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Quantum yield of electron-hole pairs in semiconductors
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It is shown that the two existing theories, the "crazy-carpentry" and the probability
method, are essentially equivalent in evaluating quantum yield and variance in semicon-
ductors. Quantum yield is determined by an integro-differential equation represented in

terms of the density of states, the loss parameter, and the threshold energy. The analyti-
cal method used to calculated the relative yield, i.e., the inverse of the average e-h pair-
creation energy, is developed for the two cases: extended crazy-carpentry and free-

particle models. The optical-mode deformation-potential and the polar-mode
electrostatic-potential contributions to the phonon loss are taken into account.

I. INTRODUCTION

Quantum yield of electron-hole pairs generated

by high-energy electrons or photons in semicon-

ductors is an important factor that determines
phosphor efficiency or the characteristic perfor-
mance of semiconductor devices. Electron-hole
pairs are generated in semiconductors by the
branching processes of ionization and phonon
emission. Yield and Fano factor are largely deter-
mined at the final stage of the branching process
where secondary electrons and holes have energies
a few times the ionization threshold, and where the
energy loss by phonons is competing with the ener-

gy loss by ionization. '

van Roosebroeck developed a phenomenological
model that describes the statistics of the branching
processes independent of the details of the physics.
His model, named "crazy carpentry, " is represent-
ed by two approaches: (l) computer simulation of
"board" cutting, and (2) the mathematical formula-
tion in terms of the moment-generating function.
His results show that yield is proportional to the
energy of the primary particle when this is a few

times larger than the threshold energy. A propor-

tionality constant, the limiting relative yield, corre-

sponds to the inverse of the average e-h pair-

creation energy.
Alig, Bloom, and Struck proposed another ap-

proach called "the probability method" to calculate
the yield and the Fano factor; the pair-number pro-
bability distribution is evaluated recursively. Com-
puter calculations of the first moment (n(E) ) and
the Pano factor have been carried out for a wide
variety of semiconductors with the free-particle

model and the deformation potential for phonon
loss.

This paper demostrates that the crazy-carpentry
method and the probability method are equivalent
in the sense that the yield and the variance satisfy
the common equations for the two methods with
exact correspondence between relevant parameters.
In other words, the probability method is a natural
extension of the crazy-carpentry method to include
the effect of nonuniform state density and the en-

ergy dependence of the phonon-loss mechanisms.
With the analytical method in the present paper
the relative yield is determined from the slope of
the linear solution of (n(E) ) for large E in the ex-

tended crazy-carpentry model and the free-particle
model. The quantum yield is mainly. determined

by two factors, the loss parameter and the thresh-
old energy. It is found that the energy dependence
of the loss parameter is important in determining
the slope of the linear solution. The loss parame-
ter is examined in terms of the optical-mode defor-
mation potential and the polar-mode electrostatic
potential.

II. THEORETICAL ANALYSIS

A. Reformulation of the probability method

For evaluating yield and variance the probability
method is conveniently formulated in terms of the
first and the second moments, (n (E)) and
(n (E)), rather than the probability distribution.
The probability p„(E) that the primary particle of
energy E ultimately produces n ionization events is
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described by the recursion relation, Eq. (12) of Ref.
6

(E)
P, (E)=Pa(E)

+[1—Po(E)]p„(E—fuup), n & 1

that the primary particle first creates a phonon and
of the probability P„(E—%coo) that this particle
with energy E—%coo further produces n ioniza-
tions. The probability Po{E) that a particle pro-
duces the e-h pair prior to p4onon emission is
given by

r(E)
r(E)+w(E) ' (2)

The first term represents the product of the proba-
bility Po(E) of the primary particle creating ioniza-
tion before phonon emission and of the probability

r, i(E)/r(E) of the product particles further
creating n —1 ionizations in total. The second
term is the product of the probability 1 —Po(E)

where r(E) is the scattering rate for ionization and
w {E)that for phonon emission.

