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As a model for a crystal with an incommensurate phase we studied a linear chain of
classical particles interacting by harmonic forces between up to third neighbors and

anharmonic nearest-neighbor forces. Such a system has an infinite number of stable

equilibrium configurations, among which there are incommensurate ones. The system has

translational invariance and consequently acoustic phonons. Other excitations may be

identified as phasons and amplitudons. In a mean-field approximation the model exhibits

a soft mode, a transition to an (in general) incommensurate phase, which develops via

discommensurations to a superstructure at a lock-in transition.

I. INTRODUCTION

In the last few years one has investigated, both
theoretically and experimentally, the properties of
so-called incommensurate crystal phases. These
phases are characterized by the simultaneous oc-
currence of two or more periodicities, which are
incommensurate with respect to each other. As a
consequence these systems do not have space-group
symmetry in three dimensions. Nevertheless, they
are by no means aperiodic or amorphous: They
exhibit a perfect ordering with a great coherence
length. The first examples were found in magnetic
systems where the period of the magnetic helical
ordering is incommensurate with the lattice period-
icity. ' Incommensurability was also discovered in

ionic crystals, where the equilibrium positions
show periodic displacements from a structure with

lattice periodicity (displacive modulation), 2 or
where the probability of finding an ion in one of
several positions or orientations is given by an in-
commensurate periodic function (occupation modu-
lation). Other examples are quasi-one- or two-
dimensional conductors or layered compounds,
where the coupling between electrons and lattice is
at the origin of a displacive modulation (charge-
density-wave system), intercalates, and other com-
posite structures with two or more mutually in-
commensurate subsystems. ' Also, layers of ad-
sorbed atoms on a crystal surface may show an in-
commensurate structure.

The origin of the incommensurate phase can be
understood in case of charge-density-wave systems.
It arises from an instability of the lattice at a wave

vector twice the Fermi wave vector. For compo-
site structures (and intercalates or adsorbed layers)
the incommensurability is a consequence of the
frustration produced by the various periodicities
present. These systems have been studied exten-

sively on one-dimensional theoretical models.
For ionic crystals the origin is less clear. Lattice-
dynamical studies have shown that for certain
values of the parameters a mode may become soft.
If the wave vector of the soft mode is not on the
Brillouin-zone boundary, this may give rise to an
incommensurate phase. " The instability may be
induced by a polarization catastrophe' if large po-
larizable ions are present. However, these studies
cannot give information on what happens below

the phase transition. There are phenomenological
models based on a Landau theory' ' that have
served to fix the ideas. A microscopic theory,
however, is still lacking.

The incommensurate phase occurs as an inter-
mediate phase between two ordinary crystal struc-
tures. This picture that arises from experiments
and from the theories mentioned above is as fol-
lows. In the high-temperature phase the structure
has space-group symmetry. In this phase a soft
mode develops with decreasing temperature and
leads to an instability of the crystal structure.
Below T; the crystal is modulated, sinusoidally just
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below T;, but with higher harmonics for lower

temperature. This leads to a structure where the
crystal shows domains, where the modulation is
nearly commensurate, and domain walls (discom-
mensurations), such that the overall periodicity of
the modulation is incommensurate. As T decreases
the volume of the commensurate regions grows un-

til at T=T, the whole crystal becomes cornmensu-
rate and a superstructure of the high-temperature
phase is formed. Since the discornmensurations
can be found, in a phenomenological theory, as
solutions of a sine-Gordon equation they are some-
times called solitons. In the original literature on
charge-density-wave systems and in the Landau-

type theories excitations are predicted which are
described as oscillations of the phase of the modu-
lation function with respect to the underlying lat-
tice. These excitations are ca11ed phasons. In the
literature it is suggested that there is always one
phason with zero frequency: The motion of the
modulation function with respect to the lattice.
This mode is also called a sliding mode.

The phenomena of phasons and sliding modes
have been studied in a microscopic model for com-
posite structures, the Frenkel-Kontorova model. It
studies a one-dimensional linear chain in a periodic
background potential. Because this model does not
have translational invariance it is not well adapted
as model for ionic crystals. Other microscopic
models giving rise, in principle at least, to incom-
mensurate phases lack also this property. ' '
Therefore, we want to study a translationally in-
variant model for an incommensurate phase. In
such a model one can investigate, next to phonons,
also possibly other exeitations, like phasons, and
the nature of discommensurations, if they occur as
dynamical features. As such a model we consider
a linear chain with short-range interaction (up to
third-nearest neighbors) and anharmonic forces.

