hole mass and the optical
electron mass. In this paper we will present the re-
sult of calculations of energies of large BMEC's in
both silicon and germanium, compare them with
Rose et al. 's calculations of the energies of com-
plexes not attached to a donor or acceptor, and
compare their properties to those of electron-hole
droplets.

Our calculations of the energies of small com-
plexes include details of the semiconductor band
structure which have not been included in previous
density-functional calculations. In addition, we are
able to distinguish between donor elements by
means of a central-cell potential. Chang and
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McGill' have done a configuration-interaction
Hartree-Fock calculation that includes band-
structure effects, but their calculated ground-state
energy for a complex of size M is less negative
than the energy of a complex of size M —1 and a
fr]x: exciton; therefore such a complex would not
form. The failure of the Hartree-Pock theory to
predict binding indicates that correlation energy

plays a critical role in the binding of BMEC's. In
our density-functional approach, the correlation en-

ergy is of about the same magnitude as a uniform
electron-hole gas of equivalent density. The results
of our calculations, contained in Sec. V, indicate
that BMEC's of all sizes (except for complexes at-
tached to arsenic in silicon) are bound. In addi-

tion, the spectra we predict, in the case of all

donors in germanium and of phosphorus in silicon,
agree well with the actual measured spectra.

The structure of the paper is as follows. In Sec.
II we describe density-functional theory as it ap-
plies to BMEC's. Section III presents our calcula-
tions of the energies of large complexes by means

of a simple effective-mass theory. Section IV de-

scribes in detail the inclusion of the band-structure
effects which are needed for more accurate calcula-
tions. Section V gives the energies of small
BMEC's as calculated by the method of Sec. IV,
and the resulting pr]xiicted positions of recombina-

tion lines, which it compares with the experimental
spectra. Section VI briefly describes several varia-

tions of the density-functional method and dis-

cusses the results of calculations of BMEC energies

by these methods. Section VII concludes with a
general discussion of the results, addressing in par-
ticular the question of the simultaneous validity of
the shell model and of a density-functional theory
incorporating a large exchange-correlation energy.

single-particle equations which can be solved for
single-particle wave functions. Let the total energy
be:

T is the kinetic energy of the noninteracting elec-
tron gas of density p(r).

E,„,=fd'rV, „,(r)p(r)

is the external potential energy and

Ec,„]——fd r fd r '
,p(r )—

2

X p(r ')

fd'r5p(r) V,„,(r)+ + Vc,„,(r)
5p(r )

+ p„,(r) —A,; =0, (2)

where

Vc,„](r)=fd'r '

[r —r'i
(2')

is the electrostatic energy of the system. If p(r )

varies slowly one can also use a locally varying
functional e[p(r)] to approximate the exchange-
correlation energy, which may include changes in

the kinetic energy due to interactions:

E„,=f d'r p(r)e[p(r)] .

Since the ground-state energy is a minimum
with respect to all variations of the density that
keep the total number of particles fixed, we obtain:

II. THEORY p„,(r)= [p(r)E„,[p(r)]] .
5p(r )

(2")

The density-functional method allows one to
solve a many-body problem by solving Schro-
dinger-type equations for single-particle-like "wave
functions" in a self-consistent effective potential.
We first review this method as applied to a single

type of particle.
Hohenberg and Kahn showed that for the

ground state of a many-body system, the many-

body wave function g, the external potential

V,„,(r ) and the total energy E are functionals of
the total density p(r); that is, a given p(r) unique-

ly determines P, V,„,(r ), and E.
Kohn and Sham' used this theory to derive

By solving this equaiton, one obtains single-
particle-like wave functions g;(r ), and the total
density

p(")= X I
A(r) I'. (4)

Equations (2)—(4) form a set of self-consistent

The functional derivative of the kinetic energy T
produces a Schrodinger-type equation with kinetic
energy term —V' /2m, eigenvalues A,;, and effective
potential V(r):

V(r) = V,„,(r)+ Vc,„](r)+]L]„(r).
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equations for V(r) and p(r) which one can solve

by iteration.
In a BMEC, the total energy E is a functional of

both the total electron density p, ( r) and the total
hole density Ph(r). By taking derivatives of the
energy with respect to both densities, we obtain
two separate Schrodinger-type equations, one for
electrons and one for holes, each with its own ef-
fective potential. One is then able to use single-

electron (donor) theory to solve the electron equa-
tion and single-hole (acceptor) theory to solve the
hole equation. The effective potentials have the
following form:

V, (r)= —V,„,(r) —Vc,„i(r)+p„„(r),
Vh(r)= V,„,(r)+Vc,g(r)+p„,h(r) .

We deal with the external potential in Sec. IV.
Since it is due to electrostatic interaction between
the donor atom and the particles, it has opposite
signs for electrons and holes. The Coulomb poten-
tial has the form:

ph(r ') —p, (r ')
Vc,„j(r)=e Jd r'

We use a simple parametrized local exchange-
correlation energy of the form:

&-[P(r)]=~.P +~hPh +& P +&hph

(6)

A, is the coefficient of the exchange energy of a
gas of conduction-band electrons and Ah is the
coefficient of the exchange energy of a gas of
holes. We obtain values of A, and A~ for both sili-
con and germanium from Ref. 16. To obtain our
expression for the correlation energy (the terms B,
and Bh) we used Rose and Shore's' calculation of
the correlation energy of a uniform electron-hole
gas. Reference 17 expresses the correlation energy
as

We are able to successfully use a correlation en-

ergy of the form of Eq. (6) because the electron
and hole densities in BMEC's behave in one of two
ways, to both of which Eq. (6) applies, over almost
all of the volume occupied by a BMEC:

(1) Near the donor atom, the donor's positive
charge repels holes and attracts electrons, leaving
the electron density far greater than the hole densi-

ty. Only electron-electron correlation is then signi-
ficant, and the B,p,

' term adequately describes
the correlation energy while the B~p~ term van-
ishes.

(2) In most of the BMEC's volume, the electron
and hole densities are almost equal, and one may
arbitrarily distribute the energy between electron
and hole terms.

Our form of the correlation energy has the ad-
vantage of generating a chemical potential with no
negative powers of p, or Ph, which is fairly stable
under iteration, but includes no explicit correlation
between electrons and holes.

If we combine Eqs. (2") and (6) we obtain the
chemical potentials:

p„„(r)= —,A, [p, (r)]'~ + —,8,[p, (r)]'~

P.ch(r )=,~h [Ph(r )1'"+ , &h [Ph(—r)]'" .

Thus, we are able to include the exchange-correla-
tion energy in an effective potential for single-
particle-like wave functions. The existence of two
separate equations, one for electrons and one for
holes, allow us to exploit techniques which were
developed to include details of band structure in
calculations of the energies of donor and acceptor
states in the calculations of BMEC electron and
hole orbitals.

