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We present a Monte Carlo study of the tricritical spinodal decomposition of a two-dimensional
model obeying Kawasaki dynamics which describes both an Ising metamagnet as well as a sim-
ple model of chemisorption. Quenches to three different points in the unstable domain are stud-
ied. In all cases the structure functions for both the nonconserved order parameter and con-
served secondary order parameter exhibit dynamical instabilities as manifest by peaks which in-
crease with increasing time. Each structure function satisfies a simple scaling behavior with
respect to characteristic lengths whose time dependence can be approximated by simple power-
law behavior in certain domains of time. In addition we find that the tricritical spinodal decom-
position exhibits an unusual asymmetry with respect to the quench value of the conserved vari-
able (the magnetization) as compared to the case of simple binary alloys. Namely, the peak in
the magnetic structure factor (at fixed time) increases with increasing magnetization as one
moves from one side of the unstable region toward the other side of the coexistence curve.
Eventually, however, as one continues to increase the magnetization this peak value ceases to
increase, but rather decreases dramatically in a very narrow transition region. This sharp transi-
tion would seem to be a fundamental dynamical distinction between tricritical and critical insta-
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bilities.

I. INTRODUCTION

A system which is suddenly cooled from a high-
temperature, spatially homogeneous, one-phase state
to a thermodynamically unstable state below: its coex-
istence curve will begin to phase separate by a pro-
cess known as spinodal decomposition. Its final
equilibrium state will consist of macroscopic domains
of coexisting phases. During this process of phase
separation the initial homogeneous state dynamically
evolves through highly inhomogeneous states which
are far from equilibrium. If the time necessary to
reach equilibrium is sufficiently long, this interesting,
nonlinear dynamical process can be experimentally
investigated. The class of systems which has been
most commonly studied consists of binary alloys'?
such as Al-Zn. Extensive Monte Carlo (MC) stud-
ies*™ of kinetic Ising models for such alloys also ex-
ist. A wide range of other systems have also been in-
vestigated, including glasses,® polymers,®~'? and
binary fluids.!>™'7 Quite recently studies of spinodal
decomposition have also been initiated for systems
quenched below tricritical points. In particular,
Hohenberg and Nelson!® have presented a Cahn-
Hilliard-like linear stability analysis for the initial
stages of tricritical phase separation in *He-*He mix-
tures. This binary phase decomposition has subse-
quently been studied experimentally by Hoffer,

Campbell, and Bartlett!? and Benda, Alpern, and
Leiderer.?’ In addition, Sahni and Gunton?! have
presented a Monte Carlo study of spinodal decompo-
sition for a model of a two-dimensional Ising
metamagnet satisfying Kawasaki dynamics in which
both nearest and next-nearest neighbor pairs of spins
are allowed to exchange. Since this metamagnet is
also known to be a lattice gas model of atoms ad-
sorbed on substrates, this Monte Caro work can
equally well be thought of as a study of the phase
separation of ordered regions of ¢ (2 x 2) islands in a
sea of vacancies, in which adatoms are allowed to dif-
fuse to empty nearest or next-nearest neighbor sites.
This Monte Carlo work confirmed the prediction of
Hohenberg and Nelson that both the nonconserved
order parameter (the sublattice magnetization M, for
the metamagnet) as well as the conserved secondary
order parameter (the magnetization M) exhibit
dynamic instabilities. The Monte Carlo analysis, in
particular, showed that the corresponding circularly
averaged structure factors for M, and M exhibit
peaks as a function of wave number which increase
with increasing time. In addition, these two structure
functions were shown to exhibit a notable scaling
behavior for sufficiently late times, quite similar to
that found in.Monte Carlo studies of binary alloys” 2
and order-disorder transitions,?**2* as well as in ex-
perimental studies of spinodal decomposition in

389 ©1982 The American Physical Society



390 SAHNI, GUNTON, KATZ, AND TIMPE 25

binary fluids!® and alloys.>25 Specifically, the scaling
of a given structure function S (k,#) means that
S(k,t) =KF(k/K(t)) where K~(¢) is some
characteristic time dependent length, k is the wave

number, and d is the dimensionality. This homogene-

ous property of the structure function is perhaps the
most significant new feature to have been observed
in recent studies of spinodal decomposition. No de-
tailed, first principle theory for such scaling yet ex-
ists, although predictions of scaling behavior have
been obtained in a variety of recent theoretical inves-
tigations. 26?7

In this paper we extend our Monte Carlo study of
the tricritical spinodal decomposition and growth
mechanisms for the same system as studied in Ref.
21. Namely, we consider an Ising model of a two-
dimensional metamagnet whose spins are at the ver-
tices of a square lattice. In addition to a magnetic
field energy, the Hamiltonian contains nearest-
neighbor antiferromagnetic and competing next-
nearest-neighbor ferromagnetic interactions. By a
standard transformation discussed in Sec. II, this
Hamiltonian can also be considered to be a lattice gas
model of adatoms on a substrate. In particular, this
Hamiltonian has been used as a simple model of the
chemisorption systems (Ref. 28) H/W(001) and
0/Cu(001).?” However, recent theoretical work’® in-
dicates that the effects of a substrate distortion must
also be taken into account to obtain a correct descrip-
tion of H/W(001). Thus our dynamical study can
only be taken as a simple approximation for such
chemisorption systems. A model study of the
dynamics of phase separation in O/W (110) will be re-
ported later.’! In this paper our discussion will be
given in terms of the metamagnet. In this case the
two phase coexistence consists of a paramagnet phase
with a nonzero magnetization (resulting from the ap-
plied field) with a vanishing sublattice magnetization
in equilibrium with an ordered antiferromagnetic
phase, as can be seen from Fig. 1(a). After a quench
from a high-temperature ‘‘disordered’’ paramagnetic
phase, the metamagnet then spinodally decomposes
into antiferromagnetic droplets (islands) in a
paramagnetic sea. Two types of antiferromagnetic
droplets can be defined, differing from each other
only by a simple translation of one lattice constant.
If one chooses to interpret the Hamiltonian as a
model of adatoms on a substrate, the two phase
coexistence consists of an ordered c (2 x 2) struc-
ture?®2° adatoms in equilibrium with a fluidlike phase
dominated by vacancies as shown in Fig. 1(b). After
a quench from a high-temperature ‘‘disordered’’ fluid
phase, this chemisorption system would then phase
separate into ordered islands of ¢ (2 x 2) structure in
a sea of vacancies. In both the metamagnet and the
chemisorption model, we consider the conventional
Kawasaki dynamics in which only nearest-neighbor
exchange is allowed. In the metamagnet this corre-
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FIG. 1. Schematic phase diagrams for (a) metamagnet
(b) lattice-gas model.