The expression for r„ i(E), the ionization rate
that the three secondary particles will create n —I
ionizations, is calculated by time-dependent pertur-
bation theory with the random-k approximation:

"-i«)= —IM I'g fdEy f «, f dip«y)p«. )p{Ea)p {Ey)pj{E.)P» i -i{-s-)
V

)&5(E Eg Ey —E, —Es ), —E—& Eih

with E,h being the ionization threshold. Hereafter, E,h is taken equal to E.
The equation governing the first moment can be derived by multiplying Eq. (1) by n and summing over

n. One obtaines after a few rearrangements of the terms,

P (E) E E—E E E~- —
(n(E)) = f de f dE,p(Ey)p(E, )p(E Eg Eg E—,)— —

C(E) 0

)&[1+(n(Eg))+(n(E, ))+(n(E Eg E& E,—))—]-
+[1—Po(E)](n(E—ffcoo) ), E & Eg

C(E)= f dEJ f dE,p(EI)p(E, )p(E Eg Ey E, )—. — —

Similarly, multiplying Eq. (1) by n and summing over n, one obtains the equation for the second moment:

Po(E) F. EE F. —Er- —
(n (E))= f dEI f dE,p(EI)p(E, )p(E Eg E~ E,)—— —

&(I 1+(n'(E„)&+(n'(Ef))+(n'(E Eg Ef E, ))— — —

+2(n(E~) ) (n(E, ) ) +2[(n(EI) )+ (n(E, ) ) ](n(E Eg EI E, ) )—— —

+2[(n(EI))+(n(E, ) )+(n(E—E EI E,))]I——

+[1—Po(E)](n (E—fin)o)), E&Eg .

Below the threshold

(n(E)) =(n'(E)) =O, 0&E ~E, .
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Quantum yield, (n(E)), and Fano factor

j(n (E))—[(n(E))]2)
(n(E))

can be evaluated from the solutions of Eqs. (4) and (6), which are uniquely determined from p(E}, Po(E),
and Eg.

8. Relation to the crazy-carpentry model

In this model of van Roosbroeck it is assumed that the excess energy of the particle is always divided in a
constant ratio between the secondary electron and hole. Let us assume that p and 1 —p fractions of the ex-

cess energy is given to the electron and hole, respectively. This corresponds to setting the condition

E,=p(E Es E—f ) on—Eqs. (4) and (6). We further assume that the density of states for both electrons and
holes are constant, p(E) =const. Then we obtain

(n(E) ) =Pa(E)+ [1—Po(E)](n(E—fuuo) )

P (E) E E-
+ E E I dE'[(n(E'))+(&(pE'))+(a(yE'))], E)Es

and

(n (E))=—Po(E)+2(n(E))+[1—Po(E)][(n (E—~o)) —2(n(E ~0))]
Po(E} E E-

+ I dE'I( '(E'))+( '(PE'))+( '(yE'))
g

+2(n(E') )[(n(P(E —Es —E')) ) + (n(y(E Es —E'))—) ]

+2(n(PE'))(n(yE') )I, E&Es (10)

where

P+y= 1 .

Equations (9) and (10) are exactly the same as the equation for the mean yield, y (L)=L —w (L), and the

equation for q(L):L —2Lw(L)+—u(L), respectively, of the crazy-carpentry model where L is the initial

board length, and w (L) and u (L) are the mean "waste" and the second moment, respectively. The equa-

tions for y (L) and q (L) are readily obtained from Eqs. (14) and (15) of Ref. 2. There is exact correspon-

dence between the quantities involed in the probability method and the crazy-carpentry method as given in

Table I. Thus, the crazy carpentry corresponds to a case of the probability method with the approxima-

tions: constant density of states, constant division of the excess energy of the primary particles, and

energy-independent Po(E). The yield and Fano factor have been evaluated by the analytical method and the

Monte Carlo method and reported in Ref. 2.

III. LIMITING YIELD

A. Extended crazy-carpentry model

Analytical calculations are made in this section of the quantum yield for the extended crazy-carpentry

model. The model is extended such that: (i} The restriction of the constant division of the excess energy of
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the primary particle between the electron and hole is removed, and (ii) the energy dependence of phonon em-

ission and ionization rate is taken into account. The density of states is taken to be constant for electrons
and holes. For the sake of simplicity, it is assumed that the electrons and noles are equivalent in regard to
the densities of states, the ionization rate, and the phonon-emission rate. Equation (4} is thus given by

(n(E) ) =Pa(E)+ [1—Po(E)](n(E —fmo) )

6PO(z) E E-+,I, 'dz'(E E—, Z—')(n(Z )), Z&Z,
s

with the condition

(12)

&n(Z)&=0, E&z, . (13)

By approximating (n(E —ficoo) ) by the first two terms of the Taylor series for E» ficoo, Eq. (12) is reduced

to the integro-differential equation

&n(Z))+Z(z) " =1+ I 'dZ'(E Z ——Z')(n(Z )),
(E E )i 0

(14)

2~ b, 2« —Es)'—~M~, E&zs

0, E&Eg .