III. PROPERTIES OF LARGE COMPLEXES

e(ph, p, )=ei(p)+e2(p)(ph —p, ), (6')

where P=(p, +ph)/2. The p dependence of ei and

e2 are such that for almost any value of p, one can
approximate e as the sum of terms in p,

' and

p~ . In the case of silicon, we combine Kalia and
Vashishta's' calculation of the correlation energy
of a gas where P, =Ph and Rose's'9 calculation of
the correlation energy for the case p~ ——0. This
also produces an overall correlation energy of the
form indicated by Eq. (6), with specific values for
B, and B~, valid for densities p, &p~.

We have calculated energies of complexes up to
M =280 for silicon and M =282 for germanium by
using the density-functional method and simple
effective-mass theory. The only feature of band
structure we include at this point is the fact that
the conduction band of silicon has six equivalent
minima and that of germanium has four. Thus,
the s, p, and d electron orbitals have degeneracies
of 8, 24, and 40, respectively, for germanium; and
12, 36, and 60 for silicon. We use the density-of-
states masses of Ref. 16 for all particles, treating
light and heavy holes as distinguishable, and use a
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TABLE I. Heavy- and light-hole occupation for large complexes.

(fPlIt /fPlI )

Si
Ge

40
8

5.5
34.25

6.24
29.56

simple external potential V,„,(r )= I/er, where 6 is
the static dielectric constant.

The results for energy and density show several
distinct trends as M increases. The orbitals are
filled in approximately the same order as they
would be in a three-dimensional haImonic oscilla-
tor, but the degeneracy of harmonic-oscillator lev-

els is broken, with higher angular-momentum orbi-
tals tending to be occupied first. Thus, silicon at
M =260 has the configuration: for light holes,

ls' —2p' —2s'3d" —3p'4f ",
heavy holes,

s 2 —2 6—2s 23d 10—3 64f 14—5g183s 24d 10

61 22gf144p6 71.266g185d104s2 g 307h22

clcctrons,

ls 12 2 36 2s 123d 60 4f843p 36 5g21

and germanium at M =282 has the configuration:
for light holes,

1$ —2p

heavy holes,

ls' —2p' —2s'3d" —3p'4f" —5g "3s'4d"

6h 225f 144p 6 71 266g 185d 104s 2

g '307/ 22{9k 34)5p66f 14

the heavy- and light-hole masses. The configura-
tions above give numbers of both light and hcavy
holes; we compare their ratios with the large-
droplet ratio in Table I. There is good agreement
even for the relatively small complexes considered
here. A further comparison between properties of
very large droplets and moderately large BMEC's
can be obtained by noting that for the electron-hole
liquid, it is possible to obtain the energy per pair
E=T+e„,as a function of the density p. The
kinetic energy is

T= , A (kp, /2—m, + kgb/2m'),

where k~, and k~I, are, respectively, the Fermi mo-
menta of electrons and heavy holes. If we express
tllc k Rs fullctloils of tllc dcllslty p, wc call tllcllf
obtain the bulk density and energy by minimizing
the total energy E=T+e„,with respect to the

17 —3density p. Thus, pbu1k=2. 39X 10 cm
E=—6.38 meV for germanium; and

pb„11,——3.37X10' cm, E=—22.01 meV for sili-
con.

Figure 1 shows p8(r) for M =50, 100, and 200.
If we define the average density of a BMEC of size
M by the relation (4'/3)r p =M, where p(r )
= —,pb„1k, we obtain values for p~ as follows:

5.0

ls' —2 " 2s83d~ 4f"3p-"—
gg724d¹03~8 6I 3

%'e list orbitals in order of increasing energy and
separate different harmonic-oscillator levels with
dashes. In only one case do harmonic-oscillator
lcvcls overlap: Ill gcffllRlllllI11 thc 9k orbital (llldl-

cated in parentheses), which belongs to the ninth
harmonic-oscillator level, fills before the 5p and 6f
orbitals, which belong to thc eighth lcvcl.

In a large electron-hole droplet or in an
electron-hole liquid, the ratio of heavy to light
holes is Xs/X~ =(ms/mI ) ~, where ms and ml are

pauLK

00
I .0 2.0 5.0 4 0

Radius ( E xc isa n a.u. )

FIG. 1. Hole densities p~ as a function of radius for
BMEC of sizes M =50, 100, and 200 in germanium.
The unit of length is 177 A..
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p50 ——1.38pbuu ~ p&00
——1.20pbum, and phoo

——1 15pbun.
We are also able to obtain surface energies and

energies of attachment of droplets to donors which

agree with previously calculated bulk values. We
suppose that the total energy of a complex E(M)
can be fit approximately by an expansion in powers
of m'"

E(M) =EM+BM +CM' +D . (7)

Here E is the bulk energy per pair obtained above,
while B, C, and D are related, respectively, to the
surface energy, curvature energy, and energy of at-
tachment of the complex to the bare donor. If one
assumes a value for D and defines

F(M) =[E(M) EM D—]/M—'~, (8)

l2

IO-

then a plot of F(M) vs M'~ should be approxi-
mately a straight line with slope B and intercept C.
The deviation from a straight line represents the
effmts of filling of electron and hole shells on the
energy.

Figure 2 shows F vs M'~ for BMEC in ger-
manium, using D= —16.4 meV. The effects of
shell filling are clearly evident. Also shown is a
straight-line fit, using values of 8 and C obtained

by a weighted least-squares method. The value of
D used in Fig. 2 is chosen to minimize the vari-
ance in the straight-line fit to F. The best fit is
obtained for B=1.34 meV, C=1.31 meV.

If we define a droplet radius r (M) from

M=(4m/3)r pb„ii, ,

we can obtain a surface area S =4mr and a unit

of "curvature, " I =8m.r. This enables us to rewrite

Eq. (7) as:

E=EM+ AS+ A,l+D, (9)

50

and interpret o as surface tension and A, as curva-
ture energy. For bound complexes in germanium
we obtain o =1.72X10 ergs/cm, A, =52. 1

eV/cm. A calculation very similar to the present
one has also been performed for unbound com-
plexes'; i.e., there is no fixed central charge and
the number of electrons and holes are equal. The
energy E(M) can again be approximated by Eq.
(9); in this case we obtain o =1.72X 10
ergs/cm~, A, =52.5 eV/cm, D =0. Since the values
of cr and A, do not depend on the existence of the
donor, we conclude that the o and k obtained in
this way are in fact characteristic of large drops.
Similarly the difference in D with and without the
donor corresponds to the binding energy of a large
droplet to the central charge.