sponds to exchange of nearest-neighbor spins and in
the chemisorption system to an adatom hopping to a
vacant nearest-neighbor site. We will call this nearest-
neighbor exchange system model I. This dynamics
differs from the original Monte Carlo study?' for a
system with the same Hamiltonian in that in the pre-
vious work next-nearest-neighbor exchange was also
allowed. We will call this second system model II.
The differences in the phase separation process for
these two different models are discussed in Sec. IV.
As shown in Fig. 1, we have studied quenches to
three particular unstable states Py, P,, and P;. These
states correspond to a low-temperature value of
T =0.66T, and a magnetization per spin of M =0.37,
0.5, and 0.7, respectively. In the original work?! we
only considered the quench to P,. It should also be
noted that the exact phase diagram for this Hamil-
tonian is not known. The most accurate determina-
tion of the tricritical point appears to be a recent
Monte Carlo real-space renormalization-group an-
alysis®? which suggests that the tricritical point is
given by T,=1.21J/k, M, =0.37, where J is the
nearest-neighbor exchange constant. This is some-
what different from an earlier standard Monte Carlo®’
estimate of T, =1.30J/k, M, =0.45. The estimates
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for the coexistence curve given in this Monte Carlo
study are still thought to be accurate, however. It
should also be noted that we have no first principle
knowledge that P, P,, and P; are all unstable states,
rather than metastable states. Indeed studies of sim-
ple binary alloys indicate that the distinction between
unstable and metastable states is in any event not
sharp.

The main results of our present investigation are
the following. We find the same type of dynamical
instabilities in the nonconserved order parameter and
conserved secondary order parameter as in the case
of model II in which next-nearest-neighbor ex-
changes are also allowed. Namely, for the three
points P;, P,, and P; the order-parameter structure
function SM'M,(k,t) exhibits a peak in the vicinity of

k =0 which increase with increasing time. Similarly
the structure function Sy (k,t) for the conserved
variable exhibits a peak at a nonzero value of &,
km(0), with k, (1) decreasing and Sy (kn(1),t) in-
creasing with increasing time. Both structure func-
tions exhibit a simple scaling form for P, P,, and P;
for a large region of time which excludes an initial
‘‘transient’’ behavior. However, our results for scal-
ing at P, are less convincing than for P, and P; due
in part to a kind of ‘‘metastability’’ which develops
there. Our results for the nonconserved variable are
particularly senstive to this metastability for small
values of k, as we discuss in the text. The time-
dependent scaling length for Sy/(k,t) is taken to be
its first moment. The scaling length for SM’M,(k,t),

which is an even function of k, is taken to be the
square root of its second moment. The respective
scaling functions F and G for Syu,(k,?) and
SMJM’(k,t) also depend on some extent on the vari-

able M, i.e., they are different for the different P’s
studied. This dependence of a scaling function on a
conserved variable has also been observed in exten-
sive Monte Carlo studies’ of a three-dimensional Is-
ing model of a binary alloy. We should emphasize
the fact that we cannot claim to prove that the struc-
ture functions scale. Rather we can simply say that
to a first approximation our data are consistent with a
scaling form. This qualification is presumably also
true of previous studies of binary alloys and binary
fluids. It should also be noted that there is some evi-
dence of a weak deviation from scaling in our work,
in that the ratio of various moments seem to exhibit
a rather small dependence on time. If scaling were
strictly correct, such ratios should be time indepen-
dent.

Another interesting result is the existence of an
asymmetry in this tricritical phase separation which is
absent for binary alloys. Namely, the structure func-
tion Spar(k,t) exhibits a peak which at a fixed time
increases with increasing M in the domain of instabil-
ity which we have studied, rather than exhibiting a

symmetry about a critical value of M which represent
the maximally unstable point. The latter is the situ-
ation for a symmetric binary alloy where M
represents the concentration of one of the species of
atoms. This tricritical asymmetry is in agreement
with what one might expect from the mean-field
linear stability analysis of Hohenberg and Nelson.!® In
their analysis the effective susceptibility which pro-
vides the driving force for the initial stages of phase
separation of the conserved variable becomes more
negative as one increases the magnetization in the
unstable region, thus leading to an asymmetry in the
structure function. This same feature is found in a
more extensive Langer, Bar-on, and Miller**-type
analysis of Dee, Gunton, and Kawasaki’’ which treats
approximately the nonlinearity of the problem. What
seems even more interesting about this asymmetry is
that as we increase M beyond a certain value
M =0.88, we find that the maximum value of Sy,
(at fixed time) decreases rather dramatically. It is
difficult to give a precise interpretation of this sharp
transition. If one uses the mean field, linearized
dynamical theory as a guide, then this transition
would correspond to passing from an unstable to a
metastable state at a value of the magnetization
which would be a spinodal point. That is, the effec-
tive susceptibility would change from being negative
to positive as one passes through this spinodal value,
with a consequent decrease in the maximum in the
structure function. However, it is by now reasonably
well established that a sharp spinodal curve which
would possibly distinguish between unstability and
metastability does not exist for systems with short-
range forces, so that the above is probably not a
strictly correct interpretation. Nevertheless, it would
seem likely that any successful nonlinear theory of
this transition will involve this asymmetric effective
susceptibility, so that the sharp transition would seem
to be directly related to this quantity. Whether this
transition we see is a crossover from instability to
metastability, in the classical sense, is much less
clear. In any event, this behavior seems to be a ma-
jor distinction between the nonlinear instabilities
exhibited by tricritical and critical systems and poses
an interesting challenge for theoretical interpretation.
We should also note that our results for Sy (k,2),
apart from this asymmetry, are quite similar to the
corresponding structure function for the binary alloy.
Thus in this sense certain aspects of tricritical phase
separation are similar to critical phase separation.
However, the exponents which characterizes the first
moment of Sy (k,t) in our scaling region differs
from the Lifshitz-Slyozov3® exponent reported in the
Monte Carlo studies’ of the binary alloys. This is
possibly due to the fact that our system evolves more
slowly than the Ising model of the binary alloy so
that our study does not include the late stage region
in which the Lifshitz-Slyozov law is valid.’” It should
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also be noted that it is difficult to make a definitive
determination of the exponents in these studies so
that the differences between our exponent and that
obtained in the binary alloy work might not be that
significant. Finally we stress that our results for the
nonconserved order-parameter structure function,
SM,M’(k,t), are less reliable than for Sy, (k,t), in

