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On the basis of both theoretical and experimental studies, it has been suggested that the
low-energy charge-excitations introduced into polyacetylene by light doping are charged
solitons. However, these solitons are normally bound to oppositely charged impurities so
that soliton conduction is inefficient at room temperature and below. In the presence of
both charged and neutral solitons an alternative conduction mechanism is possible;
phonon-assisted hopping between the localized electronic midgap states associated with
the soliton. This is a novel process as it involves hopping between dynamical defects.
The theory of this process is developed in detail in terms of a three-dimensional generali-
zation of the microscopic model of Su, Schrieffer, and Heeger, and found to be consistent
with experiment. Because of the disorder, namely the random distribution of impurities,
the conduction pathways are essentially three dimensional, with interchain hops dominat-

ing intrachain hops.

I. INTRODUCTION

Since it was suggested that domain-wall, or soli-
ton, excitations may play an important role in
determining various magnetic and transport prop-
erties of undoped and lightly doped trans-poly-
acetylene, considerable theoretical' ~® and experi-
mental® 6 interest has focused on exploring the
consequences of the soliton model. The model,
however, has not been universally accepted, partial-
ly due to its seeming inability to account for the
observed temperature and field dependences of the
conductivity and thermopower (and partially due
to some controversy concerning certain of the ex-
perimental data'®). Thus, it is our purpose in this
paper to study the transport properties of lightly
doped polyacetylene within the context of the soli-
ton model, and then to make a cursory comparison
between theory and experiment. In addition, some
novel aspects of the low-temperature conduction
mechanism, electron hopping between dynamical
defects, make the problem quite interesting in its
own right, independent of any particular model
system. A brief preliminary report on this work is
contained in Ref. 7.

The soliton model of trans-polyacetylene has
been explored extensively by Su, Schrieffer, and
Heeger! (SSH) and others. They show that a single
strand of polyacetylene can be treated approxi-
mately as a chain of atoms with one Wannier func-
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tion of each spin per atom, corresponding to the
carbon 7 orbital. (The o electrons are adiabatic
slaves to the ionic coordinates, and excitations of
the o system play little role in the physics.) Un-
doped polyacetylene, shown schematically in Fig.
1(a), has one electron per carbon. A Peierls distor-
tion with a period of two lattice constants (dimeri-
zation) opens up a band gap of 2A, in the electron-
ic spectrum at the Fermi energy, and hence makes
the system an insulator [see Fig. 2(a)]. Because A,
is large compared to a typical phonon energy, the
electronic and ionic parts of the problem can be
factored within the Born-Oppenheimer approxima-
tion. Two different senses of the dimerization are
possible, one in which even numbered carbons
move to the right (4 phase), the other in which
they move left (B phase), hence there are two de-
generate ground states. A soliton is the boundary
between a region of 4 phase and B phase, as shown
schematically in Fig. 1(b). The picture is some-
what misleading as the actual soliton width, 2&, is
estimated by SSH to be about 15 lattice constants.
Associated with the soliton is a localized midgap
(nonbonding) electronic state, as shown in Fig. 2(b).
In the neutral soliton, this midgap state is singly
occupied, hence the soliton-has spin % Ifa
second electron is added to the midgap state or if
the original electron is removed, a charged soliton
with spin O remains. Polyacetylene also exists in
another isomer, cis-(CH), shown schematically in
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FIG. 1. Schematic representation of a piece of a neu-
tral transpolyacetylene chain; (a) perfectly dimerized,
and (b) containing a soliton and a single, unpaired, non-
bonding electron. (b) is somewhat oversimplified as the
actual soliton is spread out over about 15 lattice sites.
(c) and (d) show schematically the two possible, in-
equivalent bonding configurations of cis-polyacetylene.

Figs. 1(c) and 1(d). cis differs from trans in that
the two senses of the dimerization are inequivalent.
Thus, single solitons are energetically forbidden in
cis-(CH),. The present theory, therefore, pertains
only to trans-(CH),.

In undoped and lightly doped polyacetylene
there is a small number of neutral solitons. Their
concentration' (typically of order one per 3000
carbons in undoped polyacetylene) can be estimated
quite accurately from the Curie-law susceptibility
to which they give rise.!” There is evidence from
ESR and NMR experiments that they are quite
mobile, which suggests a small soliton effective
mass (SSH estimate that m* ~6m,). Upon dop-
ing, charge is transferred from the dopant to the
polyacetylene chain, either by changing the occu-
pancy of a preexisting neutral soliton!” or by the
induced creation of a new, charged soliton.!* A
charged soliton, too, would be quite mobile, were it
not for the fact that it is bound rather strongly to
the remaining charged impurity by their mutual
Coulomb attraction with binding energy E,. Esti-
mates due to SSH of the various parameters which
enter the model are summarized in Table I. The
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FIG. 2. Schematic representation of the density of
states of a polyacetylene chain: (a) perfectly dimerized,
and (b) containing a soliton. The position of the Fermi
energy is appropriate to a neutral chain.

estimate of E, ~0.3 eV was obtained by SSH as-
suming that the electronic charge is screened by
the full in-chain dielectric constant « which is
found experimentally to be about 10. The screen-
ing at the short distances involved which is prob-
ably less than the full dielectric screening, so the
0.3 eV is probably an underestimate of E,.

Spin diffusion at all temperatures of interest is
dominated by the motion of the neutral solitons
(characterized by a neutral soliton diffusion con-
stant D,). This motion is highly one dimensional
as the soliton is a topological excitation and so
cannot hop between chains. We shall see that a
small amount of spin diffusion perpendicular to
the chain (three-dimensional diffusion) is possible
due to electrons hopping between solitons.

Charged transport is somewhat more complicat-
ed. At high temperatures, it is presumably dom-
inated by charge-soliton diffusion. However, only
those charged solitons that are not bound to a
charged impurity (dopant) contribute to the con-
ductivity. As shown in Sec. IV their contribution
to the conductivity is

—Ey/kgT 1
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TABLE 1. Physical parameters of polyacetylene and other frequently used symbols.
Physical parameters
Estimated
Parameter Description value Reference
4t 7 bandwidth 10 eV SSH
24, band gap 14 eV SSH
a chain length per carbon 122 A SSH
b interchain separation 439 A Ref. 10
&l in-chain electron decay length Ta SSH
& out-of-chain electron decay length 23 A Appendix
N typical number of carbons per chain 3000 Ref. 10
E, soliton binding energy to a charged impurity >0.3 eV Sec. IV
fiwg typical optical-phonon frequency 0.15 eV MR
fiw, soliton vibrational energy 0.06 eV SSH
fido half-width of optical-phonon spectrum 0.05 eV MR
c speed of sound MR
Other important symbols
Defining
Symbol Description Eq.
Ol Free-soliton contribution to the conductivity (1)
Ohop Hopping contribution to the conductivity (2)
D, Neutral-soliton diffusion constant (59)
Dy, Charged-soliton diffusion constant (1)
Yn Concentration of neutral solitons per carbon
Yen Concentration of charged solitons per carbon
Cimp Concentration of charged impurities per
unit volume
nT) Hopping-rate prefactor (28) and (57)
£(K) Electronic-overlap integral between soliton bound states
(24) and (27)
Ao Nonadiabatic electron-phonon coupling constant
(12)
g(E) Electron-phonon coupling function (22) and (55)

where the exponential factor reflects the fraction of
solitons that are “free” [see Eq. (61)]. D, is the
diffusion constant of a free charged soliton.

At low temperatures the number of free solitons
is so small that a conduction mechanism with a
smaller activation energy takes over. Consider, for
instance, a negatively charged soliton bound to a
positively charged impurity on one chain and a
neutral soliton on another, nearby chain. It is al-
ways possible for the electron to make a phonon-
assisted transition, or “hop,” from the charged sol-
iton to the neutral soliton. If the neutral soliton is
isolated (that is, far from any charged impurity),
this process is energetically as costly as liberating a
charged soliton from an impurity. However, if the

neutral soliton happens to be near another impuri-
ty, a situation shown schematically in Fig. 3, then
the energetic cost is much reduced. The resulting
conductivity, as derived in Sec. III is

2,
(T) | & |_YnYeh  —2BRy/E
Opop ALt LA R )
P ks TN | R3 | n+yen)?

where A and B are pure numbers [see Eq. (38)],

Y T) is a frequency defined in Eq. (28),
cimp=(%ﬂ'RS)‘l is the concentration of charged
impurities, £ is an average decay length of the elec-
tronic wave function defined in Eq. (37), y, and
Y are the concentration of neutral and charged
solitons per carbon atom, and N is the number of
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FIG. 3. Schematic representation of soliton conduc-
tion. (a) Free-soliton conduction in which a bound
charged soliton is thermally liberated. (b) Hopping of
an electron between soliton bound states. The &
represents a positively charged impurity, 2 represents a
soliton, and the arrows represent electrons of given spin
orientation in the soliton bound state.

carbons per polyacetelene chain. ¥(T)/N is a
characteristic frequency which is proportional to
the fraction of time a pair of solitons are so situat-
ed that the initial and final soliton states are
within about k3T of each other. The final ex-
ponential factor reflects the electronic overlap be-
tween two solitons separated by the typical inter-
impurity distance, R,.

Because of the small probability of the electron
tunneling over the rather large distances involved
in the hopping, free-soliton conduction will always
dominate at high enough temperatures. However,
as the temperature is lowered, the energetics be-
come increasingly important, until eventually hop-
ping dominates. This is reflected in the relatively
slow temperature dependence of Eq. (2) when com-
pared with the exponential temperature dependence
of Eq. (1). The hopping process is also responsible
for the three-dimensional component of the spin
diffusion.