In Sec. II the model is introduced. The station-
ary configurations are discussed first for only
nearest-neighbor and next-nearest-neighbor interac-
tions in Sec. III. These configurations are treated,
including third-nearest-neighbor interactions in
See. IV. Not all stationary configurations corre-
spond to minima of the potential energy. Their
stability is discussed in Sec. V. For stable confi-
gurations the vibrations around the minima are
studied in Sec. VI. These excitations influence the
thermodynamic properties and are responsible for a
renormalization of the coupling constants. In Sec.
VII it is shown that in a mean-field approximation
one can construct a phase diagram. The first sec-

tions are restricted to the case of negative next-
nearest-neighbor interaction. For a positive one a
different behavior is found which is treated in Sec.
VIII. Some of the properties of the system may be
studied in a continuum approximation. This is
done in Appendix A.

II. THE MODEL

In the theory of rnagnetisrn it is known that an
instability with wave vector different from zero
and away from the Brillouin-zone boundary may
occur as a consequence of competition between
nearest-neighbor and next-nearest-neighbor interac-
tions, the two coupling constants being of different
sign. With the use of such interactions the phase
diagram for some magnetic model systems has
been studied in Ref. 17. There superstructures oc-
curred with periods up to six. For similar model
systems, solutions to the (nonlinear) equations were
also found with larger, practically speaking
incommensurate, periods. ' ' In a model for
displacive modulation with only harmonic forces
such an instability would lead to disintegration of
the crystal. Therefore, it is necessary to take also
anharmonic terms into account. Moreover, a qual-
itatively different behavior is found if also interac-
tion with third-nearest-neighbors is considered.
The presence of this neighbor term is essential to
find some of the properties observed in experiment.
As a result we are led to consider as a model for a
crystal with displacive modulation a linear chain of
classical particles with equal mass interacting via
harmonic forces with up to the third-nearest neigh-
bors and via a fourth-order term with the nearest
neighbors. The basis structure of the model is an
equidistant array with lattice constant a. The posi-
tions of the particles are given by their displace-
ments u„ from the positions na in the basic struc-
ture. The Hamiltonian for our model is then given
by

2

+ (~n un —1) + (~n ~n —2)2'

+ (un un —3) + (un un —1)

(2.1)

Let us consider the equilibrium positions which
follow from 9V/Bu„=O, where V is the potential
energy. This yields the equation
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Xn =Qn —Qn (2.4)

In terms of these coordinates the potential energy
1s

V=g —x„+—,x„——,(x„+x„+i )
2 n 4 n 2 n

2+ (x~ +x~+ i+x~+2)
2

(2.5)

The equations for the equilibrium positions in

these variables become

a(x„—x„+i ) —(x„+x„ i
—x„+i

—x„+2)

+@xll+xn —I+xn —2 xI+1 xn+2 xn+3)

+x„—x„+i——0. (2.6)

a(2u„—u„ i —u„+ i ) +P(2u„—u„2—u„+2)

+5(2u„—u„3—ug~ 3)+1( u„—ug i)

+y(u„—u„+i)'=0 . (2.2)

We first consider the case P & 0. The coupling
parameter y is always positive to ensure stability.
Hence, one can choose new units of length and en-

ergy such that

(2.3)

It is convenient to introduce the difference coordi-
nate:

An obvious solution of Eq. (2.2) with 5=0 is the
basic equidistant structure

u„=0, P =0. (3.3)

Another solution is the dilated (also equidistant)
structure

u„=ln, I =4—a, F = —(4—a) /4.

2

(3.5)

For a &4 this is the potential energy for a chain of
particles in double-well potentials and connected by
harmonic springs. Such a system has been studied
by Aubry. The dynamics of this not translation-
al invariant system, however, are quite different
from our system. This can already be seen from
the presence of an acoustic phonon mode in the
present system. For 4—a && 1 the wells are deep
with respect to the harmonic coupling. Hence the
particles will be near the bottoms of the wells:

(3.4)

Since these solutions reach the lower bound for P
they describe the ground state, for a )4 and for
u & 4, respectively.