that they seem extremely sensitive to finite-size ef-
fects. Namely, our estimates for the approximate
power-law dependence of the moments of this func-
tion are significantly different depending on whether
or not we include the k =0 value of SM,M‘(k,t) in

our analysis, For a bulk system the results for the
structure function should not depend on the nature
of the boundary condition. However, for a finite sys-
tem with free boundaries, the smallest wave number
should be k =2m/L where L is the edge size, rather
than the k =0 value appropriate for periodic boun-
dary conditions. Therefore as a check on finite-size
effects we have analyzed our moments and scaling
behavior for both models I and II with and without
the kK =0 data. We have found that the results which
are most consistent with scaling are those which ex-
clude the k =0 data, as we discuss in the text. In ad-
dition, models I and II show no significant dynamical
differences if we exclude the k =0 data, but differ
considerably in estimates of the time dependence of
the moment of SM’M’(k,t) if we include the k£ =0 data.

In Secs. II and III we present our Monte Carlo
results for the nearest-neighbor exchange model. In
addition to discussing the structure functions and
their scaling forms, we also present an analysis of
various moments of these functions, to see to what
extent the data is consistent with the scaling concept.
We stress there that a more sensitive criterion for
scaling is to consider whether the ratio of appropriate
moments is time independent, rather than to simply
seek scaling of the data. Power-law approximations
are also given for the time dependence of some of
these moments, although it is unclear as to the ulti-
mate significance of such fits. It should be noted
that just as in the Monte Carlo studies of the binary
alloy,” almost any assumed form with some adjust-
able parameters can be made to fit our data. Howev-
er, theories such as Lifshitz-Slyozov do predict
power-law behavior in certain domains of time, so it
seems reasonable to attempt a power-law analysis. In
Sec. I we also show some typical configurations
characteristic of various stages of the phase separa-
tion process. The growth of antiferromagnetic clus-
ters in the paramagnetic background is clearly seen.
In Sec. IV we briefly review the results of the previ-
ous Monte Carlo study which includes next-nearest-
neighbor exchange (model II). Some new results for
this model are also presented. We also compare the
dynamical evolution for these two models. Finally,
in Sec. V we present some brief concluding remarks.

II. MONTE CARLO RESULTS FOR MODEL I
A. Model I

The Hamiltonian for the two-dimensional
metamagnet is taken to be
H=J3Yo(Pa(F)—al 3 o(F)a(F")
NN

NNN

~H 3o(F) , Q1)
r

where the vector T =md + nb with 4 and b unit vec-
tors and m and n» take integral values between 1 to
VN. The N spins o( ) = £1 are located at the ver-
tices of a square lattice. There is a competition
between the nearest-neighbor NN antiferromagnetic
interactions and the next-nearest-neighbor NNN fer-
romagnetic interactions which, together with the
magnetic field energy, leads to a phase diagram which
is given approximately in Fig. 1(a). For the case
a=0.5 studied in this paper, recent Monte Carlo
real-space renormalization-group work>? suggests that
the tricritical point is given by 7, =1.21J/kg and
H, = 3.283 with the value of M, being less certain but
approximately given by M, =0.37. The dynamics of
this model I is taken to be Kawasaki spin pxchange in
which nearest-neighbor spins o( ), o () are al-
lowed to exchange with a transition probability

exp(—AH . _/kpT)

w —_r =
e 1+exp(—AH _. _./kgT) ’

2.2

where AH - is the change in energy which results

from the interchange and a;! set the unit of time.
The system satisfies a master equation for the time-
dependent probability distribution functional describ-
ing the probability of a given configuration of spins,
with W?‘, - providing the mechanism for dynamical

evolution. We simulate the dynamical properties of
this system by standard Monte Carlo procedures, us-
ing a 60 x 60 lattice with periodic boundary condi-
tions. The various quantities which we monitor in-
clude the energy per site and the sublattice magneti-
zation

M,=N7 3(~1)m*ng(F) 2.3)

We also calculate the structure factors for the local
sublattice magnetization and magnetization which in
our Monte Carlo calculation are given by

Sup (KD =NSe T T-)me(r)| Qe
and
Su (KD =N[3e® Tla(P) = (o)1 . @5
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We follow the usual procedure used in Monte Carlo
studies of this kind of defining circularly averaged
structure functions

Sk, = 3S(k,» 1, (2.6)
l% /[kzl

where the sum over [k is over all values of k such
that

2 . = 2 ,
G- <lkl=sSZG+7) Q@.7)

where j=0,1,2...10. This allows us to reduce our
data to a more practical level. Note that it is easy to
obtain certain simple values for these structure func-
tions, such as