The plan of the paper is as follows: In Sec. I, a
simple phenomenological reduced Hamiltonian is
derived which describes the soliton-impurity sys-
tem, and a formal expression for the hopping rate
between a pair of solitons is obtained. This rate is
then used to obtain expressions for the hopping
contribution to the various transport coefficients.
In Sec. III, a generalized version of the microscop-

ic model Hamiltonian of SSH is taken to represent
(CH),, so that the parameters which enter the re-
duced Hamiltonian can be evaluated. The assumed
values of physical quantities are those listed in
Table I. Thus, the transport coefficients are ulti-
mately calculated from a microscopic model of
(CH),. Section IV contains a brief discussion of
the free-soliton contribution to the same transport
coefficients. In Sec. V, the theoretical results are
compared with the results of existing experiments,
and predictions are made concerning possible fu-
ture experiments. In Sec. VI, some considerations
that are absent from the present model are dis-
cussed briefly. Chief among these is the effects of
electron-electron and soliton-soliton interactions
which will not be considered until this point. Be-
cause of the large number of symbols, the most
important symbols that occur throughout this pa-
per are listed in Table 1.

II. GENERAL CONSIDERATIONS

In this section, the formal manipulations re-
quired to calculate the transport coefficients of in-
terest are discussed. As the considerations are
quite general, no detailed model of polyacetylene is
adopted. All that is assumed is the existence of
solitons of the general nature described in the In-
troduction and the presence of disorder which is
represented as an impurity potential, ¥jp,. In Sec.
IT A, the hopping rate between a pair of solitons is
derived. Then in Sec. II B, the rate equation for
hopping transport is reviewed briefly, and expres-
sions for the conductivity and thermopower are de-
rived in terms of the average hopping rates. The
theory of multiphonon transitions between local-
ized states has been discussed extensively in the
literature,'® so those steps in the derivation that are
similar to the case of hopping between impurities
have been omitted. However, there are two aspects
of the soliton problem that are not present in the
impurity problem. The first is that the soliton is a
complicated collective excitation which involves a
distortion of the full many-electron wave function
and a classical lattice distortion. Thus, the transi-
tion rate of interest does not simply involve a
change in the state of one electron. The second
complication involves the presence of the Gold-
stone mode associated with the translational mo-
tion of the soliton. This mode must be treated on
a separate footing from the rest of the phonon
modes by defining a collective coordinate which
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specifies the position of the soliton.’ Despite
these complications, we find that for small soliton
effective mass [as in (CH), ], the present hopping
problem is equivalent to hopping between impuri-
ties with a spectrum of bound states. Finally, we
conclude the section by obtaining a criterion for
determining whether one-dimensional (intrachain)
or three-dimensional (interchain) hopping is dom-
inant.

A. The two-soliton problem

A collection of polyacetylene chains and impuri-
ties can be represented by the Hamiltonian

- = Py
H=H(RD+Vimp+ U(RD+ S 25, )

7 2
where H, is the electronic Hamiltonian of the pure
system which depends parametrically on the set of
ionic coordinate { R }, Viy,, is the potential due to
the impurities, U is the ionic potential energy
(which includes the effects of the o electrons), P,
is the momentum of the nth C-H group on the /th
chain, and M is the C-H mass. The system is con-
strained to have a soliton on two of the chains,
which will be arbitrarily labeled 1 and 2.

To begin with, consider the case in which both
solitons are negatively charged (doubly occupied).
This situation can be treated accurately within the
Born-Oppenheimer approximation, hence the elec-

tronic and ionic wave functions can be factored.
Excitations of the electronic system, such as the

promotion of an electron to the conduction band or
the creation of a soliton-antisoliton pair all require
]

energies in excess of Ay and so are unimportant at
all relevant temperatures. The electronic ground
state |¢¥) will eventually serve as an effective vac-
uum state. The vibrational states can be expressed
in terms of the phonon creation operators b, by
expanding the ionic potential energy

TARD=(¢|[H{RD+Vimp] | )
+U({R}) 4)

to second order in displacement about { R'”}, the
minimum energy configuration is

2
Pnl

o |=2 Fiog(biba+7) - (5)

a

TERD+S
nl

Here a represents an appropriate set of quantum
numbers.

When an electron is removed from the system
there are two electron states that are important at
reasonable temperatures: those in which the nega-
tive charge (extra electron) is predominantly on sol-
iton 1, X;, or on soliton 2, X,. Hence, we need
only consider matrix elements of the Hamiltonian
in a reduced Hilbert space spanned by the direct
product states { X;¢;4 }, where the electronic state
vectors X; depend implicitly on { R }:

[H,({R D+ VimpWi({R})

=& ({R}X({R}) fori=1,2 6)
and ¢;4({ R }) is a vibrational eigenstate. If we
first separate out the translational mode for special
treatment, the Hamiltonian can be expanded to in

powers of V'm /M. To first order, the resulting
reduced Hamiltonian is

2 ) 2 .
H™ =3 |80+ 3 Afogbl +b,) |ala;+ 3 [Vimp(Xi)ala; + T(X)]
a

i=1

i=1

+ 3 fiogha(blh —bg)alay—ala) + 3 fiwgbiba+5) 7
a a

where ., is the sum over the same phonon modes
as in Eq. (6) excluding the soliton translational
modes, Vi, (X;) is the electrostatic potential ener-
gy of interaction between the soliton i (at position
X;) and the impurity to which it is bound, T is the
soliton kinetic energy, and a;r is the electron crea-
tion operator defined by the relation

(nl|a] | )=, . (8)

I

The dimensionless electron-phonon coupling con-
stants, ¥ and A, are both of order v'm,/M and
can be calculated in terms of the phonon wave
functions, ¢ 4(nl), according to the relations

. 1 - _
A= ———— DV &), )
a mam%‘ﬁa(n)( nl@i

and
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#i - t ¢ B(0)
la_—_“_ o l. R
—V_¢1 nSIqS(n)[Xl({ })

X Vo (ROD].

(10)

Since the translational mode is antisymmetric, Eq.
(9) gives a zero-linear electron-phonon coupling
when a is a translational mode. It is important to
note here that A is anamalously small. In the
absence of an impurity potential, the system (as
described by the SSH Hamiltonian) has particle-
hole or charge-conjugation symmetry, thus con-
straining the midgap state to lie at zero energy in-
dependent of the value of the phonon coordinates.
Thus, for an unpinned soliton, Af,i) =0. The only
reason that A is nonzero at all is that the impurity
potential breaks the charge conjugation symmetry.
Nonetheless, we expect A to be small. Indeed,
SSH have estimated the change, E,, in the binding
energy, E;, to a charged impurity of an oppositely
charged soliton due to its change in width and they
found that E, is less than 10% of E, [see SSH fol-
lowing Eq. (5.5)]. In Appendix C we show that for
E, << E}, multiphonon processes do not affect the
phonon-assisted hopping rate dramatically, other
than to smooth out any sharp features that might
otherwise be present. Thus, in the following dis-
cussion we will set A=0 and thus only consider
explicitly single-phonon processes.

We are now in the position to calculate the tran-
sition rate, v, from Fermi’s golden rule. The tran-
sition rate must be thermally averaged over initial
states and summed over final states. The result is
of the form

V= fd€1d€2V12(€2—€1)pl(El)ﬁ2(€2) . (11)

vi2(€—¢€,) is the transition rate that would result in
the absence of the translational modes (see Appen-
dix C). p;(E) in Eq. (11) is the probability that
when soliton / makes a transition from an initially
charged state to the neutral state, it will give up
energy € (could be negative) in the transition

o ~Ean/kaT
pile)= 2 VA I<¢ch‘¢n)l2
¢ch¢n ch
XSE,—E,—¢€), (12)

where

—E_ /kgT
Zch ___2 e ch/*B (13)
¢ch

and |¢q) (|¢,)) is a translational eigenstate of
the charged (neutral) soliton with energy E, (E,)
(note these energies include the potential energy of
interaction between the soliton and the impurity as
well as the soliton’s kinetic energy.) p;(€) is the
probability that the soliton translational mode will
absorb energy € in the reverse process

e—E,,/kBT
mile)= 3 —Z—|<¢n|¢ch)|2
¢ch¢n n
XOE,—E—e€), (14)
where
Zn___ze—En/kBT‘ (15)
én

In Sec. III, it is shown that the kinetic energy of
the neutral soliton is small. If E, can be neglect-
ed,?! the expressions for p;(€) and p;(€) can be sim-
plified and their physical interpretation becomes
transparent:

—e/kpT
_Pi(e)e e
p,-(e)——-—————-—z(T) (16)
and
_N pi€)
pile)= Z(a) 17)

where p;(€) is the density of states of the charged
soliton,

pi(€)=3 8(e—Ey), (18)
¢ch

and Z(T) is the corresponding partition function
[Z( 0 )=N, the number of carbons per chain].
Thus, if soliton 1 is initially charged, p;(€) (p,(€))
is the probability that the initial (final) state of sol-
iton 1 (2) has energy €.

The ¢, integral in Eq. (11) and the phonon-state
summations implicit in v, can be performed to
yield the expression

v=[depi(e) [.” dEg(E)E*{ pyle—E)[1+n(E)]+p3(e+E)n (E)+O(F(E)E,) } , (19)
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where g (E) is the effective electron-phonon coupling

g(E)=3 A\Z8(E —tfiw,) , (20)
a
and n(E)=(e ""87 1 1)~ is the Bose occupation
number.

