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Quantum-limit magnetoresistance in intrinsic semiconductors
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The magnetoresistance of intrinsic semiconductors is calculated theoretically in the
quantum limit where only the lowest Landau level is thermally populated. The variation
of the intrinsic carrier concentration with magnetic field is taken into account. We find
that in this limit the magnetoresistance increases exponentially with magnetic field due to
the field-induced freeze-out of the intrinsic carriers. This arises because of the increase in

the effective band gap of the semiconductor with magnetic field.

I. INTRODUCTION

The study of electrical transport in semiconduc-
tors in the presence of a magnetic field yields use-

ful information about the various electronic prop-
erties related to band structure and scattering
IIlccliaIllsIIls. At, low 111ag11ctlc f1clds, tllc scIniclas-
sical Boltzmann transport equation is adequate for
the description of electronic transport, ' both in
intrinsic and extrinsic semiconductors. The mag-
netic field is treated as a perturbation in this semi-

classical approach under the condition Sop, & kz T
(classical limit), where co, = 8e/ 'ntiscthe cyclo-
tron frequency of the electrons of effective mass
m* in a magnetic field 8. This semiclassical ap-

proach predicts a quadratic dependence of the
magnetoresistance on magnetic field for intrinsic as
well as extrinsic semiconductors. In high magnet-
ic fields, when fico, )kii T, the quantized nature of
the electronic energy levels needs to be taken into
account. A quantum theory for the extrinsic case
was developed earlier by Arora and Peterson and

was found to give, in the quantum limit, a linear
Inagnetoresistance for the case of the spherical par-
abolic band model.

Recently, there has been renewed interest in the
magnetoresistance of narrow band-gap semiconduc-
tors "which do have an appreciable concentra-
tion of intrinsic carriers even at low temperatures.
Some experimental results on intrinsic magne-
toresistance were reported earlier by Bate et al. '

Vhth the advent of higher magnetic fields"' and

the development of narrow band-gap semiconduc-
tors with small effective masses for the carriers, '

it is of interest to investigate the quantum limit
magnetoresistance of intrinsic semiconductors. Be-
cause of the narrow band gaps, relatively pure
samples can remain intrinsic down to lower tem-
peratures while with higher magnetic fields and

smaller carrier effective masses, the condition

fico, ~ k& T, which is needed for the quantum limit,
can be attained at higher temperatures.

In this paper, we apply the theory developed by
Arora and Peterson3 to intrinsic semiconductors.
The application of this theory to intrinsic semicon-
ductors requires two modifications: taking into ac-
count the conductivities of both the electrons and
holes and considering the magnetic field depen-

dence of the intrinsic carrier concentration due to
the increase in the effective band gap with magnet-
ic field. The latter effect, which leads to the mag-
netic freeze-out of the intrinsic carrier concentra-
tion with magnetic field, dominates the magnetic
field dependence of the magnetoresistance, leading
to an exponentially increasing magnetoresistance
with magnetic field.

In Sec. II we obtain the components of the con-
ductivity tensor for an intrinsic semiconductor
with equal concentrations of electrons and holes.
In Sec. III we obtain the intrinsic carrier concen-
tration in a nondegenerate semiconductor as a
function of magnetic field and use the results to
obtain in Sec. IV the magnetoresistance for acous-
tic phonon and ionized impurity scattering in in-
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trinsic semiconductors. Finally, in Sec. V, we
present a discussion of the results which we have
obtained.