Sum,(k=0,1) = NMZ2(¢t) (2.8)
and

Sum(k=0,0)=0 . (2.9)
In addition there is the sum rule

N1 3S(k,)=1-M*, (2.10)

which in our MC calculation is only approximately sa-
tisfied, as we discuss later, due to our only including
values of j out to 10 in the actual calculations. The
dynamical processes which we consider in this paper
correspond to three particular quenches shown in Fig.
1(a). In each case the system is initially prepared in
a thermal equilibrium at an essentially infinite tem-
perature (7 =4000J/kp) and then quenched to a
state Py, P,, or P; below the coexistence curve. Each
quench is performed at a constant magnetization, i.e.,
at M =0.37, 0.5, and 0.7, respectively. After a
quench to one of the states P;, the system is then
monitored, starting from this ¢ =0 unstable state. In
general averages of the various quantities of interest
are performed over six different runs. In addition, to
check our statistics, three additional runs were per-
formed at P, and P;. The resultant structure func-
tions calculated from the averages over these nine
runs were almost identical to the structure functions
calculated from the averages over six runs. Finally,
to check for finite-size effects we performed one run
for a 100 x 100 lattice at M =0.37. Although the
results of this run were not identical with those ob-
tained from the average over nine runs, the devia-
tions were comparable to those obtained from run to
run for the 60 x 60 lattice. Thus we think the results
presented below are a reasonable representation of
the dynamical evolution of this system.. However, it
is of course, always desirable to use larger lattices and
average over a large number of runs to minimize the
error involved in these computer simulations,
although in practice time and expense impose limita-
tions.

Before turning to a discussion of the results we

first summarize how the above Hamiltonian can be
considered as a lattice gas model of a chemisorbed
system. If one introduces the transformation

c(F)=[1-a(T)]/2 , 2.11)
where ¢c(T) =0 or 1, then (2.1) transforms to

H=¢NN 2(—‘( F)C( FI)
NN

—adwn 3 c(F)e(F) +e Je(F)+H,y ,

NNN
(2.12)
where
and
e=2H—-4J(1-a) , (2.14)

with H, representing an unimportant background
term. In this representation the Hamiltonian given in
(2.13) represents a model of adsorbed monolayer on
a surface, in which atoms are adsorbed at certain sites
of a square lattice which represents the substrate.
The local occupation number ¢ =0, 1 depending on
whether the site T is vacant or occupied by an ada-
tom. The coverage 8 of the surface is then given by
0= (c(T)). The interaction between adatoms is
given by the nearest-neighbor and next-neighbor in-
teraction constants ¢ny and —aonn, respectively,
with the binding force between the adatom and

the substrate lattice being e. The analog of the
sublattice magnetization is the order parameter
which describes the ¢ (2 x2) phase in the

ordered state. It could be defined as ¢ =

N3+ (=1)"*"2c(T) —1]. The role of the
magnetization M in the metamagnet is played by the
coverage 0 which is related to M by = (1—M)/2.
The corresponding structure functions could be taken
as (Y(P)Y(T+ ")) and (30(F)o0( T+ ).
These are trivially related to the structure factors for
the metamagnet, so that one can immediately inter-
pret the results we present for the metamagnet in
language appropriate to the lattice-gas system. It
should be noted, however, that in this paper we do
not monitor the time evolution of the ‘‘Laue’’ spot
often studied in chemisorption systems.

B. Results

We begin by discussing some of the qualitative
behavior characteristic of the phase separation pro-
cess. We first compare the development of clusters
following quenches for the two cases M =0.37 and
M =0.7. (The situation for M =0.5 is intermediate
between these two cases.) First we consider the
quench to P;. In Fig. 2(a) we show a typical high
temperature, disordered paramagnetic configuration in
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which the sublattice magnetization is zero. Shortly
after the quench to the unstable point P; small clus-
ters of antiferromagnetic order begin to develop in
the paramagnetic sea and gradually grow as time
progresses, as can be seen in Figs. 2(b)—2(f). A
cluster of an antiferromagnetic order is defined as a
set of up and down spins arranged such that each
spin in the set has at least one of its nearest neigh-
bors of the opposite kind. It should be noted that for
purposes of display every alternate spin in a given
configuration of the real system has been flipped and
the resulting ferromagnetic clusters of up (and down)
spins have been represented by squares (O) and as-
terisks (*), respectively. Thus there are two types of
antiferromagnetic clusters shown. These clusters
have a net positive and negative sublattice magnetiza-
tion M,, respectively, and differ from each other only
by a simple translation of one lattice constant. The
paramagnetic background which consists of predom-

inantly up spins is simply shown as a white back-
ground in these figures. The situation is somewhat
different for the quench to P,, where the paramag-
netic background is substantially smaller than at P;
due to the smaller magnetization. Again antifer-
romagnetic clusters form following quench and rapid-
ly grow, as can be seen in Figs. 3(a)—3(d). However
one encounters significantly more antiphase boun-
daries in which ‘‘plus’’ antiferromagnetic clusters
share a boundary with ‘‘minus’’ antiferromagnetic
clusters. The presence of these antiphase boundaries
tends to slow down the growth process of such clus-
ters. This is due to the fact that the boundary is al-
ways comprised of like spins and an exchange of like
spins does not change the size of either of the two
clusters sharing this antiphase boundary. Thus the
motion of the antiphase boundary (the growth of
clusters) only occurs as a result of a two-step spin ex-
change process which is statistically rather improb-
able. (This process would involve an exchange of
nearest-neighbor unlike spins at the surface of one
cluster, followed by an exchange of nearest-neighbor,
unlike spins between the two clusters.)

Finally, we note that in all three quenches we en-
counter significant ‘‘metastability’’ in that the order
parameter never reached its equilibrium value in any
of the runs, even for times of the order of 42000
Monte Carlo steps (MCS). This can be seen in Figs.
4(a) and 4(b), where some typical values for the time
evolution of M, are shown. In many cases the order
parameter hovers around a value close to zero. Asa

&

— 4

%ww

(e)

FIG. 2. Snapshots of the configurations for point P; for
different times are displayed in (a)—(f). The clusters with
asterisks and squares correspond to +M, and —M;, respec-
tively.

(a) (b)

(c) (d)

FIG. 3. Snapshots of the configurations for point P, for
different times are displayed in (a)—(d).
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FIG. 4. Four sample runs of the order parameter M, vs
time for points (a) P; and (b) Pj;.

result of this and the relation (2.8) our values of the
order-parameter structure function at k£ =0 are very

sensitive to these metastable states. It has also been
our observation that the values of Sy M,(k,t) at j=1

seem to weakly reflect this metastability, although we
have no convincing argument as to why this should
be so.