We can compare our results to other calculations
of these quantities. To our knowledge there are no
other reported calculations of A, . Sander et al.
calculated —16 meV for the energy of attachment
of a large droplet to a donor, in good agreement
with our result for D. There are several extant es-
timates of o, including theoretical values of
1.98X10 ergs/cm by Rose and Shore, '

3.7&10 ergs/cm by Kalia and Vashishta, ' and
experimental values of -1X10 ergs/cm (Ref.
21) and 1.6X10 ergs/cm .

In Fig. 3, we repeat the procedure described
above for BMEC in silicon. The ininimum vari-
ance is obtained for D =—54.5 meV, 8=9.86
meV, C=6.12 meV. This corresponds to calculat-
ed values of 0 =43.7X 10 ergs/cm~, A, =588
eV/cm. This compares with a theoretical value of

40—

30—

E
~ 20

'o
lwrl

I/5

FIG. 2. Least-squares fit of surface and curvature
energy of BMEC in germanium. The function F(M) is
described in the text and represented by the dots in the
figure. The slope and intercept of the linear fit deter-
mine the surface and curvature energy, respectively.

l0

00

FIG. 3. Least-squares fit of surface and curvature
energy of BMEC in silicon. The data are calculated
values of F(M).
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a =87.5X 10 ergs/cm (Ref. 17) and an experi-
mental value of 0 =(125+60)&(10 ergs/cm .
Thus, by using a simple effective-mass theory, we

are able to calculate the energies of complexes of
size M & 200, and these complexes are in turn large
enough to closely approximate the energy per
electron-hole pair, the density, the ratio of light to
heavy holes, the surface tension, and the energy of
attachment to a donor of large electron-hole

droplets.

IV. THEORY INCORPORATING
REALISTIC BAND STRUCTURE

In the previous section we were able to calculate
trends in the energy and density for fairly large
complexes. The specific details concerning the
filling of individual shells were not produced
correctly, since we did not incorporate properly

any details of the band structure other than the de-

generacy of the electron and hole bands. In order
to determine ground- and excited-state energies
which are sufficiently accurate to enable comparis-

on with detailed spectroscopic data for small

(M & 6) complexes, we make use of methods origi-

nally designed for calculating donor and acceptor
energies, which we describe in detail in this

section. We have already reported the results of
calculations which include band-structure ef-
fect~s 9 but used methods for the conduction band

which differ in detail from those described below.

Observed energies of BMEC depend on the
specific donor element. We incorporate this depen-

dence by introducting an impurity potential which

includes an empirical "central-cell" correction:

N

g (r)= ga;P(K;, r) f (r) . (12)

The a; are constants that depend on the represen-

tation index I . We have assumed that f"(r ) has

mostly small k components, that f"(r ) is the same

in all valleys, and that the periodic part of P(k, r)
is the same as the periodic part of P(K;, r ) for k

near K;.
We seek to derive an equation which we can

solve for f"(r ), and begin with a representation of
in k space, expanding k as k=6+K;+ rI.

Then

specific overall cubic group symmetry, while states
with different cubic symmetries will have different
energies. For example, the donor ground state has
cubic symmetry I i and an amplitude of V 1/N for
each valley.

Our method for deriving a radial differential

equation for the conduction-band wave function is
based on, though not identical with, the modified
effective-mass theory of Resca and Resta. It is

based on a modification to the method of Ref. 24
suggested by Resca, Resta, and Shore. We de-

scribe our version of this method below.

One can represent the pseudo-Bloch wave of an

electron at the ith minimum by:

$(K;,r)=e ' ga,. oe'
6

where the G are reciprocal-lattice vectors. It is
then possible to construct an approximate single-

electron wave function with group symmetry I
with the following form:

2

V,„,(r)=—(1+Voe ') .
EI'

(10)

We adjust the central-cell parameters, ro (range),
and Vo (strength} to reproduce the experimental

values of the donor ground state and lowest excited
state.

A. Conduction band

the various vectors G+ K;+f, constructed from

the reciprocal-lattice vectors 6, the N pocket vec-

tors K;, and f, will cover k space precisely if rj is

allowed to range over a region covering exactly
1/S of the Brillouin zone. Then, and only then

will

The conduction bands of silicon and germanium

have X equivalent minima, called valleys or pock-
ets, which, if there were no coupling between elec-

trons in different valleys, would allow 2N degen-

erate ls states (N =4 for germanium and N =6 for
silicon}. In fact, coupling between electrons in dif-

ferent valleys splits the 2N degeneracy of the 1s

states. A state of a given energy will be a linear

combination of single-valley states possessing a

5( k —k') =5- -,5 15(f r) ') . —

The k-space Hamiltonian of a conduction-band

electron in a local external potential is as follows:

A =e(k)5(k —k')+ V(k —k') . (14)

We take the expectation value with respect to
g"(k) and g"(k'} and subtract the energy, obtain-

ing
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N
d rlfd rI' $ a; aj $ a,'Gu. G, IF (f)[e(f+k;)—E]5J.5G &,5(rl —f)F"(q')

g,j—I 6 Q

+V(rl rl'+G+K, G'—K—)F" {il)F (r)') J =0. (15)

If one expands the spherical average of e(K;+ rl) around K; one obtains

e(K, + rl }=@(K;)+(R/2m')i)

Substituting this expression for the energy in Eq. (15) and integrating, we obtain an-equatio n for F (il ):

2 N" F(p/)+ y a,". 'a,". y u,'-gJ-, f V(rj rl'+6—+K; O' K—;)F—(g)d'g=EF(il) (16)
r'j=1 Q, Q

In r space this cquatlon bccoIDcs

$2
, V f~{r)+V (r)f(r)=Ef(r),

p 1

y V(f+H)e' " ' ' .

& f(r)+ V"(r)f(r)=Ef(r ),2m~
(18)

V"(r)= a "H d3rl
all space (a2+ F12}&

X,V(rl+H)e'"'' .
(2m. )

The factor a"/(a +rl ) is a cutoff factor which
limits the integration over g to the region g & o..
The constant a is chosen so that

fd qa /(a +rl ) =Z/N,

where Z is the volume of the Brillouin zone. This
condition is satisfied if

r r~rQg=a aJQ Gu ~ G

In practice we replace the I/E zone integral by a
weighted integral over all q space and spherically
average in r space, to obtain the radial equation:

2 4m
CK

a E

where a is the lattice constant.
It is useful to give a qualitative description of

the meaning of the potential V"(r). First the ori-
ginal potential V(r) is multiplied by the appropri-
ate symIDetry coIDb1nat1on of pseudo-Bloch states.
The product contains high k components, arising
from the short-range central-cell part of V(r) and
from the high 6 components of the Bloch waves.
There are also low k components resulting from
mixing of the high k terms in the product. The
effect of cutting off the integral over rl is to "filter
out" the high k terms and leave a V"(r) that is re-
latively slowly varying. Since V~{r) has no high k
components, the solution of Eq. (18) will result in
an f(r) whose Fourier transform is likewise re-
stricted to the vicinity of a single-valley minimum.
As a consequence, the wave function P"(r) con-
tains components from only the lowest conduction
band, as was assumed in writing Eq. (13). For a
strong central-cell potential, the restriction of P" to
a single band will incorrectly inhibit the collapse of
the wave function and the formation of deep
states. However, if the restriction were not
present, the overlap of k components of the f(r)
from different pockets could lead to an artificially
enhanced binding energy, and the prcdiction of
deep states for weak central-cell potentials. For
the present problem, where we are concerned only
with shallow states, the restriction is technically
correct but not in fact important. The results re-
ported in this paper, with the restriction on the g
integration included, are essentially identical with
our earlier work, where the original method of
Resta and Resca " was used; the primary difference
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between the two sets of calculations is that dif-
ferent central-cell parameters must be used in order
to fit the donor levels.