Equation (2.2) has also other solutions. To dis-
cuss these we rewrite the potential energy as

/x„f =v'4 —a . (3 6)

III. EQUILIBRIUM POSITIONS FOR 5=0

First we consider the model with nearest- and
next-nearest-neighbor coupling only: 5=0. For
this case a lower bound for V/L, where L is the
number of particles, can easily be found. Accord-
ing to Eq. (2.4) we have

Q —2 2 1 4
+n +n+n+1+ 4 +n

n

a —4 2 i 4&n+ 4&n (3.1)

Hence for the potential energy per particle P we
get

~=~/L&0 if up4
(3.2)

P dmin x+—x
a —2 2 ~ 4 (4—a)

4

(3 7)

The equation for the equilibrium positions in this
approximation is

pf"=ad+0' (3.8)

with g(na) =x„,p=a, and o =a —4. For cr &0
Eq. (3.8) has the solution

The distribution over the two wells will not be ran-
dom, because the harmonic coupling favors equal
signs for x„. If they are all the same one gets
solution (3.4). Solutions with higher energy will
also occur: A change of sign between adjacent
particles will increase V. Therefore if other solu-
tions exist, those with long intervals of x„s with
the same sign will be energetically lower.

For 0 & 4—a « 1 one can consider a continuum
model. In this continuum approximation one can
write for the potential energy

V= Idx/a [(a 4)g /2+—g /4+a g' /2] .

if a&4. g(x) =A (k,a)sn(8(k, a)x ) (3.9)



3770 T. JANSSEN AND J. A. TJON

with 0 & k & 1 the parameter of the Jacobi elliptic
function sn and

(3.10)

The solution

x„=A (k,a)sn(naB(k, a)) (3.11)

N=2: u„= —,( —1)"&—a (a&0) . (3.12a)

N=3: u„= —,v I —acos +q& (a&1) .
2 2' 7l

(3.12b)

N=4: u„=V4—2asin +— (a&2) .wn m

2 4

(3.12c)

The general case of solutions with an arbitrary
period N can be obtained by solving numerically
the set of N —1 nonlinear equations resulting from
Eq. (2.5) when x„+~——x„. In view of Eq. (24)
they satisfy the condition gx„=O. For any N a

periodic solution is actually found in this way. As

x„

2

I ~ I

3 5

15 17 19

FIG. 1. Modulation function x„ for a periodic solu-

tion of Eq. (2.5) with period %=20, for various values

of a. a= (a) 3.58, (b) 3.0, (c) 2.0, (d) 1.0, (e) 0.0.

is a periodic function: The period of sn(k =O,x) is
2m, that of sn(k~1, x) goes to infinity. The ener-

gy of the solution and its dependence on k are dis-
cussed in Appendix A.

Other periodic solutions (u„+~——u„) of Eq. (2.2)
can be found analytically.

an example in Fig. 1 solutions with period N =20
are given for a number of values of the parameter

Plotted in the figure are the values x„. For
4—a « 1 the function x„ is smooth and approxi-
mately sinusoidal. It corresponds to solution (3.11)
of the continuum approximation with small k.
For decreasing a the function becomes more edgy.
The value of x„are then given, approximately, by
Eq. (3.6): The positions of the particles correspond
to the bottoms of the wells of V.

The potential energy per particle of the solutions
(3.12) is given by

N=2: &=—a /4,

N=3: P"=—(1—~)2/6,

N =4: P"=—(2—a)2/4 .

(3.13)

For higher N the value of P decreases towards the
limit —(4—a) /4 corresponding to N~ ao.

Next to periodic solutions with one node per
period there are also solutions with 2s (s y 1) nodes
per period. These solutions may be characterized
by the sequence of numbers of positive and nega-
tive values of x„. If one finds after the ith node p;
positive values followed by n; negative ones, it is
clear that

g(p;+n;)=N .
i=1

(3.14)

We may characterize such a configuration by

(Pl+ 1P2n2 P n

A sequence of m identical numbers z may be ab-
breviated as z, a sequence of m identical pairs by
(p, n) The simple . periodic solutions discussed be-
fore (s = 1) correspond to the configurations
(N/2, N/2) for even N and ((N+1)/2,
(N —1)/2) for odd N. Since the sum of x„ is
equal to zero, the particles cannot all be near the
bottoms of the wells if N is odd. This explains
why odd integer periods have a higher energy then
even period ones.