We now consider our results for the structure func-
tions, beginning first with SM’,,,’(k, ). One qualitative
feature of this quantity is that the peak develops at
the origin and gradually grows, as can be seen in
Figs. 5(a)—5(c). The best evidence for this can be
seen in Figs. 5(b) and 5(c) for P, and P;. At P, our
results are more sensitive to the problems of metasta-
bility mentioned above. A more precise characteriza-
tion of the structure function at P, P,, and P; can
be given in terms of its moments, which we postpone
until the next section when we discuss the evidence
for the scaling of this structure function in the un-
stable domain.

A more interesting structure function which also
seems less affected by the problems of ‘‘metastabili-
ty’’ is Sym(k, 1), which describes the fluctuations of
the local magnetization. Since M is a conserved vari-
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FIG. 5. The sublattice structure factors SMJ M, VS Jj for

points (a) Py, (b) P,, and (c) P;. Time in Monte Carlo
steps for different curves is given in the inset.
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able the behavior of Syu(k,#) is quite similar to the
structure function for the local concentration of one
species of atom in a binary alloy. As can be seen in
Figs. 6(a)—6(c) the phase separation process (spino-
dal decomposition) reflects itself in a peak in
Swum(k,t) at a nonzero value of k, k,,(#), which gra-
dually decreases with increasing time. It is difficult to
make an accurate estimate of the value of k,(?) (or
of S(k,(#),t) because we are monitoring only
discrete values of k. We will find it more useful to
examine the moments of Sy, as discussed in the
next section. One interesting qualitative point, how-
ever, which does emerge from our results is the
asymmetry in the structure function Sy (k, 1) as a
function of the magnetization. In the case of a
binary alloy whose phase diagram is symmetric about
the critical point value of the concentration (which is
the analog of M in our phase diagram), the structure
function is of course itself symmetric. The system is
most unstable at a quench at the critical value of the
concentration and less so as one quenches on either
side of this critical value. In the tricritical case no
such symmetry with respect to M exists and the sys-
tem is neither maximally unstable at M, nor symmetric
with respect to this tricritical value. This can be seen
even within the errors encountered in our MC work
(Table I) by an examination of Sy (k,¢) at any given
time for the three quenches P;, P, and P;. It seems
quite clear that for a given ¢ the largest value of
Sum(km(2),t) occurs at M =0.7 and that the smallest
value of Sy (kn,(1),t) occurs at M =0.37. That is, it
would appear that in this region Sy (kn,?) increases
as M increases for fixed ¢. It is also obvious that this

14.0 - m=037 140

Nr | MCS

1| 400

2 | 2800 12.0 4
120 3 | 3600

4 | 8ooo

5 | 12,000

6 | 16,000

7

8

9

m=0.5 14.0 5

SAHNI, GUNTON, KATZ, AND TIMPE 25

TABLE 1. The magnetic structure factor Sy, (k0 at
selected values of time for points Py, P,, and P3, for model I.

Spnr (ki (0,1)

MCS P, P, Py
400 1.0 2.0 2.0
2800 2.1 4.1 43

12000 4.6 6.9 8.0

16 000 5.1 6.7 9.9

20000 6.1 9.0 11.5

26 000 7.9 11.0 14.0

36000 10.2 13.7 R

42000 R

13.9

behavior cannot continue indefinitely as one moves
towards the right-hand branch of the coexistence
curve. It is therefore of some interest to determine
where this increase in Sy (kn,t) ceases. We have
thus performed a preliminary study of this question
by examining the behavior at several other values of
M. We have found that as one increases M the peak
drops rather dramatically at fixed ¢ (even for rather
early times) in a very narrow region around
M =0.88. A more detailed analysis of this transition
region and the cluster dynamics will be presented
elsewhere.

At least a qualitative understanding of why this
asymmetry and sharp transition occurs can be gained
from a mean-field, linear stability analysis. In this
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FIG. 7. The mean-field susceptibility X as a function of
magnetization M at a fixed temperature.

case the Fourier component M, of the local magneti-
zation density is assumed to be given by a linearized
equation of motion such that the resultant structure

factor is

Sum(k,0) = Spn (k) expl—Tk2(k2+xDel ,  (2.15)

where I is a kinetic coefficient. The mean-field ap-
proximation for the effective susceptibility which ar-
ises from an adiabatic elimination of the noncon-
served order parameter in this Cahn-like theory is
shown in Fig. 7. What is notable, as mentioned in
the Introduction, is that X! becomes more negative
as M increases from one spinodal point, M, to the
other, M, rather than being symmetric about a criti-
cal value, as for simple binary alloys. Thus the insta-
bility in Syuincreases (for k < |x7!|) as one in-
creases M until M > M,, where in the classical
theory one would be in the metastable region. This
is qualitatively consistent with what we see. This
linear theory is, however, incorrect in many details,
including its prediction that Sy (k,?) should exhibit
exponential growth as a function of time. A more
detailed Langer-Bar-on, Miller-like theory3* has been
carried out by Dee er al.>> which does not exhibit ex-
ponential growth but does predict similar asymmetric
behavior. However, as noted in the Introduction it is
at the moment not possible for us to give a more pre-
cise explanation of this transition beyond that men-
tioned above. Further theoretical work on this point
is clearly needed.