In practice, the treatment of the potential
described above is not applied to the complete
self-consistent potential, but only to the impurity
potential V,„,(r), since this is the only part of the
potential that varies rapidly. Thus, we "process"
the impurity potential from Eq. (10) to produce an
effective external potential V"(r). The radial equa-

tion then has the form

V f(r)+U (r)f(r)=Ef(r),
2m*

where

(19)

The valence bands of germanium and silicon are
divided into light, heavy, and split-off bands by in-

teraction between the spin (s = —, ) of the holes and

the orbital angular momentum (L =1) of the
valence band. This produces a spin- —band and a

1
2

split-off spin- —, band. Away from the center of
the Brillouin zone, the asymmetry of the Bloch
states splits the spin- —, band into light- and heavy-

hole bands. A nonperiodic potential couples the

light and heavy bands, and it is necessary to in-

clude this effect to obtain reasonably accurate wave

functions and energies for holes in BMEC's.
We use a spherically symmetric approximation,

introduced by Baldereschi Gnd Lipari for the
kinetic-energy term of the acceptor Hamiltonian,
to calculate single-particle hole wave functions.

The significant factors which this approximation
ignores are: (1) the anisotropy of the light- and

heavy-hole bands, and (2) coupling with the split-

off band. Silicon has a gap of only 44 meV be-

tween the spin- —, and split-off bands and is also

highly anisotropic, while germanium has a more
spherical valence band and a gap of 290 meV be-

tween the spin- —, and split-off bands; so that one

expects the spherical approximation to produce

Since V"(r), and hence U"(r), depend on I, we

have a different effective potential for each cubic
symmetry. This allows us to reproduce the split-

ting of donor levels by adjusting the central-cell
parameters ro and Vo. We can then easily solve

Eq. (19) using standard numerical methods.
We obtain a ground state with I I symmetry,

and an excited state with I 5 symmetry. All these

states have 1s radial orbitals.

B. Valence band

more accurate accepter energies in germanium than
in silicon. Indeed, Ref. 26 reports acceptor
ground-state energies of —31.6 meV for silicon
and —9.8 meV for germanium, compared with ex-

perimental values of —68.9 meV for aluminum in

silicon and —10.8 meV for gallium in germani-

um. "
Since the holes in a donor-bound BMEC are re-

pelled from the central donor atom, and bound pri-
marily by correlation energy, their binding energies

are small compared to the binding energy of holes

attached to acceptors, being on the order of only a
few meV. Thus coupling to the split-off band will

be weak even in silicon, and the spherical approxi-
mation should be more accurate for holes in
BMEC's than it is for acceptors.

The spherical Hamiltonian treates a hole in the
spin- —, band as a simple J= —, particle whose spin

couples with the angular momentum of the accep-
tor (or BMEC hole) orbitals. It has the following
form

[(1+5@,/4) V' —p, ( J V')']+ V(r),
2m 0

(20)

~w(r) ~L+2,F,F, ) . (21)

3
For example, the ground state has I' = —,, L =0,

3
and its I', =+—, component has the form

where mo is the free-electron mass. We choose y
and p to reproduce the light- and heavy-hole
masses. This requires a y and p such that mo/
mi ——y(l+p) and mo/ms = y(1 —p), where mi
and m~ are the density-of-states effective masses of
light and heavy holes, respectively. This choice of
y and p differs somewhat from that of Ref. 26, in
that it does not correspond to a strict separation of
the spherical and cubic terms in the acceptor Ham-
iltonian; however, by fitting our spherically sym-

metric hole bands to density-of-states masses, we

ensure that the properties of large complexes, i.e.,
electron-hole droplets, will be reproduced correctly.

The Hamiltonian of Eq. (20) has the following

properties. First, F=
~

I.+ J
~

and Fz are good
quantum numbers. Second, it couples orbitals of
angular mometum L with those of angular
momentum L +2, but not to any other orbitals.
This enables one to construct a wave function

f(r, 8,$,J, ) from radial functions u (r) and tc(r) as
follows:

rg(r, 8,$,J, )=u(r) ~L,F,F, )
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rg(r, 8,$,J,)=u(r)[I'pp(8, $}~
J,= —,)]

+w(r)[v'I/5Y'ip(8, $)
~
Jg ———,) —v'2/5I'2+i(8, $)

~
Jg ———,)+&2/5&g, +2(8,$)

~
Jg ————, )] .

For a given I'" and L one solves a radial 2 X2 matrix equation for u (r) and w (r):

&z u (r) u (r) u (r)

w (r) w (r) w (r)0 +Vr (23a)

where the matrix 0 is

di L(L+1)
I+gP

r t

d 2L+3 d. L(L+2)
L

6
p( 1 g2) i/2

8I'

2L+3 d (L+1)(L+3)+
r dr r

d
(1—gp)

GP

(L +2)(L +3)
r2

(23b)

Here, g=L/(2L+3), when F=L+-, , and

g =—(L+3)/(2L+3), when I' =L+—,. In addi-

tion, there are two one-component states with
1F= , . One sta—te has L = 1 and the other L =2.

They are solutions of the radial equation

iri y(1 )
d L(L+1) I( )
dr r

+V(r)rf(r)=Erf(r) .

We solve Eq. (23a) for u (r) and w(r} numerical-

ly by using a modification of a method developed

by Mendelson and James for finding the ground

and lower excited states of acceptors. One begins

by finding series solutions to Eq. (23a). The equa-

tion has two series solutions. On has the form:

rk+I. +3

k=0

b rk+L+3
k=0

form as the series of a wave function of angular

momentum L multiplied by r If on. e substitutes

the series [u2(r), w2(r)] into Eq. (23a), one obtains

two equations for the three unknowns ci, d2, and

a. One equation determines a, and the other re-

lates c2 and dp. Thus, cg is undetermined and we

can assign it an arbitrary value, which in our cal-

culations is c2 ——0. Changing e2 is equivalent to
replacing [uq(r), wx(r)] by [uq(r), wx(r)]+P[ui(r),
wi(r)].