The potential energy per particle decreases
smoothly towards its minimum for increasing in-

teger periods (s =1). The same is true if one con-
siders F' as a functions of N/s for series of confi-
gurations, for instance a series (3,4), (3,3,3,4),
(3,3,3,3,3,4), etc. The value of W for this series

goes smoothly to its value for N =6, s =1. If one
chooses for each N/s the minimal value of P", it
turns out that this is a smooth function of N/s.
In Fig. 2 the value of W is plotted against the in-
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FIG. 2. Potential energy per particle against inverse
fractional period sj¹The smooth curve is the energy
density in the continuum approximation.

verse s/E for a number of sequences for a =0.
For this value of a the potential energy per parti-
cle is nearly a linear function of s/N. The total
energy per period X is linear in s, i.e., linear in the
number of kinks (2s) in the solution. Hence the
energy per kink is almost constant. For a=o the
kink energy is 6. For increasing u this energy de-

creases: Eq;„k- 6—2a for a(2. At the same
time the energy required for shifting the solution
over one lattice constant goes to zero: the smooth
solutions for a=4 are weakly pinned,

The structure factor of a configuration may be
defined as

N

F(q)= —g exp[iq(na+u„)] . (3.15)

For a solution with period X and 2s nodes per
period the main contribution to the structure factor
is given by q =integer X2Ir/a. The next important
values are reached for q values which differ from
the former ones by a multiple of (s /E) X 2m /a.
The latter q values can be called satellites, the
former main reflections. Then

~

Ii (q)
~

shows the
typical behavior of the x-ray pattern of a modulat-
ed crystal with modulation period N/s. In Fig. 3
a typical example is given. Hence the solution
under discussion can be interpreted as modulated
structures with an effective fractional period N/s.
Because a number of properties, like & as seen be-

fore, depends smoothly on this period N/s it is
possible to interpret solutions with large X but fin-
ltc N/s as llcally lllcollllncllslllatc. Ill tllls way
one can say that in the present model there are also
incommensurate solutions.

The structure of fractional period solutions is
again smooth as long as 4—oI « 1. For decreas-
ing a the solutions are less regular. For 4—a && j
the values of x„will tend again to the value of
(3.6). This implies that longer and shorter periods

n=O 5=0.25

0.0
.. .I IIII III rrrll ..r... IIIII

P..O

Stru«««a««
~
+(q)

~

' corresponding to the solution of (2.5) plotted in Fig. 4.
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alternate. A typical example is given in Fig. 4,
where a solution is plotted with N/s =6.4. The
solution has period 32 and 5 nodes per period.
The configuration shows for part of the period
nearly a period 6. After 4 of these quasiperiods an
oscillation with period 8 brings the fractional
period up to 6.4. This part of the solution may be
interpreted as a discommensuration. These dis-
commensurations occur if 4—e g 1. For given N
and s there may occur more than one solution.
For example, next to the solution (3',4 ) discussed
above there is a solution (2,8 ). Which of these
solutions has lower energy depends on 5. For 5=0
the solution (2,8 ) has lower energy, for 5=0.25
the configuration (3,4 ), shown in Fig. 4, has this

property. The reason is that in both cases the
lower energy solution is more like the solution with

absolutely minimal energy: the dilated solution for
5=0, a period N =6 for 5=0.25.

IV. EQUILIBRIUM POSITIONS FOR 5+0

If one considers also third-nearest neighbor in-

teractions it follows from Eq. (2.4) that solutions
with small values of x„+x„+&+x„+2are energeti-

cally favored. The trivial solution still exists:
u„=0 and P =0. Also, a dilated equidistant solu-

tion exists if a & 4—95. It is given by

V= x„+4x„
a —4+95 2 i 4

1 —25 (x„—x„))

——(x„—x„2) (4.2)

the solution (4.1) is not the one with minimal ener-

gy if 5 is large enough.
Again there are solutions with integer and with

fractional period. The potential energy per particle
is a smooth function of N/s (Fig. 5). Increasing
the parameter 5 will increase the value of P for
the solution (4.1) more than that with smaller

periods. Hence if 5 exceeds a certain value the
curve P vs s/X will show a minimum at finite
fractional period. This can also be seen from a
continuum approximation as discussed in Appen-
dix A. It implies that in order to have an incom-
mensurate ground state it will be necessary to have
interaction with third-nearest neighbors. On the
other hand, this model can show such a minimum

already for short-range interaction. Long-range in-

teraction is not required to have an incommensu-
rate structure.

un ——ln, I2 =4—o.—95,

F = —(4—a —96) /4.
(4.1)

However, since the potential energy can now be
written as

CO

C)
I

D
G

o O

o 0

n=o 5=025

0 4 8 12 16 20 24 28 32
0.00 0.05 0.10 0.15

inverse period
O.RO 0.25

FIG. 4. Solution of Eq. (2.5} for fractional period
N/s =6.4. a=0, 5=O.2S.