To complete the formal derivation of the transi-
tion rate, the dependence of A, on the separation,
ﬁ, between solitons must be discussed. The
method of Miller and Abrahams'® (MA) is em-
ployed. Thus, we expand the electronic states |i)
in terms of the states |S;), where |S;) is the
bound-state wave function in the presence of a sin-
gle soliton |i). We define the parameter

_ <S1 lHetS> _ on

= , (23
(€1~€2) (61—62) )

and the overlap matrix
F=(81|52) . (24)

In general, we are also interested in the case

Iy>> | €,—¢€; | [see Eq. (23)], since I, is typically
of order of a few electron volts and | e;—e,| for
states of interest is of order kzT. In this limit it is
easily shown by the method of MA that

1 bo(n) BV (S, |H, |S,)
Mo, |

Ao=
“ (61—62) nl

(25)

From this it is apparent that the transition rate is
proportional to the square of the electronic overlap
% which dominates the position dependence of vi,.
& generally depends exponentially on R, so we
will assume

F(R)~exp{ —[(R) /&) + (R, /EDV?)
(26)

where R is the component of R along the chain
direction, and R, is the distance perpendicular to
the chain. Equation (27) reflects the anisotropic
effective-mass characteristic of a quasi-one-di-
mensional system. To simplify the percolation
analysis in Sec. II B, it is convenient to express v;;
as a product of an R-dependent overlap and an R-
independent part,

v=SARNT)1/N), 7
where the factor 1/N in the definition of ¥(T) re-

flects the probability that the neutral soliton is
near an impurity.

B. Rate equation

In this section expressions are derived for the
conductivity and the thermopower in terms of the
average two-site hopping rate in Eq. (27). The
method of Ambegaokar, Halperin, and Langer?
(AHL) is employed to convert the hopping prob-
lem to that on an equivalent resistor network.

Consider a simple model system consisting of
equivalent sites i, each of which can be either
unoccupied or occupied by a single electron. In
addition, however, suppose that at each site the
electron can occupy one of many states. These
sites, which we identify with the impurities in Sec.
IT A, are assumed to be randomly distributed with
a mean concentration c¢j,,. The average transition
rate from site i to site j is

rij=(n,~(1——nj))v,-j , (29)

where n; is the occupation number of site i and v;;
is a transition rate that is independent of the site-
occupation probability. In thermal equilibrium,

(n,-(l—-nj))=(n,~)((l—nj)) .

As in Eq. (14), v;; is the average transition rate
from states on site i to states on site j:

e_‘i/kBT
Vij= f deidej—ﬁ
P(ej)

Xp(ei)m

‘V,'j(é'i,é'j) N (30

where v;;(€,€;) is the transition rate from the state
of energy ¢; on site i, to the state of energy €; on
site j, and p(e) is the density of states on a given
site. The condition of detailed balance requires
that, in thermal equilibrium,

I =n91—nOw;=ry, (31)

where Fg-)) is the average flux from 7 to j in equili-
brium and

n®=1/{14exp[ —u/ksgT—InZ(T)]} ,
is the fraction of occupied sites.
Following AHL, we introduce a weak electric
field which perturbs the site energies,

€ —€ +e& 'R,‘ ,

and, consequently, the local chemical potential,



25 ELECTRON HOPPING IN A SOLITON BAND: CONDUCTION ... 3805

L =p+8u;, must be allowed to vary to insure so that the temperature at site i is T; =T+ 87T;.
current conservation. In addition we suppose, fol- The net flow from site i to site j can then be calcu-
lowing Emin,? that it is possible to define a local lated in a manner exactly analogous to the AHL
temperature which varies slowly across the sample, equation (4.3) and the Emin equation (3):

1 (0) - - — aln(F,J/FJ,)
I‘,]--I‘j,=7c;-]—;l",] eg-(Rl_RJ)-}-SI_Ll-——SlL] +kB(87l‘,—87j’)T'_-é?—' TeT=T . (32)
i i=4=

As in AHL, the first two terms in the large parentheses are the potential difference between sites i and j, so
the quantity

Gy=eTy) /kyT

can be interpreted as a conductance. In addition to the potential difference, there is a term proportional to
the temperature gradient. To evaluate the coefficient of this term, the derivative of I';; with respect to the
local temperatures T; and T; must be computed. vij(€;,€;) in the expression for T';; in Eq. (32) is the
quantum-mechanical transition rate for an electron in a state with energy ¢; on site i to a state with energy
€; on site j. Thus, it contains a complicated temperature dependence through the Bose occupation factors,
as can be seen explicitly in Eq. (30). However, because the phonon absorption or emission that accompanies
the transition is just as likely to occur in the vicinity of site i as in the vicinity of site j,

dV,'j(Gi,Gj) _ de,'(e,',Ej) (33)
dT;  |n=t=r  3T; |r=1,=1’
and therefore
Taln(r,]/l"],) _ kT (0) ko TInZ (T) 34
3T, Ti=Tj=T— €j+kpl In 70 +kp ( ) (34a)
where €;; is the average energy transported per hop:
—€;/kpgT
_ ple;de ple;)
6,-]'=‘V[j fdfideGi Z(T) Z () V,'j(fi,fj) . (34b)

If the average transition rate v, can be factored into an R-dependent overlap factor and an R-independent
factor as in Eq. (28), the conductivity and thermopower can be calculated separately. The thermopower is
especially simple, since &; =&, independent of i and j, so

S=7<e_{ €/kpT+1n[n'®/(1—n'9)]+1nZ(T) } . 35)
B

If, in addition, the electronic overlap factor takes the simple form described in Eq. (26), the dc conductivi-
ty is that of the so-called R-percolation problem.* An approximate analytic formula for the conductivity
can be obtained by the method of Butcher et al.,? as described in Appendix A. This approximation scheme
has been found to yield results in good quantitative agreement with results of computer simulation experi-
ments, and so can be used with some degree of confidence. Thus, if R, is the typical separation between
impurities (sites in the model problem),

Ro=(4mcip,/3)7173, (36)

and £ is the three-dimensionally averaged electronic decay length

E=(g D\, 37
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then,

n91—n'" ©1)

£
kseT N

R}

—2BRy/E

o=Ae?

where 4 =0.45 and B =1.39. To relate o in Eq.
(38) to the conductivity of polyacetylene, n‘® is in-
terpreted as the fraction of solitons that are
charged and 1—n'? the fraction that are neutral!’
[see Eq. (2)]. Because of the large-scale topological
disorder of polyacetylene, a single isotropic con-
ductivity is quoted in Eq. (38). In a single crystal,
a relatively small anistropy, o, /o) =(£,/§)))?,
would be observed where 0 (o) is the conductivi-
ty in the in-chain (out-of-chain) direction. The iso-
tropic conductivity observed in actual polyace-
tylene is the average over angles of o, and o,
a=%(au=201).

Two aspects of the above discussion warrant
closer attention. The first is the assumption that
all sites are equivalent. This assumption allowed
us to calculate the thermopower from the averaged
properties of the hop between a single pair of sites,
without considering the percolation aspects of the
problem which determine the conductivity. In the
presence of multiple flavors of sites, that is sites
possessing a variety of spectra, p;(€), the expression
for the thermopower must be averaged in a com-
plicated way over all possible pairs of sites. In the
case of hopping betweeen solitons, we in fact ex-
pect a variety in “site” characteristics due to a dis-
tribution of impurity-chain spacings, 8. However,
differences of up to a half an angstrom produce
only hundredths of volts changes in E, (SSH esti-
mate E; =0.3 eV for B=2.4 A, and E;, =0.32 ¢V
for B=2.0 A, and still smaller changes in w;.)
Since Eq. (35) depends only logarithmically on the
two-site transition rates, a distribution of soliton
binding energies of width 6E, will make, at most,
a contribution

8S~e/k3(5Eb/kBT)

to the thermopower. At the temperatures of in-
terest, this is small compared to the result in Eq.
(35). A variety in “site” characteristics can also
result from soliton-soliton and electron-electron in-
teractions. The discussion of this effect will be
postponed to Sec. V.

The second aspect is the assumed three-dimen-
sional (3D) nature of the hopping problem. In
computing the conductivity in Eq. (38), the quasi-
one-dimensional nature of the system was included

140

25
£, (38)
Ry
"
only in the anisotropy of the effective mass which

leads to the anisotropic electronic overlap factor
described in Eq. (26). The discrete nature of the
polyacetelene chains has been ignored. This ap-
proximation is valid so long as the typical inter-
chain hopping rate, v;p, is much greater than the
typical intrachain hopping rate, v;p. To test the
validity of this assumption, consider the typical 1D
and 3D hops:

lnv3D~ln‘y—2Ro/§ ’ (39)

where R is the typical separation between impuri-
ties given in Eq. (36), and £ is a dimensionally
averaged decay length [see Eq. (37)] which must
clearly be in the range &)1> &> &, on physical
grounds alone. Similarly,

‘V1D~ln'}’—2Rl/§|| ) (40)

where R is the typical separation between impuri-
ty sites on a given chain

121""(b2cimp)—1 ’ (41)

where b is the interchain separation. The linear
dependence of R; on ci;,i, as opposed to the one
third power dependence of R, implies that inter-
chain hopping always dominates intrachain hop-
ping at low impurity concentrations. In Appendix
B it is shown that the fraction of sites which have
Vip>V3p is
172
3
T

£

, cimpb3+0 (cizmp) .

This is much less than one at all the dopant con-
centrations considered in this paper. Notice, how-
ever, that the conduction becomes increasingly one
dimensional as the dopant concentration is in-
creased.