Similarly, the scattering rate w (E) for an electron
to lose its energy E by phonon emission is calculat-
ed using the random-k approximation. For a con-
stant density of states w(E) is independent of the
particle energy

TABLE I. Comparison of the crazy-carpentry and

probability models.

Crazy-carpentry model Probability model

L
y(L) =L —w(L)

q(L) —=L2 —2Lw(L)+u (L)
1 —r

E/E(.(E})
("(E})
Po(E)

ficoo/Eg

E(E)= fm
r(E)

The scattering rate r(E) for an electron with ener-

gy E to create an e-Ii pair is given by Eq. (3) with

n =1. With a constant density of states r(E) be-

comes

w(E)=const.

Then the loss parameter E(E) varies with E as

K(E)=
(E E )2

(n(Z) & =~,z+~, .

The limiting relative yield, which is the inverse of
the average pair-creation energy for large E, is
given by

(n(z)&

To determine the constants Ai and A2, Eq. (14) is
solved for large E by first introducing the linear
solution of (n(E) ) into the left side of Eq. (14).
Th«ntegral on the right side of Eq. (14) is then
performed in the three intervals between Eg, 2Eg,
pEg and E Eg w1th p an integer greater than 2.
The solutions of (n(E) ) at each interval are the
exact solution,

(20)

with the constant parameter Ko.
It is possible to calculate (n(E) ) from Eq. (14)

stepwise at each interval of Eg by performing in-

tegration with boundary condition Eq. (13) and the
solution obtained from the preceding step. Howev-

er, the calculations are not feasible when E rises to
a few times Es. The limiting value of (n(E) ) at
large E is approximately evaluated as follow.

Since K(E) decreases with (E Es} as E —in-

crease, Eq. .(14) has a linear solution in the limit of
large E where K(E) is negligible:



3860 MICHIKO INOUE 25

E dE'
(n(E) ) =1—exp —f

Eg &E &2Eg

which follows from Eqs. (13) and (14), the trial
solution

(21)

1
b = P~ iEg+A2 —1

(p 2—)Es
E3

3EQ
—(p+2)«,g

(23)

(n(E))=aE +bE+c,

2Eg &E &pEg

(22}

C=
p —2

—2' i Eg —232+p

E3
g—p exp

Mo
+2paEz . (24)

and the linear solution (19) for E)pEs. There are
five relations that determine the constants A ~, Az,
a, b, and c. The condition that the solutions (21)
and (22) are continuous at E = 2', and that (22}
and (19) are continuous at E=pEs, give the two
relations

The requirement that the solutions (19), (21), and
(22) satisfy Eq. (14) gives the three other relations.
By integrating the right side of Eq. (14) it becomes
a quadratic form in (E Ez) '.—The conditions
for the constant, the (E Ez) ' —and the
terms to vanish lead to

A iEg —2A2 —1=0,

Sp+2 (p —2) ~ i 2—pA ~Ex+ aEs = —,(3p —2)+ exp

and
T

—5 —10 —4 AiE — E
12 E3 P P 1g 12

a g
g

2E

+ f dE' 1 —exp
Q g g

(E' E )3

3j:o

(25)

(26)

= —,(2—p) — + —,
'

(p —2)(p +4)exp—
2 4

3

3EQ

2E

z f dE'E' 1 —expE'
g

(E' Es)—
3Ep

(27)

where b and c have been eliminated with Eqs. (23) and (24). Finally, the limiting yield is given by

Y=A& Es
'

3p ——+12—2(p —2) exp
Mo

g+ f dE' (p+2}—
g g

1 —exp
(E'—Es )'

3EQ

4Xo
Sp +16p+4+

In the absence of phonon loss, Eo ——0, Eq. (28) gives

F= Eg
' for integer p&2.3(p'+4p)

5p +16p+4
For very large Ep, F approaches

E; '(p'+8p+4)/f 5p'~16p+ 4~4K, jEs } .