III. SCALING

We now turn to the question of whether or not the
structure functions for the tricritical model exhibit a
scaling behavior with respect to certain time depen-
dent wave numbers which one might define for the
system. It is first worth noting, as has been exten-

sively discussed in the MC studies of binary alloys,
that it will be difficult to make detailed comparisons
between the S (k,f) obtained in our work and the
more smooth structure functions which one might
expect to see in experimental or theoretical studies of
such a system. This problem is due to the discrete
nature of our computer results, i.e., to the discrete
set of k values studied. In addition, of course, there
is considerable fluctuation in our data, particularly for
the structure factor with nonconserved order parame-
ter. Both of these effects are due to the small size of
our system (N =3600 spins) as compared to the
macroscopic systems studied in theory or experiment,
in which N is essentially infinite. In spite of these
problems one might hope that certain features of our
results exhibit a certain smoothness more typical of
real systems, as well as provide some qualitatively in-
teresting predictions to be tested by theory and/or
experiment. With this in mind we have calculated
various moments of the two structure functions, de-
fined as

ke

kC
kn(D) = Sk"S (k1) [ 35 (k) 3.1

for each of the two functions. In the case of
Sum(k,t) both the odd and even moments are of in-
terest. On the other hand SM;M,(k’t) is an even

function of k, so that it is only necessary to calculate
the even moments. However, we have also moni-
tored the magnitude of its first moment, i.e.,

kc "c
ksl = 31kl Su, () [ 38w, (kD) . (3.2)

It is necessary to note three points concerning the
above definitions. First of all, as for the case of the
binary alloy our results for the moments are sensitive
to the choice of the upper cutoff k., which in the
ideal case of extremely accurate data for large k
should be chosen to be =, the upper Brillouin zone
value consistent with periodic boundary conditions.
However, our structure functions are very small for
large k, as can be seen from Figs. 5 and 6, with fluc-
tuations being comparable to the actual values. We
have therefore chosen k. as (27) 10/~/N. We

have examined the dependence of our results on
smaller values of k. and have concluded that the
choice used is quite reasonable. The second point
concerns a far more serious problem for the mo-
ments of Sy, M,(k’ ). Namely, our estimates for its

moments and their time dependence are extremely
sensitive to the minimum value of k entering in
(3.1), as we noted in the Introduction. This sensi-
tivity depends on the fact that the important contri-
butions to the denominator SM’Ms(k,t) in (3.1) come

from small k. Since the sublattice structure factor at
the origin, Sy u, (k =0, = NM2(t), strongly reflects
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the ‘‘metastability’’ which we encounter, our results
for the moments of SM’MJ(k, t) are quite sensitive to

its value at Kk =0. On the other hand, we have used
periodic boundary conditions for convenience, since
in the bulk limit our results should not depend on
the boundary conditions. Unfortunately in this case
we seem to encounter rather strong ‘‘finite-size’’ ef-
fects related to the nature of the boundary condi-
tions. Had we used ‘“‘free edge’’ boundary condi-
tions, we would not have included k£ =0 contribution
since the smallest allowed k would then be
kmin=2m/L, where L is the linear dimension of the
system. Motivated by these considerations we have
therefore analyzed our moments of SM,M, with and

without the k =0 data and have found a much more
consistent scaling picture for the case without the

k =0 data. It should be stressed, however, that due
to the above difficulty our estimates for the time
dependence of the moments of Sy, M,(k, ?) are not
very convincing.

The third point is that in contrast to the recent MC
studies of the binary alloy we have chosen not to
subtract off the equilibrium values of the structure
functions entering in Eqs. (3.1) and (3.2), since as
we will see our results scale quite reasonably using
the moments as defined in (3.1). As can be seen in
Fig. 8 the moments for both SMJMJ and Sy behave

quite smoothly as a function of time.

One can also attempt to approximate the time
dependence of these moments by simple power-law
behavior in different time domains, as has been done
in previous MC studies of binary alloys? and order-
disorder transitions.” For example, one can try ap-
proximations of the form

|k (D] ~1 (3.3)

and

Vi ()~ 3.4)

for the moments of SM,M,(k. t) subject to the reserva-

tions about k =0 noted above. In addition, one can
do the same for Sy (k,10), i.e.,

k(D) ~eb (3.5)
k(D ~170" . (3.5b)

Typically what one finds in studies of the binary alloy
is that the value of such exponents depends on the
time intervals studied. It is therefore not completely
clear that such approximations are of significance ex-
cept possibly in certain time domains where such ap-
proximations are of significance except possibly in
certain time domains where such asymptotic behavior
might be expected (as, for example, k; ~ ¢~ in the
Lifshitz Slyozov late stage region for an alloy). With
this qualification in mind we present in Table II the
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results of such power-law fits both for the entire time
domain studied (so called ‘‘effective exponents”’
which might have no significance) as well as for cer-
tain select time intervals where a simple power-law
approximation seems more reasonable. We observe
two facts from this table. First, for the late time re-
gion of our study we see that the exponent b =0.14
for P,, increases to b =0.25 for P, and then de-
creases to b =0.21 for P;. A rather similar behavior
has been observed by Dee et al.* in their study of a
three-dimensional tricritical system, although the
values of b are different from our two-dimensional
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TABLE II. The ‘‘effective’’, early and late time exponents of the first and the second moments
of the sublattice and magnetic structure factors for Py, P,, and P;.

M Time intervals in MCS a a b b'
400 36000 0.10 0.11 0.12 0.11

0.37 400 6000 0.11 0.10 0.08 0.07
6000 36000 0.10 0.12 0.14 0.13

200 42000 0.12 0.11 0.17 0.15

0.5 200 10000 0.10 0.09 0.13 0.11
10000 42000 0.12 0.12 0.25 0.21

200 25200 0.15 0.14 0.17 0.16

0.7 200 10000 0.14 0.13 0.14 0.13
10000 25200 0.15 0.16 0.21 0.20

results. Second, the scaling concept suggests that

a =a' and b = b’ which, as can be seen from Table
II, is consistent with our results. The overall picture,
however, is relatively consistent, since as shown both
in Tables II and III the data seem compatible with
the notion that is a single scaling length for each
structure function. In Table III we show the ratios of
the various relevant moments. These ratios should
be independent of time in a scaling domain. As can
be seen from Table III this seems to be reasonably
well satisfied. A very weak dependence on time is,
however, detectable in Table III, as has been seen in
Ref. 7 and some recent work on binary fluids.’® It
should also be noted that the results presented for
SM’M,(k. #) in Tables II and III exclude the data for

k =0. If one includes the k =0 data, then the pic-
ture for scaling for this correlation function seems
much less convincing, since the ratio k;/ \/k—z then
displays a much stronger dependence on time than
shown in Table III. In addition, the exponents a and
a’ change considerably if one includes the k =0 data,
particularly for M =0.5 and M =0.7 where they are
consistently larger (by as much as a factor of 2) than
those shown in Table II. As well, the exponents a
and a’ differ considerably from each other (in con-
trast to the expected scaling result a =a’) if one in-
cludes the kK =0 data. It should also be stressed,
however, that if one does not use predictions of scal-
ing (such as a =a’ or the constancy of k;(£)/~/k,(1)
as a test of the scaling behavior, but rather simply re-