Finally, formal expressions for the ac conduc-
tivity o(w), the Hall mobility uy, and the hopping
contribution to the spin-diffusion constant Dy,
can be derived readily.

The ac hopping conductivity in a disordered sys-
tem is always much larger than the dc conductivi-
ty. Physically, this is due to the presence of pairs
or larger clusters of anomalously close sites be-
tween which an electron can hop at a rate far
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greater than the rate which characterizes the diffi-
cult hops on the percolation network. So long as
the photon energy #iw is small compared to kT,
the ac conductivity, like the dc conductivity, is
equivalent to that of an R-percolation network.

(At higher frequencies, photon-assisted hopping be-
|

zde (0)( 1— (0))
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comes important.) The pair approximation, which

yields results in good yields agreement with numer-
ical simulation experiments,?® provides an approxi-

mate anlaytic expression for the excess conductivi-

ty:

2 (Cimp)2 n @1 —n®) g“glﬁw[l (20/Tl*,

we clmlp f

olw)— ~ ks TN

O4c=
[w/l"o+21.7( )]

where T'g=no(1—ng)y/N.

An expression for the Hall mobility was ob-
tained by Friedman and Pollak,?” but it is expected
to be very small in the present system.

To obtain an expression for the conductivity, we
expanded the transition rates in Eq. (34) to first
order in e - (R R )/kgT. Therefore, non-
Ohmic effects are expected to become apparent for
electric fields greater than &

Fo=kpT/(eRpar) » @3)

where R ., is the longest characteristic hopping
distance on the percolation path. The same con-
siderations that led to Eq. (38), yield an expression
for R

(€,/€)BRy . (44)

char

The details of the electric-field dependence in the
non-Ohmic regime are complicated and will be
considered in a future publication.

Since the spin is transported at each hop (al-
though in the opposite direction to the charge tran-
sport) the hopping contribution to the spin-
diffusion constant is related to the hopping con-
ductivity by the Einstein relation,

1
Dhop(ﬂ))= (e_z

olw) . 45)

Cimp

Notice that the present contribution to the spin-
diffusion constant is small (because o is small) and
intrinsically three dimensional. It will certainly be
masked by the one-dimensional free-soliton spin
diffusion at all but the lowest frequencies.

e
~H (kgT) 12
42)

III. THE MAGNITUDE OF THE
CONDUCTIVITY: THE SSH MODEL

At this point it remains only to evaluate the gen-
eral formulae derived in the last section for the
electronic transition rate between a pair of soliton
bound states using a microscopic model of polyace-
tylene. There are two major stumbling blocks.
Firstly, the SSH model of polyacetylene, which is
the most successful microscopic model to date, is a
purely one-dimensional model. To calculate a
three-dimensional property, such as the hopping
rate, it is necessary to construct a three-dimen-
sional model. Secondly, even for a single strand of
polyacetylene, the phonon wave functions which
enter Egs. (9) and (10) are not known. (Calcula-
tions of Mele and Rice®® promise to alleviate this
difficulty in the near future.) Thus, the electron-
phonon coupling constants can only be estimated.

Given this state of affairs, it is tempting to
adopt an empirical form for the transition rate

T) [defined in Eq. (21)] and to assume “reason-
able” values for the electronic decay lengths, & I
and £, [defined in Eq. (26)]. For instance, if we
assume that

D=1 T/ToF,

a good fit is obtained to the experimentally ob-
served conductivity and thermopower for a suitable
choice of the values of the parameters. However,
it is important to ascertain whether these are rea-
sonable values. It is, a priori, possible that the ac-
tual hopping rates are too small to account for the
observed conductivity at reasonable temperatures.
If this were the case, we would have to conclude
that hopping is only important at ultralow tem-
peratures and that the agreement with experiment
is fortuitous.
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In this section, therefore, we adopt a simple
three-dimensional generalization of the SSH model,
and use it to estimate the magnitude and tempera-
ture dependence of the various transport properties
of (CH),. Given the rudimentary nature of our
knowledge of the interactions between chains, these
interactions are included in the simplest possible
fashion. Specifically, the quantities to be evaluated
are the soliton energy-distribution functions p;(€)
and p;(€) [defined in Eqs. (12)—(16)], and the
electron-phonon coupling function g (E) [defined in
Eq. (20)]. The first two quantities are basically?!
properties of the soliton-bearing chain, and hence
can be estimated using only the (one-dimensional)
SSH model. g(E) is intrinsically three dimensional
as it is proportional to the electronic overlap.

The SSH Hamiltonian is a simple, tight-binding
Hamiltonian which represents a single strand of
polyacetylene in the absence of impurities as a
linear chain of carbons with one 7 orbital per car-
bon (with creation operator c,f ) coupled to one ion-
ic degree of freedom per carbon, the dimerization
or in-chain displacement u,:

totaluyyn_1—Uspp_s)

X(2+n)=(-1)
totaluyyy—tyypn_1)

X(n)

~—[X'cos(m/2n)+X"sin(7/2)] |exp

where X(n) is the amplitude of the wave function
on site n, and X’ and X" are constants. The spatial
decay of the wave function along a chain is deter-
mined by the “local” value of the band gap,
8a(—1)"u,,. Quantities such as the soliton effec-
tive mass m* and the energy of interaction between
a charged soliton and an impurity have also been
calculated from this model Hamiltonian by SSH.
pi(€) and p;(€) are measures of the distribution
of soliton translational energies. Ignoring “rela-
tivistic” corrections, the maximum kinetic energy
of a neutral soliton is estimated to be %m"‘c2 =
0.0009 eV, where c is the speed of sound. “Rela-
tivistic” corrections may increase this energy, but
probably at most a factor of (£,/a)2.% The soliton
kinetic energy is always small compared to E,.
Thus, p;(€) and p;(€) can be related to a smoothed
density of states p(€) of the charged soliton as in
Eq. (16). At low energies, the potential energy as-
sociated with the impurity-soliton interaction is
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Hssu= 3 [to+altuy 1 —tiy))(er 1 16n+Cncn 1)

n
+£2(u,,+1—u,,)2 .
2 n

Values appropriate to polyacetylene of the various
constants which appear in Eq. (46) are listed in
Table I. The properties of Hggyy have been ex-
plored in detail by SSH within a mean-field, Born-
Oppenheimer approximation, so only those results
that are necessary for the present calculations are
discussed here.

According to the SSH equation (4.14), the pat-
tern of lattice displacements associated with a soli-
ton which minimizes the potential energy is

(46)

Uy =uo(—1)"tanh(n /1)), (47)

where /)| =(§);/a)~2to/A¢ and |ug | is the magni-
tude of the equilibrium dimerization |uy| =
Ag/4a. Midgap states (such as the soliton bound
state) are generally expressable as a slowly varying
envelope function times a gap-edge Block state
with kK =m/2a. In particular, according to the
SSH equation (4.21), the Hamiltonian can always
be diagonalized by the state (normalizable only in
the presence of a soliton):

n+42 a2u2
—2a/ty 3, (—1)"u,, |+0 |— , (48)
m=0 o

T
harmonic, so

(€) O(Ey +¢€)

p €)= ﬁ(l)l »

where #iw, is the quantum of soliton vibrational en-
ergy. SSH estimate #iw,=0.06 eV [SSH, Eq. (5.5)].
At higher energies, the solitons become essentially
free, which results in a large density of states with
energy approximately equal to zero. The total
number of states Z (0 ) must equal the number of
carbon atoms on the chain N. For N >> (E, /#iw,)
the density of states can be roughly approximated
by the expression

O(E, +€)O(—¢)
fioy

ple) =~ +Nb&(e) . (49)
To calculate g (E), a three-dimensional generali-
zation of the SSH model must be considered. To

this end, we label the atoms with a pair of indices,



1 and n, signifying the nth carbon on chain /. In

addition to the in-chain interactions, which we as-
sume to be well described by Hggy, a simple elec-
tronic interchain coupling is included of the form

H3D=tl 2 z(cltxcl'"_‘_ H.C.) 5 (50)
(LI') n

where the (I,I') sum is over nearest-neighbor
chains. We assume that ¢, is sufficiently small
that all one-dimensional properties, such as the lat-
tice dynamics and the nature of the solitons, are
substantially the same as in the absence of H3p
(see discussion in Sec. VI). The effect of Hp is
assumed to be reflected solely in the three-dimen-
sional nature of the electronic wave functions, in

X(n,1) =[X'cos(nm/2)+X"sin(n/2)]exp [—

where X(n,l) is the amplitude on the carbon n,/ of
the bound-state wave function of a soliton at the
origin. Here I, =§,/b, where £, is the decay
length of the wave function perpendicular to the
chain and b is the interchain separation. Thus, the
one relevant parameter which depends on H3y is
£,. In Appendix B an expression is obtained for
the wave function of a midgap (zero-energy) state
of a perfectly dimerized [u,;=(—1)"u,] array of
chains. For ¢; << Ag, the wave function falls off
exponentially with / according to the expression

PERL
1
X(0,1)~ A, l (52)

and for large /,
£1=b/In(Ay/t;)~2.3 A

Equation (52) can be readily understood by consid-
ering H3; as a perturbation since the bound-state
wave function first develops an amplitude on the
Ith chain in the /th-order perturbation theory. A,
is thus interpreted as the typical energy mismatch
between the bound state and the band-edge states
on the neighboring chains.