(28)

(29)

Figure 1 plots (n(E) ) vs E for different values of Eo and p =4. The relative yield Y is plotted as a func-

tion of ECp/Eg in Fig. 2.
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B. Free-partic1e model

For p(E, )=p(E„)=dv E, Eq. (4) reduces to

with the condition

(31)

105 i/2 (%coo) v E +QE Acoo-
K(E)= Si(E—fin)o)'/ +St ln

2n (E —E )7/2 E E — E—Aa)o

The first and the second terms arise from the optical-mode deformation potential and the polar-mode elec-
trostatic potential, respectively, with Si and Sz given in terms of the material constants. The symbol cop

denotes the optical-phonon frequency.
The relative yield F for the present case is calculated with less accuracy than for the previous case be-

cause of the complicated expression (32) for K(E). One seeks the linear solution (19) of Eq. (30). The in-
tegral on the right-hand side is divided into three parts between E~, 2Eg, pEg, and E —Eg, for which the
solutions (21), (22), and (19) are used as before. Equation (30) for large E turns out to be a finite series of
(E Es) '/~, in—volving a constant, (E Es) /,—(E Es) /, K—(E), and (E Es) / ter—ms. We use the
approximation that Fqs. (21) and (19) satisfy Eq. (30) to the extent that the constant and the terms
(E Es) and—(E Es) '/ van—ish. Then

(32)

(n(E)}=0, E~E,
where K(E) is given by Eq. (15) and the assumption ficoo &&E is again used to expand (n(E —freon) ) by a
Taylor series. The random-k approximation is used to calculate the single ionization scattering rate r(E) as
before. On the other hand, momentum conservation is explicitly taken into account to calculate the scatter-
ing rate ic(E) by phonon emission.

Evaluation of to(E) is made in Ref. 9 using time-dependent perturbation theory for the deformation po-
tential and the polar-mode electrostatic potential in the free-electron model. The loss parameter K(E) has
the energy dependence.

2 I Eg —kg —1=0, (33)

v 5.0 Lo-

E

g 2.5-

E/Eg 0)06 ~o-4 )0-'

LOSS Pot'afVl8ter Ko/Eg

)00

FIG; l. Quantum yield (n(E)) vs E/E~ for different
values of the loss parameter Ko/Es calculated from Eqs.
(21), (22), and (19) mth (18) and p =4.

FIG. 2. Dependence of relative yield F on the loss
parameter Eo/Eg calculated from Eq. (28) with p =4.
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I 35(4p9/~/63 —Sp / /35+ 32v 2p /35 —64v 2/63)
D(p)Es

)& [15(p 2)1,/2+2p5/2 —Sv 2+(4p5/ —20v 2p+24v 2)F(2Es)]

—15(4p'"/35 —Sp'"/15+16v 2p/15 —32v 2/35)

&& [35(p —2)I„,+2p'" —16v 2+(4p'" —56v 2p+S0v 2)F(2E, )]I,

D(p) =35(4p / /63 —Sp / /35+32v 2p/35 —64v 2/63)(10p5 2 —16v 2p —Sv 2)

—15(4p / /35 —Sp / /15+ 16v 2p/15 —32v 2/35)(10p / —32v2p —16v 2), (35)

E (s/2—+ 1 ) s dEi(E~)s/2F(E~ )n/2 g
(36)

F(E)=1—exp —J~g E(E')

In the absence of phonon loss E(E)=0, Eq. (34)
gives F=0.652. In Fig. 3, {n(E)) is plotted
versus E for different parameter values St and

S2 ——0, with p =4. Figure 4(a) gives the relative

yield Y'as a function of S~ for different values of
S2. Figure 4(b) gives Y' as a function of S2 for dif-
ferent values of S~. The present results are com-
pared with the computer calculations in Ref. 6
which give F=0.617 Eg

' for no phonon loss, i.e.,
St ——S2 ——0, and K=0 30 Es

'
f. or S)/Es ——0.21

and S2 ——0. ' The analytical result (34), however,

approaches a finite value, 0.298, in the limit of
very large St or S2. This occurs because {n (E))
is approximated by the linear solution in the low-

energy region down to E =4Eg. The region where

the linear solution holds shifts toward higher ener-

gy as the phonon loss parameter S~ or S2 in-

creases. Thus, the preceding approximation for

l o.

o 05
0
0'

\

lO ~ lO~

Loss Porarneter 8, /Eg

LIJ

I.O .

a 0.5
Q

K

S/E 9

5
E/Eg

IO

lo ~ loo

Loss Parameter Sz/Eg~

FIG. 3. Quantum yield {n(E) ) vs E/Es for different
values of the loss parameter S~/Eg with Sz/Eg =0 and

fmo/Eg ——0.025 calculated from Eqs. (21), (22), and (19)
with (32) and p =4.