FIG. S. Potential energy per particle against inverse
fractional periods s/N for a =0, 5=0.2S.
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V. STABILITY

(S.2)

Hence the equations for the eigenvibrations are

mco»„=(2a —2+25+@„+p„+i)»„

—(~+a.+i)».+i —(~+p. )». i

+»„,+»„+z—5»„3—5»„+s,

where

(5 4)

The solution is stable if all the eigenvalues co of
Eq. (5.3) are nonnegative.

For the trivial solution (u„=O) the eigenvalue
equation becomes

m~ =4o. sin ——4sin q+45sin
2 2

The eigenvalues are nonnegative if

a&4 —95 and 9&5& 6

(5.6)

The solution given by Eq. (3.4) corresponds
clearly to a stable minimum of the potential energy
because it reaches its lower bound. The stability of
other solutions can be checked by considering
small die, placements from the solutions and calcu-
lating the frequencies of the normal modes. If one
denotes by»„ the displacements from the positions
un, which are solutions of the equilibrium equa-
tions, the posltlons are

0
~n =~n+&n ~

The frequencies are the eigenvalues of the matrix

As a result the eigenvalues are nonnegative if

a&4—95 and 0&5& —,
1

or

a&4—95— and 5& —.(1—65)
85

For the solutions with simple periods X=2,3,4 the
stability conditions can be calculated analytically
and are given in Appendix B. The stability for the
other solutions follows from a numerical calcula-
tion. For each solution a region ln the a5 plane
can be given in which the solution is stable. A
number of stability limits are plotted in Fig. 6.
From this we see that if 5 increases the dilated
solution becomes unstable and a solution with fin-
ite period must have lower energy. For 5=0 the
dilated solution has minimal energy. For this 5
the periodic solutions are only stable for
E)Eo(a), where Eo(a=0)=4. For increasing a
the value of No(a) increases.

VI. EXCITATIONS

The study of the stability of the solutions in the
preceding sectioii lias giveii information oil tlie sta-
bility regions. In this section we want to discuss
the spectrum and the eigenvectors of the eigenvi-
brations around a stable solution.

Characteristic for our model is the existence of
an co =0 mode for every a and 5. It is a conse-
quence of the translation invariance and corre-

If the inequality signs apply there is only one mode
with zero frequency: the rigid displacement of the
whole crystal.

The eigenvalue equation for the dilated solution
(u„=ln) is given by

mco =8 sin ——a+4 —95+4sin
2 2 0.0 0.5 1.0 2.0

+45 281I1 ——3 sin—
2 2

FIG. 6. Stability limits in the a5 plane for some solu-
tions of Eqs. (2.5). N =1 is the basic structure, X= 00
the dilated structure.
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cos(q, a) = .
(1—25)/45, 5) —,

(6.1)

An example of a changing dispersion curve is
given in Fig. 7. The spectrum always runs from

co =0 to co =. 4 (a+5)/m. For small q the modes
correspond to sound waves. The sound velocity is
given by c =(Bco/Bq)z o so that

c =[(a 4+—95)/m]'~, a &4—95 . (6.2)

For the dilated solution there is no gap either.
Here the minimum in the dispersion curve occurs
for q, also given by Eq. (6.1} in the stability region
as determined by Eq. (5.8). The spectrum runs
from co =0 to co =8(6—a —135)/m. The sound

velocity in such a structure is
' 1/2

4—a —95C=
2m

(6.3)

4.0

3.5-

3.0-

2.5-

CX

3
20-

1.5-

0.5

0.0 I I I I r

0.0 0,2 0.4 0.6 0.8 1.0

FIG. 7. Dispersion curve in the basic structure for
varying value of a. a= (a) 1.5, (b) 1.75, (c) 3.0; 6=0.5.
For a=1.5 the mode at q, =m/2a becomes soft.