Finally, we must estimate g(E). Rather than at-
tempting to evaluate this function in detail, which
would require explicit forms for all the phonon
wave functions, we will assume that g (E) is a sim-
ple, smooth, single-peaked function of energy;

—E/E,

g(E)xE%e (53)
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particular of the soliton bound states. Although
even here, the effect of H;p is relatively small, it is
essential since in its absence there is no overlap be-
tween soliton bound states on different chains.
Consider the bound state of a soliton at the ori-
gin (I =0, n=0). As in the one-dimensional case,
Eq. (48), the wave function is expressable as a
slowly varying function times a gap-edge Bloch
state. The envelope function is expected to be of
the same general form as that of a bound state in a
three-dimensional continuum with a anisotropic ef-
fective mass [Eq. (27)], which we combine with the
expression in Eq. (48) for the in-chain decay as a
function of lattice displacement. The result is

21172
] ], (51)

g (E) can then be characterized by a magnitude
[the proportionality constant in Eq. (53)], a peak
energy xE, and a peak half-width Vx E. While
the exact g (E) probably has more structure, the in-
sights obtained into the behavior of g(E) are ex-
pected to survive a more painstaking analysis. We
will calculate the magnitude of g(E) from the sum
rule:

2a/ty ¥, (—=1D)"uy,

m =0

[

ﬁz Iﬁ’nl(‘sl|fle!52>|2
Eg(E)dE =——
f M % (61—62)2

’

(54)

which follows from Eq. (25) and the completeness
of the phonon wave functions, and is independent
of the phonon wave functions. Since the electronic
wave functions are known [Eq. (51)], the sum in
Eq. (54) can be performed readily:

A3 #?

h2
(61 —€ )2 2

[eEEdE=
2mllo

[ (55)

where, from the continuum theory, we have taken
XOX5+X1X5) = (13 m) !
and
F=I(Ro/EVP+2(Ro/E)+21/8~1.
To determine the peak position and width of

g(E), we consider the form of the electron-phonon
coupling A, in more detail. Equation (51) can be
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used to evaluate Eq. (26) for A;

0 2o (=1)"¢g(nl)
A= ———(X'X5 +X1'X5)
T e—g) 2 T ‘?," 2M o,
« 12 N (n __nl)2 172 [(1—12)2 (n __nz)z 1/2]
exp - - 5 5 .
11 14 1} If
T
The (—1)" in the sum implies that the coupling is kT

indeed predominantly to the optical phonons. We kT | XT3 o X0
p B + 70
therefore conclude that the peak of g (E) falls at an 2 0

average optical-phonon frequency, #wy~0.15 eV,
and that the peak width is determined by the half-
width of the optical-phonon spectrum, #Aw ~0.05
eV. Thus, the three parameters in g (E) are deter-
mined. The resulting function

E,
€—€

2 P22 x e —(xE /fiarg)

fiwg

tE
fiwro

g(E)=

s

(x+1)
(56)

is peaked at E =7iw,, satisfies the sum rule in Eq.
(55) if
172

7 ~0.5eV,

Ei=ho| | Srpz

.
fiog
and has a half-width Aw so long as x =(wy/

Aw)*~9. The results in Egs. (49) and (56) can be
combined to evaluate ¥(T) in Eq. (21):

EY [xkpT **'[ & kT
= 140 |~
ﬁY(T) ﬁcol ﬁ(l)o x+1 ‘ﬁa)o
T 10
~500 eV | oo (57)

The value of ¥(T) may seem unduly large as it is
often assumed to be roughly of the order of a pho-
non frequency. A similar phenomenon has been
noted,? for instance, in empirical studies of hop-
ping conduction in a-Ge, where a similarly defined
frequency is found to be about 3 orders of magni-
tude larger than a typical phonon frequency. The
maximum hopping rate can probably never exceed
a typical phonon frequency. However, the actual
hopping rate in Eq. (28) is less than ¥(T) by a fac-
tor .#%(R), and thus does not exceed w, at low
enough temperatures and concentrations. Finally,
the average energy transported per hop, € in Eq.
(34b), which determines the thermopower, can be
evaluated:

IV. HIGH-TEMPERATURE RESULTS

At high temperatures it is no longer true that all
of the charged solitons are bound to impurities.
When a significant number of free charged solitons
are present, free-soliton conduction dominates hop-
ping conduction because of the smallness of the
electron-overlap factors that enter the hopping
rates. To determine the temperature T, at which
the transition occurs, the magnitude of the high-
temperature process must be calculated. Unfor-
tunately, the free-soliton contribution to the con-
ductivity o, depends exponentially on Ej, /k5 T,
and E, is only known approximately. Thus, a
direct first principle estimate of Ty, is not possi-
ble. Nonetheless, a careful comparison of the
high-temperature theory with experiment in lightly
doped CH;, (y <0.5%) allows us to rule out free-
soliton conduction as the dominant conduction
mechanism at all temperatures that have been ob-
served experimentally. Using certain assumptions,
it also allows us to obtain a new experimental
lower bound on E}, which is slightly larger than
that obtained by SSH.

The free-soliton contribution to the conductivity
0y, is proportional, through an Einstein relation,
to the product of the concentration of free solitons
and the free-soliton diffusion constant.

To calculate the concentration of free solitons,
we must determine the soliton chemical potential
i. The general dependence of p on temperature
and impurity concentration is moderately insensi-
tive to the details of the soliton-impurity interac-
tion, so we can adopt a simplified model to illus-
trate the behavior of . With each impurity we as-
sociate x possible soliton bound states, all with en-
ergy —Ej, on each of n, neighboring chains. Be-
cause of the large size of the soliton, no more than



25 ELECTRON HOPPING IN A SOLITON BAND: CONDUCTION ... 3811

one soliton per chain can be bound to a given im-
purity. There are N possible “free”- (zero-energy)
soliton states. Finally, for each impurity intro-
duced into the system, ng charged solitons are in-
troduced into the system. For this model, the
chemical potential is determined by the equation:

L new
Ie ™y o PRtm”

ny = (58)
where y is the impurity concentration, y =N;/N
with N; equal to the number of impurities, and
B=1/kpT. The first term on the right-hand side
of Eq. (58) is the concentration of free solitons. At
low temperatures

T <<Ty=Ey/kpin(n,y)

and u is a discontinuous function of the parameter
n=ng/n,:

—Ey—kpT In[(1—n)x/n] forn <1

—E, /2[1—(T/T,)] for n =1 (59)
#:
1- e
—kgTIn —(ns—ﬂ forn>1.
(ns_nc)y

In polyacetylene, it is probable that the n < 1 result
is appropriate although the possibility exists that
electron-electron interactions drive the system to
the n =1 1imit.>° Thus, both possibilities will be
considered here. At high temperatures (T >> T,)

p=—Ey(T/T,) (60)

regardless of n. However, T is quite large
(To~500 K for y =0.001), so we are generally in-
terested in the low-temperature results. The low-
temperature conductivity is

I—_n xe"Eb/kBT ifn <1
n
2
e
Ogol= k—TCDchX 12 (61)
B Y| BT e ,

Re

where D, is the free-charged-soliton diffusion
constant, and c is the density of carbon atoms.
The thermopower is

E, —
S Y Nl ): 25 P
. kgT
L 62
o kg E, E, €
+——— ifn=1.
2kpT * 2kpT,

Note that in both cases, thermopower and conduc-
tivity are simply activated. Also note that the con-
centration of free solitons, and hence the conduc-
tivity is independent of the concentration of impur-
ities for n <1 and only weakly dependent® on it
for n =1. Both these properties of free-soliton
conduction seem to be imcompatible with experi-
ment.

In the ideal SSH model in the absence of disord-
er, the charged-soliton diffusion constant is equal
to the neutral-soliton diffusion constant

D,=Dg . (63)

For the sake of argument, we will assume that this
equality persists in real polyacetylene, although
many mechanisms>! can be envisaged that would
invalidate Eq. (63). D, can be measured directly as
it is also the in-chain spin-diffusion constant. So
as to obtain an analytic expression for D,, we will
not adopt this empirical value, but rather the low
temperature (kg T << fiwy) formula for the soli-
ton-diffusion constant derived by Schrieffer and
Wada*® for a ¢* soliton. The similarity between
the ¢* soliton and the solitons in polyacetylene has
been exploited by several authors, and the predict-
ed value of the diffusion constant is in reasonable
agreement with experiment.!> The resulting ex-
pression for D, is:

kpT 1?

2.2

D, =0.516w,a*
" o Muoa)o

(64)

Since the free-soliton contribution to the conduc-
tivity must be less than or equal to the observed
conductivity, a lower bound to Ej, can be obtained
if Doy, is known. If 0y is the measured value of
the conductivity, then

x ifn <1
(65)

In(0o/Oexpt) +1

Eb/kBTZ
2In(00/Oexpt) +n(y/n,) if n=1,

where 0p=6x10* Q~'cm~! for T=300 K. For
convenience, we consider a reference concentration
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of AsFs, y =0.003, and a reference temperature of
300 K under which conditions® oep=3x10"*
Q 'em™! and

0.38¢eV ifn<l

b2 0.6eV ifn=1. (66)

Finally, we note that these values are inconsistent
with the observed room-temperature value of the

thermopower or the log derivative of the conduc-
tivity, both of which yield apparent conductivity

activation energies of 0.3 eV.

V. COMPARISON WITH EXPERIMENT

Comparison between theory and experiment is
difficult in polyacetylene, both because of the
theoretical uncertainties discussed in Sec. III and
IV, and due to experimental uncertainties associat-
ed with the characterization of the samples. For
instance, the extent to which putatively undoped
samples are actually accidentally doped is uncer-
tain.33 (That they are always p type and compen-
satable argues for at least some trace-acceptor con-
centration.) The doping efficiency (the extent of
charge transfer) of the various impurities that are
used for doping is another important example of
an experimental uncertainty. (That the same con-
centration of two different dopant species can pro-
duce different magnitudes of the conductivity ar-
gues that charge transfer can be less than one per
impurity.) Thus, for the purposes of this discus-
sion, we will divide the predictions of the theory
into those qualitative predictions that depend only
on the structure of the theory of hopping conduc-
tion, and the more quantitative predictions that
depend on the details of the calculations.