We extend [ui(r), wi(r)] and [u2(r), w2(r)] out

to large distances by integrating Eq. (23a) via the

Runge-Kutta method. If E is not an eigenvalue

then all linear combinations of [u i(r), w i(r)] and

[u2(r), wi(r}] will diverge, while at an energy

which is an eigenvalue of Eq. (23a}, some linear

combination of [ui(r), wi(r)] and [u2(r), w2(r)]
will converge to zero as r —+ 00. At large radius,
solutions of Eq. (23a) would have one of two

forms:

u, = g c„r'+'+'+au, (r)lnr,
k=0

(24b)

Each series resembles the expansion of a single-

component wave function of angular momentum

I. +2, multiplied by r. The second series has the
form: u+(r)

w+(r)

(25a)

V1+g xr i —2m-pE
e +, E+ ——

&I—g vari y(1+@)

(25b)

w2(r)= g dkrk+ +'+awi(r)lnr .
k=1

The polynomial terms of these series have the same

Extending [ui(r), wi(r)] will produce [u (r),
w (r)] states at the proper energies. Since the
[ui(r), wi(r)] are L+2-hke series's, which are cou-
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System ro (~)

TABLE II. Values of the parameters rp and Vp in
the impurity potential Eq. (10).

Vp

state. On the other hand, the [u+(r), w+(r)]
states, produced by extending [u2(r), w2(r)]
+P[u|(r},w|(r)], are more bound than the
corresponding states of angular momentum L.
Thus, the

i
L =O,F= —, ),

~
L = 1,F= —, ), and

P,Bi:Ge
As:Ge
P:Si
As:Si
Sb:Si

2.0
1.8
0.9
0.7
0.9

12.5
15.4
35.4
55.4
33,0

pled to L states by Eq. (23a), on would expect their
energies to be greater than that of the uncoupled
(i.e., @=0)L+2 state. Thus, the most bound

[u (r),w (r}]state is less bound than an uncou-

pled L =2 state. Similarly, the one-component
1

wave functions (F= , ) are —lessbound by a factor
of 1/(1+p, } than the corresponding states for
@=0. Thus, the lowest energy of a one-component
state is greater than that of an uncoupled L = 1

~L =1,F=—, )[u+(r),w~(r)]

states are all more bound than an uncoupled L =1
state, which, in turn, is more bound than any one-

component or [u (r), w (r)] state. The conclu-
sion is that one can use holes from [u+(r), w+(r)]
orbitals exclusively to construct BMEC's of size up
to M =14. Since we calculate energies only up to
the M =6 ground state, we use only [u+(r), w+ (r)]
hole orbitals.

In sum, we use a spherically symmetric Hamil-.
tonian to obtain two-component radial wave func-
tions by solving Eq. (23a). All our wave functions
have the form indicated by Eq. (25b}. The ground

TABLE III. Theoretical energies E~ for BMEC in silicon, for M & 6, for several electron and hole configurations.

The energy E~ is taken relative to the energy of a bare donor, M free holes, and M +1 free electrons.

Electron
configuration

r,

Hole
configuration

r+ r;
—E„(meV)

donor element
Sb As

0
0
0

45.31
33.61
31.37

42.58
32.77
30.83

53.30
32.47
29.97

65.13
58.31
57.30
63.40

61.76
56.02
55.12
60.02

72.66
61.34

73.05

81.45
75.23
80.70

78.01
73.05

83.94
73.36

100.61
95.16

97.75
93.11

101.65
90.85

122.07
117.16
118.53
113.69

119.68
115.35
115.81
112.05

120.17
107.25
118.48
107.23

1

1

2
2

142.15
137.96
138.51
134.31

139.69
136.06
136.06
132.04

137.38
129.08
135.98
126.87

163.64 116.15 157.59
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3
state has L =0, I' = —, (cubic symmetry I s+) and

the lower excited state has L = 1, F= , (c—ubic

symmetry I s ).

V. ENERGIES OF SMALL COMPLEXES

When we calculate the energies of BMEC's by
the density-functional method and include the
band-structure corrections described in Sec. IV, we

are able to predict positions of recombination lines

which are close to the experimental positions.
We have obtained ground-state energies for com-

plexes up to size M =6, and also lowest electron-
and hole-excited states for many of the smaller
complexes. The elements covered were phos-
phorus, arsenic, and antimony in silicon; and phos-
phorus, arsenic, and bismuth in germanium. We
chose ro and Vo, the central-cell parameters, to

reproduce the experimental energies of the I'& ls
and I 2ls donor states ' and obtained the values

listed in Table II. Since the central-cell parameters
of phosphorus and bismuth in germanium are
identical, the BMEC energies will also be the same
for both elements. The experimental donor level of
antimony in germanium could not be reproduced

by our external potential.
The radius ro and strength Vo of our central-cell

correction have the same order of magnitude as
that obtained by Vinsome and Richardson from
a study of the q-dependent dielectric function.

We have listed energies of complexes of size up
to M =6 in Table III for silicon and Table IV for
germanium. It is possible to obtain several series
of lines from the tables. The most prominent
series is the a series, which has been measured up
to n6 in silicon' and a2 in germanium. An a~
line results from the recombination of a I

~
elec-

TABLE IV. Theoretical energies E for BMEC in germanium, for M (6.

Electron
configuration

Hole
configuration

P,Bi

—E~ (meV)
donor element

As

12.74
9.74

14.00
9.79

0
1

. 0
1

18.44
16.82
17.97
16.48

19.98
17.78
19.53
17.50

23.14
21.77
22.55
21.27

24.53
22.60
23.92
22.12

28.67
27.47
28.03
26.87

29.96
28.16
29.26
27.60

34.90
33.78
34.20
33.07

36.05
34.39
35.30
33.73

40.93
39.91
40.19
39.22

41.99
40.45
41.20
39.79

47.40 48.35
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tron and a I' s+ hole from the ground state of a
complex. The final state has an electron excited if
M & 1 and an electron and a hole excited if M & 4.
The Psr series, which has been found up to P5' in

silicon, and not at all in germanium, results from
the recombination of a I s electron and a I s+ hole

from the ground state of a BMEC of size M+1.
It is a ground-to-ground transition if M (4. There
are also a' and P' series's, which have been report-

ed in silicon. They differ from the corresponding
a and P series in that the electron combines with a
I's hole instead of a I's+ hole. The P' series is the
ground-to-ground transition if M & 3. In addition,
the following transitions in germanium have been

reported:

5: M =1 (I.,r5, I s') donor(11),

yl: M= 1 (I',I s, I's+)—+donor(I'5),

c: M =1 (2I'i, I s )~donor(I'1),

ail 5. M =1 (2I'1, I' s+ )—+donor(1 5),

vrhere the 0,&l 5 line, in addition to the recombina-

tion of a I', electron and a I s+ hole, requires the

promotion of a I 1 electron to the I, level, and is

therefore forbidden in the shell model.