sponds to the acoustic phonon.
Inside its stable region the trivial solution has a

spectrum determined by Eq. (S.5). Since the unit
cell has only one particle there is no gap in the
spectrum. Nevertheless, the dispersion curve is not
always monotonically increasing. For decreasing n
a dip in the dispersion curve develops. From Eq.
(5.5} we see that the minimum of the curve be-

comes zero at the stability limit for a wave vector

q, given by

As already mentioned in the preceding section
for the finite period solutions with %=3 and 4 the
spectrum can be found analytically (see Appendix
8}. In Fig. 8 the dispersion curves for these rather
extreme cases are given for some values of a and
5. In the X =4 solution it is remarkable that, al-

though the solution is a superstructure with four
particles per unit cell, there is no gap in the spec-
trum. The spectrum of the N =3 solution has the
peculiar property that, inside the stability region,
there is always a double zero for q =0: One corre-
sponds to the acoustic phonon, while the other is
related to the freedom one has in g in Eq. (3.12b).
This is a mode which is known in the literature as
a phason. Here it occurs, although the structure is
commensurate. The other mode at vector q =0
corresponds to an oscillation in the amplitude. It
is an amplitudon.

For other solutions the eigenvibration spectra
can be calculated numerically. In Fig. 9 the spec-
tra are plotted against the inverse fractional period
s/X for a great number of solutions. In detail Fig.
9 is very complicated. There are, however, a num-
ber of global features which depend rather smooth-
ly on the period. The most important one is the
broad band of gaps connecting the lowest gaps for
an even-integer period. Moreover, there are a
number of structures which appear on different
scales in different places in the figure. For a ap-
proaching 4 the structure becomes a bit more regu-
lar. The broad band shifts down and resembles the
main gap in the spectrum of the modulated spring
model. ' The recursive structure found in that
model cannot be seen here because here the ampli-
tude of the modulation is not a free parameter.

If one considers the eigenvectors of the modes
which correspond to the lower and upper boundary
of the broad gap in Fig. 9, one sees that these
modes describe oscillations in the phase and the
amplitude, respectively, of the modulation func-
tion. In Fig. 10 an example is given for a solution
together with the displacements in these two
modes. In fact, these modes are the 2sth and
(2s + 1)th mode at wave vector q =0 if one is not
close to the stability limit. It should be noted that
for +=0, 6=0 the frequency of the phason is not
zero. Since the frequency is a smooth function of
s/N this implies that also for incommensurate
structures the phason frequency is not necessarily
zero, contrary to what is suggested in the litera-
ture. Only near the stability limit does the fre-
quency go to zero. As an example the phason fre-

quency for the X=4 solution is given by
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FIG. 8. Dispersion curves for the E=3 and X =4 solutions for a number of values of a. (a) E=4; &=0.5;
a=0.0, 1.41, 1.49. (b) N =3; 5=2.0; o, =0.0, 0.75, 0.9.

2I~phason =4!

As will be discussed below there are indeed zero
frequency phason Inodcs If 5 Is sufftclcntly large.

The sound velocity is also one of the properties
that depend smoothly on the period. The sound

velocity versus fractional period is plotted in Fig.
11.

n=O 5=0

t',
(I

I

}}II

n=o 6=025

The potential energy of our model has an infin-
ite number of stable minima. To calculate the
thermodynamic properties we only consider that
part of the phase space that corresponds to har-

monic vibrations around these minim. This
amounts to the assumption that the local minima
are separated by infinitely high walls. This is
reasonable because the barriers between the minima
of V are high, especially far from the stability limit
of the trivial solution.

Because the potential wells are isolated from
each other one can calculate the thermodynamic
properties for each minimum separately. In this
approximation one finds for the specific heat

l}

&it(
}&I rt,

li dllI
I

ts ~ «} I(

Il
'

I

I!~&

"I!'

I

0.0 0.1 0.8 0.3
inverse period

O.O O,a O.a
inverse period

FIG. 9. Spectra of eigenvibrations around stable
equilibrium positions versus the inverse fractional
period. (For another choice of configurations see Ref.
27).
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FIG. 10. Stable equilibrium positions with fractional period 6.4 together with the displacements in the phase and
amplitude modes.
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FIG. 11. Sound velocity vs inverse fractional period
for a=0, 5=0 and a=0, 5=0.25.