The first class of predictions are listed in Table
II. The model predicts that the temperature
dependence of the conductivity (prediction 1) and
thermopower (prediction 7) are roughly indepen-
dent of dopant concentration. (The same is true of
free-soliton conduction where S and the tempera-
ture dependence of o are determined by the ther-
mal population of free solitons, and hence by E,
alone.) Both predictions 1 and 7 seem to have
been confirmed experimentally in lightly doped po-
lyacetylene. For instance, in Br-doped polyace-
tylene!! the conductivity can be increased by over
1.5 orders of magnitude by introducing 1 Br for
every 170 C atoms (yp,=0.0059) without making
an observable change in the temperature depen-

dence of 0. The thermopower is found to be con-
stant in magnitude (within experimental error) up
to an I3 concentration of a couple tenths of a per-
cent.’

Prediction 2, the subactivated behavior of o, dis-
tinguishes between hopping and free-soliton con-
duction. Although at low dopant concentrations
the conductivity can only be measured over a rath-
er limited range of temperatures, there seems to be
general agreement®!"!* that o decreases more
slowly than e ~%/%8T  This nonactivated behavior
is illustrated still more clearly by the experimental-
ly observed® approximate temperature indepen-
dence of S (in agreement with prediction 6). The
measured conductivity is a strongly increasing
function of impurity concentration (prediction 3);
it rises by almost 3 orders of magnitude as the
AsF; concentration is raised from 0.3% to 0.6%.
Without an extremely accurate determination of
the accidental dopant concentration and a method
for determining unambiguously the concentration
of neutral solitons in doped samples, it is impossi-
ble to determine whether the conductivity obeys a
1na~c;n},/ 3 law.

Non-Ohmic behavior of the conductivity (predic-
tion 4) has been observed!® in 0.5% AsFs-doped
samples at relatively low electric-field strengths.
From the strength of the field &, at which non-
Ohmic behavior sets in, it was found to be possible
to deduce experimergtally a characteristic hopping
distance R, ~60 A by using the relation in Eq.
(44a). A theoretical estimate of Ry, at y=0.5%
can be obtained from Eq. (44b): R, =35 A. If
the charge transfer on doping is incomplete (see
discussion below) a still higher value of R 4,, is ob-
tained. We thus conclude that the theoretical
value of &, is in rough agreement with experiment.
For field strengths greater than &, the electric-
field-dependent conductivity is found to obey the
approximate expression o ~ o exp(& /&,). Wheth-
er or not this observation is consistent with theory
must be determined on the basis of further theoret-
ical calculations.

Further experiments are necessary before even a
qualitative comparison between theory and experi-
ment can be made with any degree of confidence
regarding predictions 5, 8, and 10. Nonetheless,
such sketchy results as do exist seem to support
the hopping picture.

Measurements'® of the ac conductivity from 10
to 107 Hz show no appreciable frequency depen-
dence, but a factor of 500 enhancement of the con-
ductivity has been observed'? in undoped and light-
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TABLE II. Predictions of the hopping-conduction picture with experiment in polyace-

Predictions of the theory Experiment
Conductivity:

(1) Temperature dependence of o is independent Confirmed
of dopant concentration at very for yg:
low dopant concentrations <0.6%

(2) o is more slowly varying with temperature Apparently
than exp(—E,/kpT) [Ino~(a +1)InT] confirmed

(3) o is very rapidly increasing with impurity Consistent

concentration (Ino ~¢imy )

(4) Non-Ohmic behavior at relatively low

electric fields (& >kpT /eR char)

(5) Strongly frequency dependent o(w)
[0(0)— 04 ~o(Inw)*]

Thermopower:

(6) S is very weakly temperature dependent

(S ~e/k[const+1In(kz T /#iw,)])

(7) S is only weakly impurity-concentration

dependent
(S ~e/k[const+In(y, pcn)])

Hall mobility:
(8) Small but finite

Spin-diffusion constant:

(9) The dominant in-chain spin-diffusion
mechanism is unrelated to, and more
efficient than the conduction mechanism

(e%cimpD >>kpTo)
(10) D, is related to o by an Einstein
relation (e’CimpD=kzT0)

with theory

Consistent
with theory

Not inconsistent

Consistent
with theory

Consistent
with theory

No experiments

Consistent
with theory

Preliminary
results are
consistent
with theory

ly doped polyacetylene at a frequency of w=1.0
%10 Hz. To see if this behavior is consistent
with the dispersion predicted by Eq. (42) (predic-
tion 5), we estimate the frequency w,. at which the
conductivity is expected to begin to show a sub-
stantial frequency dependence. w, is defined im-
plicitly by the expression

[o(@ae) —04c)/ogc=1 .

For y =p;=0.3% and 0,.~2Xx107¢ @~ 'ecm~!,
we find that w,.~10® Hz. We therefore conclude
that Eq. (42) is consistent with experiment, but
further experiments in the frequency range 108 to
10!° Hz are necessary to verify the form of the fre-
quency dependence in Eq. (42).

A spin-diffusion rate, both in-chain, v~6X 10'?

Hz, and out of chain, v; <6X 10’ Hz, have been
determined for undoped polyacetylene from mea-
surements of the nuclear relaxation rate.!> It has
been assumed that these rates are proportional to
the spin-diffusion constant, and in particular that
D, =b%,. We will adopt this relation for the pur-
poses of discussion without attempting to justify it.
The extreme anisotropy of the spin-diffusion
constant is evidence of a highly one-dimensional,
mobile spin carrier, such as the neutral soliton.
There is evidence®* that the spin-diffusion constant
is not related to the conductivity by an Einstein re-
lation, and in particular, if an accidental impurity
concentration of a few hundred ppm is assumed,
e%¢impD|| >> kpTo (consistent with prediction 9).
This strongly suggests that charge transport and
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in-chain spin transport occur via distinct mechan-
isms. On the other hand, prediction 10 implies
that the magnitude of D, can be deduced from the
magnitude of 0. A typical® room-temperature
value for o is 2X107° O 'em™!. If we assume
that there is an accidental dopant concentration of
about y, =4 X 10~* (see discusison below), we can
obtain theoretical estimate of D, from Eq. (45):

D,/b*~10" Hz ,

which is in fair agreement with the measured
value. Further measurements of D, as a function
of temperature and impurity concentration could
provide a crucial test of the theory.

Quantitative comparison between the calculated
and experimental thermopower in the hopping re-
gime is relatively straightforward. Experimentally,
the thermopower® is found to be about 850 pV/K
in undoped samples. The theoretically predicted
value for y 4, ~y,, S=500 uv/K, is in good agree-
ment with experiment in light of the crude approx-
imations that went into calculating €.

The theoretical room-temperature hopping con-
ductivity, as a function of impurity concentration
y, is shown in Fig. 4. To obtain a value for the
typical hopping distance [see Eq. (36)] as a func-
tion of y requires a knowledge of the mean volume
V per CH. V, in turn, depends on the three-
dimensional structure of the CH,, chains. If we as-
sume the chains resemble close-packed cylinders,
V=ab? (curve 1). An alternative estimate of ¥’
can be obtained empirically in two ways. If the
sample is assumed to be a homogeneous medium,
then from the measured® density of polyacetylene
(0.4 g/cm?), a value V'=2.3ab? is obtained (curve
2). However, it is known that polyacetylene has a
fibrous structure, with the fibers filling about —;— of
the volume. If the mean density is corrected for
the filling fraction, then the revised estimate
V' =0.77b%a is obtained (curve 3). We will adopt
the theoretical value for ¥ (curve 1) for the pur-
poses of this discussion, but Fig. 4 should serve as
a warning concerning the ambiguity inherent in
this assignment. Also shown in Fig. 4 are the
measured conductivities for various concentrations
of AsFs and Br. The measured conductivities are
somewhat smaller than the theoretical values. This
may be due to a variety of causes, such as the
disordered topology of the actual polyacetylene or
the electron-electron interactions discussed in the
next section. However, the prime source of
disagreement between theory and experiment is
probably the incomplete charge transfer. We ex-

log (o)
o
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Z. - unooren

X =AsFg DOPED
® =Br DOPED
-|O -
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-2 ] | |
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FIG. 4. Conductivity as a function of impurity con-
centration at 250 K. The solid curve is the theoretical
conductivity for close-packed polyacetylene chains. The
shaded region is the range of experimentally observed
conductivities in undoped samples (from Refs. 9 and
11). The X’s are experimental conductivities for AsFs-
doped samples (from Ref. 9); the @’s are for Br-doped
samples (from Ref. 11).

pect, in general, less than one charge to be trans-
ferred per dopant atom. In Br-doped samples, for
instance, some Br may be incorporated as Br, or
Br; molecules, reducing substantially the doping
efficiency. The lowest room-temperature conduc-
tivity reported in undoped trans CH,, is about
3x107° @~ 'em ™!, corresponding to a putative
“accidental” doping concentration of about
y=4X10"% This is somewhat larger than the
value estimated by other techniques,’® y ~10~%,
but not disastrously so in view of the crudeness of
both estimates.’