The calculated energies E~ in Tables III and IV
are with respect to the energy of a bare donor,
M + 1 free electrons, and M free holm Th. e total

energy of a BMEC of size M is E„,(M) =M XEs,~
+E~, where the gap energy Eg,p

is the energy

needed to create an electron-hole pair and has the
value of 1169.30 meV for silicon and 744.64 meV

for germanium. The observed photon energy due
to recombination of an electron-hole pair is then:

E„=E„,(M) E„—,(M —1)

Egap +EM EM —j.

For example, for phosphorus in silicon, and al
line, which corresponds to the transition

M =1 (2rl, I s+) donor(11),

should appear at the position:

E(al)=Es, +E + Er-
= 1169.30 meV

+(—65.13 meV) —( —45. 13 meV)

=1149.48 meV .

This is close to the experimental position of
a& ——1150.01 meV. Table V gives the predicted po-
sitions of recombination lines for different donor

elements in silicon, with the measured positions in

parentheses, while Table VI does the same for ger-

manium. All the predicted positions of BMEC
recombination lines in germanium were within 1

meV of their measured values, and the predicted
positions of lines 111 t11c cK series fol phosphorus ill

silicon were also with 1 meV of the measured posi-

tion.
Our predicted positions of P-series lines (which

have been measured experimentally only in silicon)

are consistently too near the gap energy, deviating

TABLE V. Theoretical and experimental positions (in meV) of recombination lines for several donor species in sili-

con. Experimental values are in parentheses; the superscripts refer to the table of references.

Donor: As

C|
Cg

a4
C4i

C6
C5i

C6'

1149.48 (1150.01)
1146.16 (1146A7)
1143.92 (1143.71)
1142.39 (1141.72)
1140.84 (1140.46)
1139.97 (1139.31)'
1144.31 (1142.43}'
1143.62 (»41.27)
»52.98 (1150.6)
1150.14 (1147.90)'
1147.84 (1145.60)
1145.68 (1144.07)'
1144.17 (1143.27)'
1149.22
1147.77 (1144.79)'

1150.12
1147.31
1144.60
1142.73
1141.66
»40.19
»44.96
1144.21
1153.05
1149.56
1147.37
1145.42
1144.21
1149.29
1147.86

(1150.1)'
(1146.7)'
(1144.0)~

(»42.0)'
(1140.50)'

(»47.4)'
(»45.1)

1149.94 (1149.2)5

1146.70 (1145.7)5

1140.99 (1142.5)
1139.98 (1140.0)'
1139.15 (1138.8)5

»38.58 (1137.5}5

»39.17
1140.79
»58.02 (1151.4)
1151.58 (1146.3}
1150.78 (1144.6)
1150.40 (1142.9)
»47.69
1152.09
1149.09



THEORY OF DONOR-BOU'ND MULTIEXCITON COMPLEXES IN. . . 3909

TABLE VI. Theoretical and experimental positions (in meVj of recombination ines for several donor species in ger-
manium. Some experimental lines are split into four components. Energies marked by an asterisk a&ere not actually
observed, but are deduced from other experimental line positions.

Donor:

Theor.
Expt. '
Theor.
Expt. '

Theor.
Expt. '

Theor.
Expt. '

Theor.
. Expt.

Th ear.
Expt. '

738.94
739.21
738.32
738.18
738.34*
738.48~
738.64
737.61
737.85
737.71
737.56
737.41
740.56
740.66
74D.54*
740.40
740.24
739.41
740.03
735,99
736.41

738.94
739.25
738.32

737.61

740.56
740.70
740.55~

740 41
740.25
739.41
740.03
735.99

738.66
739.07
737.89
737.92
738.12*
738.33
738.46
736.63
736.70
736.5D*

736.31
736.19
740.86
740.93
740.73*
740.54*
740.42
739.21
739.97
734.45
734.86

from the experimental values by at least 2 meV,
and, in the case of arsenic in silicon, by over 6
meV. This is the result of our calculation's overes-

timation of the electron excitation energy. For a
complex of size M, this energy (h~) would be
equal to P~ —a~+ t. Thus,

b t ——Pt —a2 ——[E~p+E(21't, l"s,I's+ )—E(21 t, I's+)] —[Es +E(2I t I 5 I s ) —E(I tl 5 I s )]

=E(I'tl'q, I s+)—E(2I t, I' s+ ) .

~M =Egrountt(M 1 )+Eexciton

Ettround(M) i (27)

we obtain the energy gained when a free exciton
combines with a complex of size M —1 to produce
a complex of size M. The energy of a free exciton
relative to a free electron and a free hole is —4.18

In the most extreme case, that of arsenic in silicon,
the calculated value of 5& is 11.32 meV, while the
experimental value is only 5.4 meV. One conse-
quence of overestimating the electron excitation en-

ergy is to underestimate the binding energies of
larger complexes, since for M y 1 ground states in-
clude electrons in I 5 orbitals.

If we define an exciton binding energy

meV for germanium and —14.71 meV for silicon.
In order for the formation of a complex of size M
to be likely at a temperature T, 8'~ must be posi-
tive and considerably greater than kr'.

We list predicted values of 8'~ in Table VII,
with values obtained from experimental data in
parentheses. Agreement is excellent for impurities
in Ge and satisfactory for Si, with the notable ex-
ception of As:Si. For this system, the extremely
large calculated value for the electron excitation
energy of a BMEC attached to arsenic in silicon
actually generates a large negative value of Wq.
If W2 really had this value, there would be no
BMEC's of size greater than M =1 attached to ar-
senic, and of all the P series and a series, only at
would be observed. In fact lines as high in the
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series as a6 have been seen.
In germanium, on the other hand, the experi-

mental evidence indicates that complexes of size
M & 1 are rare. The experimental and theoretical
values of 8'2 are all less than or equal to 0.75
meV, which corresponds to a temperature of 9 K,
while the spectra were obtained at a temperature of
5 K, ' which was high enough to dissociate most
BMEC's of size M =2. An experimental u2 line
was observed, but it was weaker than all the other
lines including the forbidden a~I 5 line.

A feature of the experimental spectra which our
theory does not attempt to reproduce is the four-
fold splitting of the yi, 5, and az lines in germani-

um, which is due to a fourfold splitting of the
M =1 electron excited state (I'iI'5, I s+). This is,
in turn, probably a term splitting caused by inter-
action between the I 5 electron and I 8+ hole:
I 5X I 8

—+2I 8+I 6+I 7. The term splitting in sil-

icon seems to be too small to detect. Our predict-
ed positions for the a2, yi, and 5 lines for phos-

phorus in germanium all lie within the range
' covered by the fourfold experimental lines.