TABLE III. The ratio of the second and the first moments for both the magnetic and sublattice structure factors at selected

times.
M MCS 10000 12000 14000 16000 18000 20000 24000 28000 32000 36000 42000
Jk
[k—’ 1.13 1.13 1.13 1.13 1.13 1.13 1.14 1.14 1.14 1.14
1 M
0.37
Vka
M2 1.29 1.28 1.28 1.28 1.27 1.26 1.26 1.25 1.25 1.24
IARLA
V5,
—kl 1.13 1.13 1.13 1.14 1.15 1.15 1.16 1.16 1.17 1.17 1.17
1 M
0.5
Vka
X2 1.25 1.25 1.25 1.26 1.25 1.25 1.26 1.25 1.25 1.24 1.25
lkl| Ms
K
-‘i——ll 1.14 1.14 1.14 1.14 1.14 1.13 1.14
1 M
0.7
VK,
2 1.28 1.27 1.26 1.26 1.26 1.26 1.26
|kl| Ms
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lies on a ‘‘visual’’ test SM’M‘-:k{‘ (DF(k/Vky)

there is little to discriminate between our ‘‘scaling
results’ for SM,M’( k,t) for the two cases with k =0

either included or excluded.

Finally, we turn to the question of the scaling func-

tions. We first discuss the situation for SM,M’(k,t).
Here we have attempted to analyze our data in the

form

SM’MS(k»t) '—‘-kz_l (f)G(y) ,

(3.6)

where y =k/~+/k,(t). We have excluded the early
time data as well as the kK =0 points from the
analysis. As can be seen from Figs. 9(a)—9(c) the
data for all three quenches P;, P,, and P, satisfy a

scaling of this form, where the scaling function G (y)

seems to exhibit a weak dependence of M for large
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values of y. It should further be noted that the small
y region is strongly M dependent. In Fig. 9(c) there
is some scatter in the data around y =1.75 but other-
wise the scaling of the data seems quite reasonable.
The other structure function, Saa(4,t), is of more
interest in this regard since there is clearly much
more ‘‘structure’’ in this function than for SMJMJ.
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TABLE IV. The ratio of the first moment of the magnetic structure factor with (a) the square root of the second moment of
the sublattice structure factor and (b) the ‘‘first moment’’ of the sublattice structure factor, respectively, at the specified times
for Py, P,, and P;.

M MCS 10000 12000 14000 16000 18000 20000 24000 28000 32000 36000 42000
(O],
—_— 2.06 2.08 2.04 2.06 2.07 2.10 2.10 2.08 2.02 2.04
(W/k2)M
0.37 (k1) s
LM 965 265 261 263 266 264 260 252 2.52
(k ll)M_‘
(k) m
—_— 1.50 1.48 1.49 1.51 1.46 1.46 1.40 1.36 1.36 1.32 1.29
(W/k2)M
0.50 (k1) s
M 187 18 18 190 183 183 177 16 170 164 161
(lkll)M‘ '
(ky)
—M 439 132 132 130 130 130 1.26
(NI
0.70 (k) s
M g7 168 167 165 165 164 159
(k1)) p,
Here we have analyzed our data in the form carried out for a quench to P,. In this case, howev-
— k2 (DF er, the transition probability given in (2.2) also in-
Sum(k) =k (DF(x) 3.7 cluded next-nearest neighbor exchanges. No distinc-
where x =k/k.(¢). As can be seen from Figs. tion was made between the time to spin exchange
10(a)—10(c) we again find reasonable evidence for nearest or next-nearest-neighbor pairs, with the tran-
scaling behavior, although the data are not completely sition probability being given by (2.2) for either type
consistent with a smooth scaling function #(x). The of exchange. In this section we report on some other
best fit to a smooth function seems to occur at properties of this model II (NN and NNN exchange)
P2(M =0.5) as can be seen in Fig. 10(b). At both and compare these with the results given in II and III
P, and P3, however, there is an apparent departure for model I. It should be noted that one qualitative
from a smooth scaling for values of x in the range distinction that is readily apparent between these two
0.8 to 1 which we believe to be due to an ‘‘acciden- models is that the inclusion of next-nearest-neighbor
tal’’ erratic behavior of our Monte Carlo results for spin exchange allows the system to evolve more rap-
Sym(k,) at j =3, idly in time than it would otherwise.

One interesting question which cannot be com- To begin with, we recall that in the original work
pletely settled by our present work is whether there the scaling function Sy, (k1) exhibited a scaling
are one or two characteristic lengths in this problem. behavior of the form t~%7F (kt®%) in the range®®
We have chosen to scale our data for each structure 2100—4200 MCS quite similar to that shown in Fig.
function with its appropriate moment. However, it is 9. This amounts to assuming a power-law approxi-
natural to ask whether the ratio of these two inverse mation for K (¢) of +~°3% although in the original
lengths might be time independent. In Table IV we work no attempts were made to calculate moments to
show the ratio of (k1) »/(</k2) y, where (\k2) y, possibly justify this scaling. It should be noted that
and (k) p refer to Sy m_ and Sy, respectively. As we were also able to find a somewhat less satisfactory

s

scaling using an effective length K (¢) ~ ¢t~ with x
anywhere in a wide range of values. The choice

X =0.35 seemed to give the least deviations from a
smooth scaling but as noted in Ref. 21 this was only

can be seen from the table, it would appear that.these
two inverse lengths are in fact different.