Implicit in the calculation of the conductivity is
the assumption that there exists a finite density of
neutral solitons even in doped samples. This has
apparently been confirmed experimentally since the
neutral solitons give rise to a Curie-law susceptibil-
ity, and a roughly constant density of neutral soli-
tons!® y, ~3% 10~* at dopant concentrations up to
tenths of a percent has been deduced from the
magnitude of the susceptibility. At higher concen-
trations some of the electronic states become delo-
calized over many solitons and the number of neu-
tral solitons is no longer simply related to the mag-
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nitude of the susceptibility.> We have thus made
the assumption that the concentration of neutral
solitons is independent of the dopant concentration
at all relevant doping levels.!” Since o depends
only linearly on y,, none of the results are terribly
sensitive to this assumption.

Finally, in Fig. 5, the temperature dependence of
the conductivity is compared to that measured in
variously doped (CH), samples. The agreement is
satisfactory. Note that none of the theoretical
curves obtained in this section contain any adjust-
able parameters.

VI. MISSING FROM THE MODEL

The calculations reported in this paper are obvi-
ously greatly simplified. Effects of the detailed
structure of the electron-phonon coupling function
g (E) can be included in a straightforward manner
in a future calculation when the phonon wave
functions become available. Although the results
of such a calculation will undoubtedly lead to a
rather more complicated temperature dependence
of the conductivity than that in Eqgs. (38) and (57),
the qualitative aspects of the present calculations
will probably survive that more detailed analysis.

Potentially more serious in terms of their possi-
ble qualitative effects are the electron-electron and
soliton-soliton interactions that we have ignored.
The repulsion between electrons in the same soliton
bound state has little effect on the hopping process
since the number of doubly occupied solitons is
conserved in each hop. (The repulsion has been
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FIG. 5. Conductivity as a function of temperature
(normalized at room temperature). The dots are the
measured conductivity in an AsFs-doped (y =0.0029)
sample (from Ref. 9), and the solid line is the theoretical
temperature dependence.

taken into account implicitly, in that hops which
convert two neutral solitons into a positively and a
negatively charged soliton have been excluded.)
The repulsion between electrons bound to different
solitons leads to an effective charged-soliton—
charged-soliton repulsion. In calculating the hop-
ping rate between solitons, we treated all impurities
as equivalent. However, there is a high probability
that a given impurity has an oppositely charged
soliton bound to it. Such an impurity appears less
attractive to a charged soliton on another, neigh-
boring chain. Thus, the electron-electron interac-
tion leads to further (energy) disorder in the prob-
lem. A similar phenomenon occurs in lightly
doped crystalline semiconductors. There, the
electron-electron interaction can lead to a
“Coulomb gap,” which results in a reduced con-
ductivity. At low temparatures, it can lead to
complicated, coherent multielectron hops.36

Two solitons on the same chain interact strongly
when their distortion fields overlap. A neutral sol-
iton and a charged soliton attract each other, and
form a bound, single-charged-soliton—antisoliton
pair which resembles a polaron in conventional
semiconductors. Within the SSH model the bind-
ing energy of the pair is about 0.3 eV.® A charged
and a neutral soliton on neighboring chains also at-
tract each other, although more weakly. This at-
traction is due to the ability of an electron in a
midgap state to delocalize over two solitons, simi-
lar to the bonding of a H,* ion. Within the
three-dimensional model discussed in Sec. III, the
binding energy of this complex is ¢,. Since gen-
erally the charged soliton is bound to an impurity,
the soliton-soliton interactions can be viewed as
giving rise to an effective neutral soliton-impurity
attraction. Thus, the assumption that leads to Egs.
(18) and (19), that the energy of the neutral soliton
can be ignored, is called into question. In particu-
lar, the assumption that the neutral solitons are not
bound to impurities breaks down at low tempera-
tures. If AE‘® is the effective binding energy of
a neutral soliton to an impurity, then most of the
neutral solitons will be “free” so long as

kgT>AE*“D/|1Iny | .

For AE‘“ ~¢, ~0.1 eV and y ~0.1%, this re-
stricts us to temperatures in excess of about 150 K.
At lower temperatures, we expect an enhancement
of the conductivity due to the increasing probabili-
ty of finding a neutral soliton near an impurity.

" Finally, there are significant sources of disorder
in actual (CH), samples in addition to the solitons
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and the charged impurities. For example, (CH),
forms cords of about 200 A in diameter which
form a disordered, fibrous structure filling about %
of the volume of the sample. This additional
large-scale disorder certainly leads to a decrease in
the conductivity relative to that of “ideal,” dense
polyacetylene.

VII. COMPARISON WITH OTHER
HOPPING MODELS

In this final section some of the most important
qualitative differences between the present hopping
model and other hopping models will be examined
in an attempt to determine the extent to which the
experimental results in (CH), can distinguish
among the various models.

If we focus exclusively on the transport, there
are several general features that any hopping model
must have in order to be compatible with experi-
ment. The strong dependence of the conductivity
on doping concentration and the finding that the
conductivity can be quenched by compensating
with small amounts of NH3, imply that the hop-
ping sites must be associated with the charged im-
purities. Moreover, the strong, nonactivated tem-
perature dependence of o implies that there must
be a wide range of activation energies for hopping,
either due to dynamical disorder, as in the present
model or in small polaron hopping, or due to static
disorder, as in variable-range hopping. Hence, we
will consider these three models.

Perhaps the strongest support for the present
model comes from the experimental results which
implicate the neutral soliton in the transport
mechanism. As mentioned before, the extremely
anisotropic spin-diffusion constant is one such re-
sult. This anistropy is probably too great to be due
simply to the anistropic mobility of a conventional
free electron in (CH),. Equally striking is the
dependence of the conductivity on isomerization.
When a sample of cis-(CH), is isomerized to
trans-(CH),, its conductivity rises by more than 6
orders of magnitude.’’” The concentration of
charged impurities is clearly unaffected by isomeri-
zation. Moreover, by compensating the trans sam-
ple, conductivities approaching those in the cis can
be regained. This remarkable behavior is easily un-
derstood in the present model. There are no
mobile neutral solitons in the cis and no charged
solitons in the compensated trans. Hence, in both
these cases any conduction mechanism involving

solitons is “frozen out,” and another, presumably
less efficient mechanism, such as variable-range
hopping in intrinsic midgap states, must account
for the residual conductivity. Any hopping model
that does not implicate neutral solitons is hard
pressed to explain this behavior. It also may be
possible in the future to test the 1/N dependence
of the conductivity in Eq. (2). This dependence re-
sults from the involvement of the neutral soliton in
the hopping and is probably unique to the present
model.

To make a more detailed analysis, we next com-
pare the predictions of the present model with
those of a model of variable-range hopping with
weak electron-phonon interactions (i.e., the polaron
binding energy is small compared to the typical
hopping energy.) The strongest evidence against
variable-range hopping comes from measurements
of the thermopower. For variable-range hopping
in three dimensions, the thermopower is weakly
temperature dependent’s:

S~k /)3y T7T AN (67)

where Ty« 1/¢im, and N (E) is the density of
states at the Fermi level. The weak temperature
dependence of Eq. (67) is not clearly inconsistent
with experiment, but the concentration dependence
is. In particular, when the band of localized states
is more than half-full, as it most certainly is in
doped samples, dInN (E)/dE is expected to be
negative. Hence, Eq. (67) would predict a negative
thermopower for p-type samples and an extremely
small magnitude of the thermopower since

dInN (E)/dE ~0 in the most lightly doped sam-
ples. Experimental results are in disagreement
with both of these predictions but are in satisfacto-
ry agreement with the predictions of Eq. (35).
Further evidence against variable-range hopping
comes from the temperature dependence of the ac
conductivity. The ac conductivity for variable-
range hopping is given by a formula® of the same
form as Eq. (42) with [y replaced by a roughly
temperature-independent frequency v, of the order
of a phonon frequency and (c;,)* replaced by
[N(E)kpT]* Thus, the ac conductivity for
variable-range hopping is weakly (linearly) depen-
dent on T. The dynamical nature of the disorder
in the present model (or in a model of small-
polaron hopping) produces a much more strongly
temperature dependent o(w), through the T depen-
dence of T;. [Note that o(w) is still much more
weakly T dependent than oy.] Recent measure-
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ments of Epstein et al.’’ reveal a strongly T-
dependent ac conductivity in qualitative agreement
with the present model.

The other model to be considered is small-
polaron hopping in a narrow polaron band. Aside
from the question of the origin of such a band, the
most serious difficulty with this model is in ex-
plaining the sensitivity of the conductivity to iso-
merization. The behavior of the thermopower is
also hard to account for in this model since in
most simple models of small-polaron hopping the
energy current is zero, and the same problems arise
which were discussed above in the context of
variable-range hopping. However, Emin? has
shown that for certain models an energy-current
contribution can arise from polaron hopping.

Finally, a further reason for preferring the
present model should be mentioned. There is con-
siderable evidence from other, nontransport experi-
ments (summarized, for instance, in Ref. 39) which
supports the soliton model. Thus, it is gratifying
to obtain a successful explanation of the transport
in terms of the same, simple model.
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APPENDIX A: HOPPING CONDUCTION
AND DIMENSIONALITY

Consider a d-dimensional disordered system in
which an electron hops between impurity sites
separated by a vector R at a rate

r=voe “XR{| /E[+R1/ED'?, (A1)

where R is the (d —1)-dimensional component of
R perpendicular to the “easy” or paralled direction.
It is convenient to express the hopping statistics in
terms of the function N4(y), which is the mean
number of sites to which the hopping rate from a
given site (the origin) is greater than y:

d—1
4l
2

Ny(y)=44Cy % [In(yo/P)1¢,  (A2)

where AR is the volume of a d-dimensional

3817

sphere of radius R and C; is the concentration of
impurities.