II. MAGNETOCONDUCTIVITY IN
INTRINSIC SEMICONDUCTORS

nons and ionized impurities, respectively. Using
the electron and hole conductivities from Eq. (2) in
Eq. (1), we obtain for the components of the mag-
netoconductivity tensor transverse to the magnetic
field

tP, »P. '+P»ln13» ' y(P—, +P»)],
In an intrinsic semiconductor the densities of

negatively charged electrons and positively charged
holes are equal, n =p. Since the total current in an
intrinsic semiconductor is the sum of the electron
and hole currents J = J,+ JI„ the conductivity
tensor is given by

77' nec
op

—— (p» —p, )

(4a)

(4b)

0 =0'e+0'h ~

where 0, and aI, are the electron and hole magne-
toconductivity tensors, respectively. From our pre-
vious results for the components of the magneto-
conductivity tensor, we have

necP»
o'i, ——

,~~ (InP, —y),
(2a)

necP»
Oi»= „, (1 6' r»—

(2b)

where P is a parameter which in general depends
upon the magnetic field B and absolute tempera-
ture T and on the mechanism by which the elec-
trons and holes are scattered. e and h denote
quantities associated with the electrons and holes,
respectively, y=0.57 is Euler's constant, and the
remaining notation is the same as that used in our
previous work. Here, the subscripts 1 and 2
denote the directions of the applied electric field
and the Hall field, respectively. For deformation-
potential scattering of the carriers by acoustic pho-
nons

III. INTRINSIC CARRIER CONCENTRATION

' 3/2

n(0)=2
2

(m, m») ~ exp
B

where m, (m») is the electron (hole) effective mass
and Eg is the band gap separating the conduction
band from the valence band. In the presence of
the magnetic field, the derivation of the intrinsic
carrier concentration is the same except that the
energy eigenvalues of the electrons and holes in a
magnetic field are used. The electron and hole
concentrations are given by

n= g f+" dke px
2 iric» p

'N AT

and

(6a)

The derivation of the intrinsic carrier concentra-
tion in semiconductors in the absence of a magnet-
ic field can be found in many textbooks. 's The re-
sult for the zero-field intrinsic carrier concentra-
tion is

2'
3m' kg T~,

(3a) y I" dk, exp (6b)

8 kgT
eo'

C J

(3b)

while for the scattering of the carriers by ionized
impurities

where E~ is the Fermi energy of the carriers and
the electron and hole energies measured from the
top of the valence band are

where r, and r; are the zero-field relaxation times
for the scattering of the carriers by acoustic pho-

(haik»)
E, =Es+ (n + , )fico„+-

2Ptl~
(7a)
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(irik, )
Ei, = (n—+ , ) iir-co, s-

2m~
(7b)

eB
27FRc

1/2 exp
m, AT

21rfi' fKO~~
sinh

(Sa)

and

. 1/2 exp
mgkg T

27rrp Aced,
sinh

2

In an intrinsic semiconductor n =p and using this
result together with Eq. (8), we obtain the mag-
netic-field-dependent intrinsic carrier concentration

1/2
ATn(8)=

21tflC 2

X
2k' T

. in
(fico„) (fico,s )

sinh sinh
2 gT

respectively. Here m; is the effective mass of the
ith carrier and co„=e8/m;c the carrier cyclotron
frequency. Using the energy eigenvalues given by
Eq. (7) in Eq. (6), we get the following for the elec-
tron and hole densities:

1/2
n (8) ~ce
n(0) kgT

eo„
4k~ T

Here we have assumed (as is frequently the case)
that the electrons are the lighter carriers and the
holes the heavier carriers.

IV. MAGNETORESISTANCE

The transverse magnetoresistance and the Hall
coefficient can be related to the components of the

magnetoconductivity tensor 0.
1 and 0.2.

JpE
PT=

m'/28

o-1+0-z «c A '+ C'

(12)

Es(8)=Eg(0)+ , fi(—coce+cocs ) .

As a result of the increase of the effective band

gap with field, the concentration of carriers ther-
mally excited across the band gap to yield elec-
tron-hole pairs decreases.