Our theory predicts the position of recombina-
tion lines in germanium, as well as a-series lines in
silicon, with great success. The theory's chief de-

fect is that it overestimates electron excitation en-

ergies, consequently underestimating binding ener-

gies of complexes and leading to relatively less ac-
curate positions of the P lines. The larger the
donor excitation energy, the worse the error. The
theory accurately predicts that BMEC's of size
M & 1 in germanium will be rare at all but ex-

tremely low temperatures.

VI. ALTERNATE METHODS
OF CALCULATING BMEC ENERGIES

The results reported in the previous section are
more or less sensitive to the approximations

described in Sec. IV. In order to display the
dependence en these approximations, and to exam-
ine their significance, we have tested several other
methods of combining band-structure effects with
density-functional theory to calculate the energies
of BMEC's. The two main variations of the
density-functional method which we consider are
self-interaction corrections, used in calculations 0
through F below, and the spin-density-functional
method, which calculations 0 and H employ. We
describe calculations A through H in order below,
as well as giving reasons for their use.

First, we describe calculations which test the
sensitivity of our method of treating the conduc-
tion-band valley-orbit splitting (Sec. IV A) to the
cutoff factor a defined in Eq. (18). In these calcu-
lations, we use the ordinary non-spin-dependent
density-functional method, but allow the conduc-
tion-band k-space position vector rl (defined so
that k=6+K;+g, with 6 being a reciprocal-
lattice vector and K; the ith equivalent minimum
of the conduction band) to range over different
volumes of k space.

Method A is the basic method of this paper, as
described in Sec. IV. If the conduction band has N
equivalent minima, the vector r) ranges over 1/N
of the volume of a Brillouin zone.

Method 8 allows g to range over 2/X the
volume of a zone. We do this to approximate the
two-band theory of Pantelides, based on the ob-
servation that the valleys in the conduction band of
silicon are near the edge of the Brillouin zone.
Thus the energies and momenta of particles in the
adjoining part of the next-higher band are closer to
the valley minimum than are the energies and mo-
menta of particles in the conduction band near the
center of the zone. It is therefore important to in-

clude both bands in calculations of donor states.
Method C allows g to range over all k space,

TABLE VII. Theoretical and experimental exciton capture energies 8'~ for BMEC of size M, for several donor

species. The experimental values are given in parentheses with the source indicated by a superscript. Experimental

values are obtained by subtracting the free-exciton position (11S4.59 meV for silicon and 740.46 meV for germanium)

from a~ for M =1, PM ~ for 2&M &4, and P~ ~ for M &4.

P,Bi:Ge As:Ge
8'M (meV)

P:Si Sb:Si As:Si

1

2
3
4
5

6

1.52(1.25)
0.52(0.75)
1.35
2.05
1.8S
2.29

1.80(1.39)
0.37(0.62)
1.25
1.91
1.76
2.18

5.11(4.58) '

1.61(4.0)
4.45(6.69) '

6.75(8.99)'
5.37
6.78(9.8)2

4.47(4.5)
1.54
5.03(7.2)
7.20(9.5)
5.30
6.75

4.65(5.4)"
—3.43(3.2)
3.00(8.3)"
3.71(10.0)
2.50
5.50
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which is equivalent to including an infinite number
of bands in the calculation. This was the method
used in Refs. 28 and 29. Method C yields BMEC
energies which are close to those produced by
method A, although the depth Vo of the central-
cell correction is much smaller. This implies that,
when using ordinary density-functional theory, if
one produces similar donor energies by different
methods, one will also obtain similar BMEC ener-
gies. As one might expect, the results of method B
consistently fall between the results of methods A
and C.

Zunger et ul. have used a self-interaction-
corrected (SIC) density-functional method to cal-
culate energies of atomic states with great accura-
cy. The SIC method reduces errors in energies of
atomic states calculated by the ordinary density-
functional method. The overestimate of the ele:-
tron excitation energy which methods A through C
produce declines as the complexes increase in size,
so that it may be reasonable to assign the error to
the inclusion of interactions of particles with them-
selves. The SIC method tested here differs some-
what from that of Ref. 37, since we are applying
the correction to a non-spin-dependent energy
functional. Thus, method D is identical to method
A, except that all of the self-interaction contribu-
tions to the energy are subtracted out.

Method E omits the electron exchange energy
term of the exchange-correlation energy. Since the
electrons in a small BMEC are all in ls orbitals in
different spin states or different valleys, the actual
exchange energy should be negligible. Thus, the
use of an exchange term derived from a uniform
electron-hole liquid is suspect. The calculation of
method E is performed in order to test whether the
exchange term is in fact needed to obtain satisfac-
tory agreement with experiment.

Method F is an SIC calculation as in method D,
but g is allowed to range over all k space, as in
method C.

The second main variation of the density-func-
tional method is the spin-density-functional
method, which treats the total energy as a func-
tional of spin-up electron density p, „spin-down
electron density p „and hole density pI, . A spin-

dependent energy functional will result in different
energies for I,,I'5, and I",,I,, electron configura-

tions. For this calculation, only the exchange part
of E„, is spin dependent; i.e., the p,

' term of Eq.
(6) is split into separate spin-up and spin-down
parts. One goal of this calculation, method G, is
to determine, as in method E, whether the electron

ll58—

II56-

—II54-

II52-

P II50-

ll48-

H

O, F'
capt.

8
e

FREE EXelTotl

e}(pt.

FIG. 4. Positions of recombination lines a~, a2, and

P, predicted by calculations described in Sec. VI. Also
included is the predicted position of a~ obtained by the
Hartree-Pock method {Ref. I5). The positions are given
in meV.

exchange term of Eq. (6}corresponds to a genuine
exchange interaction.

Method H employs an SIC spin-density-func-
tional calculation and is the method which esti-
mates atomic energies most accurately.

We have used all of these methods to calculate
the energies of BMEC's of size M &2 attached to
phosphorus in silicon. Figure 4 gives the resulting
positions of the a&, a2, and p& lines for each of
these methods, as well as the ai position predicted
by the Hartree-Fock method. ' Method 6 pro-

uces two a2 h.nes because the 1»I 5r an

states have different energies.
The best ftt to experimental data is produced by

method A, the primary method of this paper. The
inclusion of "extra bands" (methods B and C)
changes the predicted positions of recombination
lines only slightly, with the calculated p~ line mov-
ing toward the experimental value and the a lines
moving away.

Self-interaction correction actually increases the
overestimation of the electron excitation energy.
Both methods D and F do not sigmficantly im-
prove agreement between the experimental and
theoretical position of a lines, and predict a posi-
tion for pi corresponding to a binding 8'2 of less
than 1 meV.