The important statistical properties of the hop-
ping can be derived from N,(y). For instance, the
conductivity is predominantly determined by the
hopping rate ¥, which defines the percolation net-
work. Specifically, y, is the largest rate such that
if all rates less than y, were arbitrarily set equal to
zero, it would still be possible for an electron to
hop zcross an infinite system. v, is determined by
the equation

Py=N4(y.), (A3)

where P; is the d-dimensional percolation fraction,
which is roughly 2.71 in three dimensions.”’ Thus,

—2BR,/

Ye=roe %, (A4)
where B=(P;)"/ R, is the typical separation be-
tween sites,

Ro=(44,C)"¢, (AS)
and ¢ is the dimensionally averaged decay length
E=(gEl ", (A6)

Equation (B4) contains the most rapid dependence
of the conductivity on concentration. To derive
the proper prefactors in Egs. (2) and (38), the ap-
proximation scheme of Butcher et al.?° must be
used. The result in Eq. (38) follows in a straight-
forward manner from that analysis.

In polyacetylene, there is intrinsic graininess to
the problem in that the polyacetylene chain has a
finite radius. The conductivity in Eq. (38) was de-
rived ignoring this graininess. Given a three-
dimensional concentration of sites C3, the graini-
ness can only be ignored if most hops are between
different chains, not on the same chain. To exam-
ine this question, we compare the distribution of
three-dimensional (3D), or interchain hop rates,
with the distribution of intrachain, or one-dimen-
sional hop rates. The one-dimensional (1D) con-
centration of sites on a single chain is related to C;
by the expression

Cl =C3Q Py (A7)

where () is the cross-sectional area per polyace-
tylene chain. If we assume that the chains are
close-packed,

Q=>p?, (A8)

where b is the interchain separation. From the
analytic form of Eq. (B2), it is clear that for y
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large, that is ¥ near y,, N{(y)>N;(y), while for
small ¢, N3(y)> N(y). Thus, the crossover from
1D to 3D behavior can be defined in terms of the
hopping rate 7,

3 12 b
In(yy/7)= | — — 1, (A9)
&1
which is chosen such that
£ 3 172
7)=N,(7)=C3b3 2L | = A10
N;(7)=N(7)=C; 2%, |7 (A10)

At low concentration, that is for N(7) << 1, most
sites have an off-chain neighbor to which an elec-
tron can hop more readily than to the nearest on-
chain neighbor. In fact, N(¥) is approximately the
fraction of sites from which an electron is more
likely to make an intrachain hop than an inter-
chain hop. Effects of the graininess become im-
portant when 7> 7, or in other words when
N;(7)>P;. However, for the systems considered
in this paper, N;3(7) << 1, so the graininess is rela-
tively unimportant.

APPENDIX B: THE OUT-OF-CHAIN DECAY OF THE SOLITON BOUND STATE

In this appendix we consider the properties of a localized midgap state in the three-dimensional model of
crystalline polyacetylene of Sec. III. For perfect dimerization, the system is described by the Hamiltonian:

H= 3 [(to+ 58N clamsCrom+1,s +H.C.)+(to— ANl amsClam 1,6+ Hoc.)]
I ns

+3 3 (LU —I')c]yserms+He)] .
ns (')

Here the sites are identified according to the con-
vention used in Sec. III and the final sum in Eq.
(C1) is over nearest-neighbor chains. The eigen-
states of this system are block waves with energies

E.(k,K)=+elk)+1,(k)), (B2)

where

e(k“)=[(2t0)2cos2(k||a)+A(2)sin2(k”a)]1/2 ’

(B1)

and T is the displacement vector between nearest-
neighbor chains. For analytic convenience, we will
consider a two-dimensional crystal so that the
small dependence of E on the direction of l_fl can
be ignored. Thus,

t,(K)~2t,cos(k,b) , (B4')

where k; varies between 7w/b <k, < /b.

So long as Ay > 2t), there exists a band gap
about zero energy. The asymptotic decay of a lo-
calized state in the band gap is determined by the
decay of the one-particle Green’s function G (E;R)
at E =0 (see Ref. 25). By combining Egs. (B2) to
(B4) we obtain an expression for G:

1 1

(B3)
and
n(kp=Sn(Te' ", (B4)
T
J
w/2a dk” ,k”RH w/b dkleiklRl
GERR)=[__ - € .

The k, integral can be performed by integrating
around the contour shown in Fig. 6. At E=0,

ik, R -
w/b dkle 17 ik R, —e *R,
PGt aE— —

—m/b T - 2t sinh(xb) ’

E —etk))—1,(k,)

T Erekp—nky | B

T
where

Kb=cosh_1[e(k||)/2tl] .
For R||=0 and R, large, the leading term in G
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FIG. 6. Contour of integration in the k, plane

can be obtained by expanding the integrand about
1

k” =4+7/2:
(koR) ] ’

where () is an R -independent constant and

bry=coshh ~(Ay/2t) ,

— K
e oR1

)(KORJ.)VZ

G (0;0,R)=(

1+0l

or, for Ag>>1,
Ei=b/In(Ag/t)) .
If, instead, we set R; =0 and consider R I large,
then
/2% dk”eik”R”
-7/ q{eXk)) /2t —1]"?

The principle contribution to the integral comes
from the vicinity of the singularity in the in-R
tegrand at e(ik||)=2t,, so G(O;R”,0)~e—"” I
where for Ap>> 21,

2, |7

Ay ’

Thus, we recover the one-dimensional result quoted
in Sec. IIL

2t

-1
K =8i1=a |5,

APPENDIX C: MULTIPHONON
TRANSITION RATES

In this appendix we sketch the formal calcula-
tion of the phonon-assisted transition rate between
two solitons, that is, we drop the assumption made
in Sec. II that A =0. The remarkable result is
that so long as p,(e,) in Eq. (11) is a slowly vary-
ing function of €, on the scale of the polaron bind-

ing energy, multiphonon processes do not have a
large affect on the total transition rate, v.

To do the calculation it is convenient to
transform to polaronic coordinates (see, e.g., Ref.
19):

B,=eb,e™*,

(cn

s -5
A;=e‘ae™*,

where
At ot
SzzzAg)aiai(ba_ba)-
a i=1

In terms of the transformed variables, the reduced
Hamiltonian in Eq. (7) becomes

2
Ftred) 2 EAjA;+ S #iog(BLB,+7)

i=1 a

2
+ 3 [V(x)A 4+ T (x;)]

i=1

+ fiwAo(By—B,)ef4ld, +H.o),
a (C2)

where E; = ?ﬁO)—E},"’, E,f” is the polaron binding
energy

E}=7 fin AP, (C3)

and

0= (A2—A)BL—B,).

Then, from Fermi’s golden rule we obtain Eq. (11),
where

—E /kpT
2 e A4°7B 2
vp="-> ——|(4|F|B)]|
oa % th
X8(62—€1+EB —EA) ’ (C4)
F= #iw Ay(BL—B,)e—?, (C5)
a

where { |[4)} and { |B)} area com})lete set of
—E, /kpT .
phonon states and Z ;=3 ,e “""? is the pho-
non partition function. We must distinguish be-
tween two types of phonons in the expression for
0: (1) localized phonons (the shape mode) of
which there is one per soliton with energy’
#iw1~0.09 eV, and (2) delocalized modes for which
Ag~1/V'Q where Q is the volume of the system.
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Because 7w, is so large, processes involving the ab-
sorption and emission of these phonons are largely
frozen out at all reasonable temperatures. Thus,
ignoring terms that are smaller by a factor of
1/V/Q, the sum in Eq. (C4) can be factored to
yield

'V12(€]—€2)— 2 Z(A.

a

o ~Ea’ksT
X
2 z,
X | {4 |(Bf—B,)e?|B) |2

X8(€1—€2+EB _EA) N (C6)J

=—ﬁ112fd€1p1 €)(#iw )2{[1+n
a

o) [P (€ —

where
| Eg—E, | =fiw,+AE 5

and AE p is typically less than of order of the po-
laron binding energy. The expresison in Eq. (C6)
must be substituted into Eq. (11). If we make the
assumption that p,(e,) does not vary much over a
range of energies of order the polaron binding en-
ergy, then the sum over the intermediate phonon
states can be carried out explicitly, and the factors
of ¢? combine to give unity. To demonstrate the
nature of the multiphonon corrections to the tran-
sition rate, we will keep the zeroth- and first-order
terms in the Taylor expansion of p,(€,):

—AEpy(e1—fiwg)+ - -+ ]

+n(fiwy)[Fa(€;+wo) —AEp 561 +Fiwg)+ - -+ 1}, (o7))

where

pi€)=d /depy(e€) ,

and
~E,/kpT

KTZ:Ze————

| {4 |e®|B) | XEp—Ez) .
AB th

(8)

AE is roughly the same size as E,, and since Ej,
determines the scale of variation of p;,

Pa(&)~(1/Ep)py(ey) .

Thus, the change in v due to the presence of multi-
phonon processes is expected to be of order

E,/E, ~0.1 and hence small. Of course, any
sharp features in the integrand of Eq. (11) which
might otherwise lead to an activated temperature
dependence of v, will tend to be smoothed away by
the presence of multiphonon processes.

Finally, we remark that the situation here is
quite different from the more usual case of phonon
assisted hopping between impurity sites, where
Pal€;) is a 8 function. In that case, as is well
known, the multiphonon processes lead to an ex-
ponential suppression of the hopping rate at low
temperature.
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