Another case of interest occurs in semiconduc-
tors where one type of carrier has a much smaller
effective mass than the other (for example, InSb,
where the electron effective mass m, =0.013mo
while the hole effective mass' mI, ——0.52mo, where

mo is the free-electron mass). In this case, at rea-
sonable laboratory magnetic fields, the quantum
limit applies for the lighter carrier while the classi-
cal limit is valid for the heavier carrier. Under
these conditions, the intrinsic carrier concentration
still decreases exponentially with increasing mag-
netic fields:

In the classical limit, ficocc &&ks T, Eq. (9)
reduces to the zero-field result given by Eq. (5).
the quantum limit, where the condition fico„» ks T is satisfied for both types of carriers, the

ratio of the intrinsic carrier concentration to its
zero-field values reduces to

R8= E2 O1

01+02

~'"a c
nec

(13)

n (8)
n (0)

eAB
p (coce+coci )

(m, m„) ck, T 4ksT

~ =P.»P, '+Pi In' ' r(P, +Pa)—

(10) C =n(Ps —Pe) . (14b)

In this limit, the intrinsic carrier concentration de-

creases exponentially with increasing magnetic
field. This magnetic-field-induced freeze out of
the intrinsic carrier concentration is due to the in-

crease in the effective band gap with magnetic
field, i.e.,

Here J T is the component of the current flowing

transverse to the magnetic field and E2 is the Hall

field induced under open circuit conditions (Jz ——0).
In terms of the zero-field intrinsic carrier concen-

tration, the transverse magnetoresistance and the
Hall coefficient are
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(n.m, mi, )' kg T

n(0)e iri

r

&exp (~ce +eicos ) (15)

(5lB~B'tg ) kjiTRB=
n(0)e iri A +C

P

fg
Xexp (co~~+co~g }

V. DISCUSSION AND SUMMARY

In intrinsic semiconductors, in magnetic fields
such that the quantum limit can be attained for at
least one type of carrier, we expect that both the
transverse and longitudinal magnetoresistance, as
well as the Hall coefficient, will be exponentially
increasing functions of the magnetic field. This
exponential increase with field arises from the
freeze out of the intrinsic carrier concentration due
to the increase of the effective band gap with mag-
netic field. The exponential increase should dom-
inate the magnetoresistance regardless of the de-
tailed mechanism by which the carriers are scat-
tered.

In cases of practical interest, intrinsic and ex-
trinsic behavior can be simultaneously present in a
particular semiconducting example. As is expect-

For acoustic phonon scattering via deformation-
potential coupling, P and therefore A and C are in-

dependent of magnetic field, " and the transverse
magnetoresistance shows a purely exponential in-

crease with magnetic field. For ionized impurity
scattering, P and therefore A and C are monotoni-

cally decreasing functions of magnetic field, ~ and

the preexponential factor in Eq. (15}increases as
8 . However, both the transverse magnetoresis-
tance and the Hall coefficient are dominated by the
exponential increase with magnetic field due to
carrier freeze out.

Expressions similar to (12) and (15) can be ob-

tained for the longitudinal magnetoresistance.

Again, regardless of the detailed scattering mech-

anism, the longitudinal magnetoresistance will in-

crease exponentially with magnetic field in the
quantum limit due to the freeze out of the intrinsic
carrier concentration.

ed, in wide-band-gap doped semiconductors, the in-

trinsic carrier concentration is neg1igibly small at
low temperatures, thereby giving rise to purely ex-
trinsic conduction. The application of a magnetic
field suppresses even further the intrinsic character
due to the freeze out of the intrinsic carrier con-
centration. On the other hand, in narrow-band-gap
semiconductors, the intrinsic carriers control the
conductivity at sufficiently high temperature and
this dominance may continue even in the low-

temperature regime if the gap is small enough. At
this stage, it may be useful to define a "critical
temperature" T, at which an intrinsic-extrinsic
transition takes place. Obviously T, so defined
wi11 depend upon the doped carrier concentration
and the magnetic field. At temperatures much
lower than T„the semiconductor may exhibit ex-
trinsic character, and at temperatures much higher
than T„ it may exhibit an intrinsic character.