IV. MONTE CARLO RESULTS FOR MODEL II an approximate estimate. In this section we present
our results for the moments of S, M,(k,t) and
As mentioned in the Introduction, an earlier Sum(k,t) and reexamine the scaling of these func-
Monte Carlo study?! of spinodal decomposition for tions. We begin by considering the moments of

the system described by the Hamiltonian in (2.1) was SM’MS(k,t) in which we exclude the k =0 data. In
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TABLE V. The ‘“‘effective’’ and late time exponents of the first and the second moments of the
sublattice and magnetic structure factors at M =0.5 and 7 =0.6T,.

M Time interval in MCS a' b b’
0.5 150—4200 0.14 0.19 0.17
1500—-4200 0.16 0.21 0.19

Table V we show the time dependence for |k;(¢)]
and k,(¢) for this model. As can be seen from the
table there is no simple power-law approximation
which fits the data in the entire time domain con-
sidered. If one ‘‘forces” a fit to a single effective ex-
ponent one finds an exponent of a =0.15 for | k|
and a’'=0.14 for \/—Ia A more meaningful anlaysis
would appear to be to consider a power-law approxi-
mation in just the late time region where there seems
to be more convincing evidence for simple power-law
behavior. As shown in Table V this yields exponents
a=0.17 and a’=0.16. Since the latter numbers
would seem to be more meaningful than exponents
obtained from using the entire time region, it would
seem that our results for SM’ M, are in fact reasonably

consistent. As can be seen from Table VI the ratio
Vka/|k1| is approximately time independent as it
should be if scaling is valid. It should be noted, how-
ever, that the scaling for Sy, M’(k,t) using k, implies

and effective exponent (1/k; ~ t™) with the value
considerably different from the value of 0.35 quoted
in the first study. This would seem to be a reflection
of the fact (noted in the original paper) that a rather
wide range of values for a will in fact ‘‘scale’’ the
data reasonably well. It seems difficult to accurately
determine a ‘‘best’’ exponent by this type of criterion
alone, due to the inaccuracy of the Monte Carlo data.
A much more stringent test of scaling is to consider
whether or not ratios of moments of Sy, Ms(k,t) are

time independent. Finally we note that if we include
the k =0 data, the estimates for the exponents a and
a’ change considerably by as much as a factor of 2.
The result is that the exponents for models I and II
would then appear to be significantly different, which
is not the case when we exclude the k£ =0. In addi-
tion, the ratio of |k1|//k, is no longer time indepen-
dent. Thus the overall picture seems much more
consistent if one excludes the k =0, although this is
of course not a compelling argument. In Table VII
we display the ratios of (k) / (k) u, and

(k) wml( |k1|)M, which slowly change with time. This
suggests that these two inverse lengths are in fact dif-
ferent.

The situation for Syus(k,¢) is also quite reasonable.
As can be seen from Table V, the exponents b and b’
which characterize k, and \/k, for this function are
approximately equal. In addition Sy, exhibits a scal-
ing similar to model I (Fig. 10). Also, the ‘“‘late
time’” behavior for this model (i.e., 1500—4200
MCS) is almost the same as that for model I, particu-
larly at M =0.5 and M =0.7, in the regions
10000—42 000 and 10000—25 000, respectively.
Indeed, given the large fluctuations involved in the
MC data in both cases, the overall behavior of
SM,M‘(k,t) and Spu(k,t) for both models is very
similar. We see no strong evidence at the moment to

suggest that these two models have significantly dif-
ferent dynamical properties.

TABLE VI. The ratio of the square root of the second moment and the first moment for both the magnetic and sublattice

structure factors at selected times.

MCS 300 900 1500 2100 2700 3300 3900 4200
Vk
‘—2- 1.12 1.13 1.16 1.16 1.17 1.17 1.18 1.17
ki Jm
M=05
JVk
l——-z' 1.27 1.28 1.29 1.28 1.30 1.31 1.30 1.30
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TABLE VII. The ratio of the first moment of the magnetic structure factor with (a) the square root of the second and (b)
“first moment’” of the sublattice structure factor, respectively, at M =0.5 and T =0.6T,.

MCS 300 900 1500 2100 2700 3200 3900 4200
(k)
—_— 1.62 1.60 1.50 1.45 1.44 1.43 1.42 1.43
M=05
(k) p
-_T 2.03 2.05 1.94 1.85 1.87 1.87 1.85 1.85
(‘kll)M‘

V. CONCLUSION

Our investigation of tricritical spinodal decomposi-
tion in a two-dimensional model of an Ising metamag-
net or, equivalently, a simple model of chemisorp-
tion, has revealed two major features. The first is
that the structure functions Sy and SM’ M, exhibit,

to a good first approximation, a simple scaling
behavior. The second is the unusual asymmetry and
corresponding sharp transition in the peak height
behavior of Sy, which has not been seen in previous
studies of binary alloys and binary fluids. This
second feature would seem to distinguish “‘tricritical”’
spinodal decomposition from “‘critical’’ spinodal
decomposition. Although one can imagine alloys
with asymmetric coexistence curves, it seems less
likely that such systems would have such strongly
asymmetric susceptibilities (vis-a-vis the discontinu-
ous mean-field effective susceptibility) as in our case.
As a consequence, the sharp transition which we
have seen would seem less likely to occur in a system
quenched below its critical point. It would be in-
teresting to have experimental tests of such asym-

metric behaivor, which is certainly not limited to
two-dimensional systems. One possible candidate for
study is Fe-Al, alloy which is thought to have a tricrit-
ical point.** Another possible system is *He-*He,
although this system has hydrodynamic modes not
included in our model. Nevertheless He-*He does
have the same mean-field effective susceptibility
shown in Fig. 7, so that it is possible some manifesta-
tion of an asymmetry and sharp transition could be
seen in light scattering studies. In addition, it would
be worth having experimental studies of scaling in
tricritical systems. Very recent studies*' of He-*He
in fact seem to show scaling quite similar to what we
have reported here. Finally we note that there is
clearly a need for a better theoretical understanding
of the nonlinear dynamics of tricritical systems.
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