If we leave out the electron exchange term
(method E), the M = 1 complex is barely bound
(8"i——0.18 meV} and the M =2 complex is strong-
ly unbound ( W2 ——2.90 meV). This indicates
that the electron exchange term of Eq. (6) is need-
ed to produce bound complexes.

The spin-density-functional method (methods G
and H) predicts recombination line positions which
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differ from their experimental values by amounts
exceeding the experimental electron excitation ener-

gy. This result is a consequence of the strong spin
dependence of the electron exchange energy in this
calculation.

Thus, of the methods described in this section,
method A, the single-band density-functional
theory of Sec. IV, gives the best agreement with

experiment. The implications to be drawn from
this result will be discussed in the next section.

VII. MSCUSSION

From the preceding section, we find that of the
methods tested the best agreement between theory
and experiment is obtained using a simple non-

spin-dependent density-functional method without
self-interaction correction, with an exchange-
correlation energy obtained from the uniform
electron-hole liquid. Further, unlike the situation
for ordinary atoms, the inclusion of exchange-

correlation energy is essential to obtain binding at
all.

There are two fundamental questions raised by
the success of method A of Sec. VI. The first con-
cerns the successful use of a spin-independent E„,.
For a multivalley semiconductor with X valleys,

the actual electron exchange energy should be
negligible for any BMEC containing 2% or fewer
electrons in the ground state, since there is no ex-

change between electrons of different spin and very

little between electrons in different valleys.

Nevertheless, it is necessary to include ihe electron
exchange term derived from the uniform electron

gas in the energy functional in order to obtain

bound states. Furthermore, when, in employing
spin-density-functional theory (methods 0 and H
in Fig. 4), we treat the exchange term as if it
represented the exchange interaction between elec-

trons in separate single-part1cle orbitals, we obtain

inaccurate estimates of BMEC energies. The
density-functional theory of Secs. II and IV treats
the exchange terms in Eq. (6) in precisely the same

manner as the correlation terms.
Our interpretation of these results is that the lo-

cal energy functional of Eq. (6) remains reasonably

valid for systems with a small number of particles
only if we abandon the separate identification of
the p'~3 and p'~ terms with exchange and correla-

tion energy, respectively. Further, in this case of a
multivalley semiconductor, an attempt to construct
a spin-dependent extension of Eq. (6) does not pro-

duce a useful local energy functional for small sys-
tems. A possible cause of this behavior of e„, is as
follows. With less than one electron of given spin
direction in a given valley, there is no electron ex-

change and hence no exchange hole keeping elec-
trons of like spin apart. Under these conditions,
the magnitude of correlation energy will increase
due to an enhanced correlation hole. Hence, the
sum of exchange plus correlation may be much less
sensitive to the number of particles than each com-

ponent, as least for the range of densities con-
sidered here. Since e„, would then be essentially all
correlation energy, we would expect the spin
dependence to be very weak.

The second point that requires comment con-
cerns the fact that, unlike the case for atoms,
correlation energy is a major component of the to-
tal energy in these systems.

This situation brings the validity of the shell

model, with its single-particle orbitals, into ques-
tion. If the electrons and holes truly existed in in-

dependent single-particle orbitals (i.e., if a single

Slater determinant was a good approximation to
the wave function), then the Hartree-Fock method,
as used in Ref. 15, should give a reasonably good
estimate of the ground-state energy of a bound ex-

citon (M =1). However, the Hartree-Fock
ground-state energy of —57 meV for a bound exci-
ton attached to phosphorus in silicon is about 7
meV higher than the experimentally derived

ground-state energy, and about 8 meV higher than
our estimate of the energy. Furthermore, the
Hartree-Pock estimate of the bound-exciton
ground-state energy is 3 meV higher than the com-
bined energy of a donor and a free exciton (—60
meV), which implies that without correlation ener-

gy, excitons would not attach themselves to donors
and no BMEC's of any size would form. Thus,
the actual wave function must contain strong
correlations between the positions of the particles,
so that the "single-particle" orbitals of the shell

model cannot be interpreted literally.
This problem is quite distinct from the problems

of a multivalley semiconductor. To investigate this

question, we look at the model system "positron-
ium-hydride, " consisting of a fixed positive charge,
two electrons, and one positron. In most studies of
this model the ratio of the electron and positIon
mass, O.=m, /mj„ is regarded as an input parame-

ter to an energy calculation. Stebe and Munschy3~

have performed variational calculations on a
parameterized many-body wave function of this
system and obtained the energy as a function of 0.



25 THEORY OF DONOR-BOUND MULTIEXCITON COMPLEXES IN. . . 3913

-0.04 1 I ( I I I t

-0.06—

-0.08—

ED

-O. IO-O

-O, I 2—

-O.I4
O. l

) I I I I I II
0.2 0.5 I,O 2.0 5.0

FIG. 5. Binding energy 8'=E —Ed,„„—E,„„„„ofa
single exciton to a donor as a function of the ratio of
electron and hole masses o =m, /mq, (1 Ry= m,—e /A

LDA represents a local density-functional calculation
(Ref. 40), SIC a self-interaction-corrected calculation,
and SM a calculation employing a completely pa-
rametrized three-body wave function (Ref. 39).

Wunsche and Henneberger have done a density-
functional calculation, including exchange and

correlation terms, which agrees we11 with the re-

sults of Ref. 39. We have reproduced the calcula-
tions of Ref. 40 and have also performed self-
interaction-corrected and Hartree-Fock calculations
for this tnodel problem. In Fig. 5 we display the
binding energy W =E„» Eq,„„E—„, as a —func-

tion of tr in units of the donor Rydbergs (1Ry
=m, e /2' ) for the three methods. Hartree-Fock
energies are unbound and off scale in Fig. 5; typi-
cal values are 8'=+0.25 Ry for 0 =0.5,

%=+0.17 for o = 1.0, W =+0.10 Ry for
o.=2.0. Again the density-functional method
without self-interaction correction produces a re-

markably good approximation to the "exact" re-

sults of Ref. 39.
We are left with the problem of interpreting the

single-particle orbitals produced by the density-
functional method. We can suppose that, as in any
density-functional calculation, the wave functions
are simply an intermediate construct used to obtain
the kinetic energy and the density, to which no
special significance should be attached. This point
of view can be maintained if we are concerned only
with the shell-model energies. Yet the shell-model
selection rules predict all the major series' of
recombination lines, with the minor exception of
the weak "forbidden" atl s line in germanium.
The single-particle character of the selection rules

implies that the wave functions have significance
beyond simply being artifacts of the density-
functional method. There is thus a need for a phy-
sical explanation for the success of the single-

particle shell model in a system in which correla-
tion energy plays a major role, perhaps an explana-
tion involving a quasiparticle interpretation of the
single-particle-like wave functions of density-
functional theory.
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