The presence of a magnetic field which induces
the freeze out of the carriers will tend to increase

T, because the effective band gap is larger in a
magnetic field. In the extrinsic regime, below T„
a change in power law from quadratic (classical
limit) to linear (quantum limit) behavior of the
magnetoresistance with increasing magnetic field is
predicted by us and is confirmed by a number of
experimental works. ' ' ' ' In the intrinsic re-

gime, above T„ the magnetoresistance is expected
to show the exponential behavior predicted by Eq.
(15). Nimtz and Schlicht' have measured experi-
mentally the longitudinal magnetoresistance in

Hgo &C102Te at a magnetic field of 8=74 kG and
have observed the magnetoresistance as a function
of temperature. The lattice temperature depen-
dence observed by them can be fitted with an ex-
ponential function of the form exp(a/T ), where
a=9K in the temperature range between 4 and 1.8
K. It would be interesting to observe the magnetic
field dependence of a to see if it conforms to that
predicted by our theory. They attribute this
unusual behavior to electron localization in the
form of a Wigner lattice' predicted by several

theories. They conclude their results by stat-
ing that the unusual behavior of the magnetoresis-
tance suggests the breakdown of the independent
particle model by the formation of a highly corre-
lated electronic ground state (Wigner condensa-
tion).

Localization theories predict a phase transi-
tion of an electron gas in a magnetic field, but the
temperature at which this phase transition takes
place is shown to be below 1 K. For example, in a
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recent work of Gerhardt, a critical temperature
of 1 K is predicted at a magnetic field of 50 kG.
This critical temperature is shown to be a function
of carrier concentration as well as magnetic field.
Although it is claimed that the predicted critical
temperature is in qualitative agreement with exper-
iments, no systematic experimental study of the
dependence of the critical temperature on magnetic
field or electron concentration is reported. At this
stage, we are unable to make any useful compari-
son of the prediction of localization theories with
the results presented in this paper.

The freeze out predicted by Eq. (10) becomes ap-
parent in several reported experimental observa-
tions. ' Raymond pp pl. have observed a
freeze-out effect in Hgi «Cd„Te (0.18 &x &0.34).
They have specifically indicated a transition be-
tween degenerate statistics in weak magnetic fields
(Shubnikov —de Haas effect) and nondegenerate
statistics in high magnetic field (freeze-out effect).
The activation energy is found to increase with
magnetic field approximately linearly at high mag-
netic fields. Although our simple parabolic model
predicts a linear rise in activation energy with
magnetic field, deviations from this behavior are
expected in a nonparabolic model where %co, is to
be replaced by E„+i(k)—E„(k), where E„(k) is the
quantized energy of an electron in a nonparabolic
model. A similar freeze out has been reported by
Sugihara in his experiments on graphite. Our
theoretical results above are consistent with these
experimental observations.

As stated earlier, our model is strictly valid for
parabolic semiconductors in which spin splitting is
neglected. The inclusion of nonparabolicity should

give results slightly different from those given by
the simple parabolic model. Analytical expressions
so obtained are not so simple, but should be in-

eluded for any quantitative study. It was recently
shown by Arora that in parabolic semiconduc-
tors, the spin splitting does not affect the magne-
toresistance. But, in nonparabolic semiconductors,
this may not be so. Of course spin splitting will be
very important in magnetic semiconductors where
spin-fiip interaction may play an active role in re-
laxation phenomena.

Finally, several theoretical and experimen-
tal works have considered the magnetoresistance
in this extrinsic hopping conductivity region.
Mikoshiba has predicted an exponentially increas-
ing magnetoresistance in this region which has
been experimentally observed in low carrier-
concentration samples of transmutation doped
Ge. However, the argument of the exponential
for extrinsic hopping conduction is quadratic in
the magnetic field, while for the freeze-out effect
we predict, this argument of the exponential is
linear in the magnetic field. Therefore, these two
mechanisms predicting an exponentially increasing
magnetoresistance should be experimentally distin-
guishable. In conclusion, we predict an exponen-
tially increasing magnetoresistance in narrow-
band-gap intrinsic semiconductors due to carrier
freeze out which is consistent with experimental
observation.
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