FIG. 4. Relative yield F is plotted as a function of
S&/Eg in (a) and as a function of Sz/Eg in (b). Calcula-
tions done with ficoo/Eg ——0.025 and p =4 from Eq. (34).
Computer calculations marked by open circles for Sz ——0
were taken from Fig. 3 of Ref. 6.
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solving the limiting yield for large phonon loss be-

comes inadequate. In actual semiconductors, the
parameter 8& /Es is smaller than 0.5 and S2/Es
smaller than 500, values for which the analytical
method gives reasonable results in agreement with
the results of Ref. 6 for Sz ——0. Agreement is
within 10%.

IV. DISCUSSION

An analytical approach to calculate the quantum
yield of e-h pairs in semiconductors has been
developed based on the probability method. The
relative quantum yield, which is equal to the in-
verse of the average pair-creation energy, is given

by the slope of the asymptotic linear solution of
(n (E)}for large E. The slope is determined by
making use of the solutions for small E regions.
An alternative method to determine the slope is to
make use of the exact solution of (n (E)}at one
point in the linear region obtained by computer
calculations. Since K(E) in general decreases as E
increases, the relation A ~E~ —1=282, as given by
Eqs. (25) and (33), holds irrespective of the details
of the band structure and the state densities. Then,
from Eq. (19) the limiting yield is evaluated by

2(n(E})+1
2E +Eg

in terms of (n (E)} in the linear region. The va-
lidity of Eq. (38) can easily be checked with the
results of computer calculations of (n(E) ). The
slope in the linear region is 0.39 Es

' for CdS
(Es =2.41 eV) and 0.48 Es

' for ZnO (Es =3.35
eV} [see Figs. 9(a) and 9(b) of Ref. 6]. From Eq.
(38) one obtains I'=0.40 Es

' with the computer
solution (n{E)}=2.27 at E= 15 eV for CdS, and
1'=0.49Es with (n(E) }=2.0 at E=17 eV for
ZnO, both in reasonable agreement with the com-
puter results. In fact, the alternative method is
more accurate than the method presented in the
preceding section for the case of large phonon loss.
In contrast, the assumption of an energy-
independent loss parameter j' =const, as used in
the original crazy-carpentry model, leads to the re-
lation {Es+K)A~—1=232. This in turn gives

, 2&.(E)&+I'
2E+E,+E

The denominator inyolves the loss parameter E to
deduce the value of K Thus, the assumption of
constant E tends to overestimate the phonon loss
contrary to the fact that it is dominant only in the
energy region a few times above threshold, and

consequently gives a smaller quantum yield in the
higher-energy region.

The loss-parameter constant, Eo of Eq. (18) in
the extended crazy-carpentry model, and S~ and S2
of Eq. (32) in the free-particle model, can be
described in terms of the physical properties of the
materials. " In semiconductors, the phonon loss is
contributed by the deformation potential and the
polar-mode electrostatic potential. Using the
time-dependent perturbation theory with the
random-k approximation one obtains

1

h(E/W)
i
M

i

pg KE

where the first and the second terms arise from the
deformation potential and the polar-mode electro-
static potential, respectively. The notations are as
follows: W is the bandwidth, M is the matrix ele-
ment of the screened Coulomb interaction, p is the
density of the lattice, a is the lattice constants, E~
is the deformation-potential parameter,
@~={@„'—eo ') ' with e„and eo being the high-
frequency and static dielectric constants, and mo is
the frequency of the longitudinal-optical phonon.

Similarly, St and S2 of Eq. (32) are given by

~'~'~E, ~'

46[M~ Vpm a
and (41}

m'A'e'

646. iM j V m
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As is clear from Eq. (40) for the constant density
of states, and Eqs. (32) and (41) for the free-
particle model, the term of the deformation poten-
tial in the loss parameter is insensitive to the
optical-phonon frequency mo, whereas the term
from the polar-mode electrostatic potential in-
creases as coo. Therefore, the polar semiconductors
with higher polar-mode optical phonons have
greater phonon loss and a smaller yield. The em-
pirical correlation between a high ir optical-phonon
frequency and a poor cathodoluminescent efficien-
cy for a group of oxyanion phosphors seems to in-
indicate that the polar-mode eleetrostatie potential
dominates the deformation potential as a cause of
phonon loss in these materials.
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