FIG. 12. Specific heat vs inverse fractional period for
a=5=0 and a=O, 5=0.25. For the latter case c„ is
only approximately constant.
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kIIP' ~ " ~ (q)f dq~ Is .(q)2& + ~

) e J~

(7 1)

where coj(q) are the N eigenvalues for Eq. (5.3) cor-
responding to wave vector q (N is the period of the
solution). In Fig. 12 the specific heat is plotted for
a number of (fractional) periods. It shows that c„
is a rather smooth function of the period.

It is mell known that no phase transition can oc-
I

cur in a one-dimensional system with short-range
interaction for T+0. However, the model under
consideration may describe mell systems consisting
of linear chains which are weakly coupled together
while the interaction between the particles of each
111dlvldllal cllalll ls described by Eq. (2.5). Ill order
to get some idea about possible phase transition in
such quasi-one-dimensional systems we may apply
a simple mean-field approximation to our model.
Taking the thermal average of the equations of
motion for our model we get

m (u'„) = —a(2(u„) —(u„ I) —(u„+I) )+2(u„&—(u„2)—(u„+I)—5(2(u„)—(u„3)—(u„+3))

with

—((u„—u„ I ) ' —& u„+ I
—u„)')+C„—C„+I

C„=—[((u„—u„ I) &
—(u„—u„ I) ] .

(7.2)

(7.3)

%e now make the approximation

(u„'u )=(u„')(u ) .

As a result Eq. (7.3) becomes

C.=—3[(( .' &
—( . &')& .) —(& .') —( .&')& . &]

—[(&u.'& —&u„&')& „&—(&u.' ) —&u. )')&u. 1&] .

(7.4)

Assuming that the thermal fluctuations in the dis-

placements u„do not depend on n, we find that

Cn-——4((u.'& —(u„)')((u„)—(u„,) ) .

(7.6)

a'=a+4((u„') —
& u„&') . (7.7)

Hence a change in temperature mill introduce a
change in the effective parameter a'. Since the
thermal fluctuations tend to increase with increas-

ing temperature, a decrease in temperature corre-
sponds in our model to moving downwards in the
a5 plane.

In Sec. V we have studied the stability limits of
a number of solutions (Fig. 6). In the same a5
plane one can investigate which solution corre-
sponds to the lowest minimum for given n and 5.

Substltut1Ilg Eq. (7.6) IIlto Eq. (7.2) we see that the
equations of motion for the thermal average of the
displacements have the same form as for the dis-
placements themselves with the only difference
that there is a renormalization of the coefficient u.
The nearest-neighbor effective coupling constant
becomes a' with

In Sec. III it has been shown that for 5=0 and
a g4 this is the dilated solution (3.4). For 5 suffi-
ciently large the lowest-energy solution has a fimte
period. Numerically one finds that for u=0, the
dilated solution has the lowest energy if 5 ~0.24.
Between 5=0.24 and 0.29 the simple period 6 has
a lower energy, for 5 between 0.29 and 0.90 anoth-
er simple period (N =4) has this property. For
5 y 0.90 the X =3 solution is stable, but there is al-
ways a solution with fractional period between 3
and 4 which has a lower energy. It is remarkable
that simple periods (superstructures) play a dom-
inant role. nly for bigger 5 or for N, 5 nearer to
the stability limit of the trivial solution, there are
cases with fractional (incommensurate) periods
with lowest energy. In Fig. 13 the regions in the
n5 plane are indicated where the trivial, the dilat-
ed, and the simple period 4 and 6 solutions are the
ones corresponding to the ground state. In the
remaining regions there are still smaller domains
where simple periodic solutions are the most stable
(with, e.g., N =8), but in these regions occur also
the "incommensurate" phases.

Summarizing the changes of the structure in this
model as the temperature changes can be described
as folloms. For fixed temperature one moves along
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2

nearest-neighbor coupling J2. The instability in
the paramagnetic state occurst at wave vector q
determined by cos(q) = —J~ /412. In our model
this is not so: The local minima for a & 0, P (0
are different from those for a (0, P & 0. For posi-
tive second-nearest-neighbor coupling (P& 0) the
potential energy may be written after rescaling
(P=y=+1) as

n

5 2+ (&n +xv+1+&n+2)
2

(8.1)

1.0

FIG. 13. "Phase diagram" indicating the structure of
the ground state. In the vertically hatched region the

ground state has a period between 3 and 4. In the hor-

izonta11y hatched regions there are incommensurate

ground states.

a vertical line in the a5 plane. For high enough
temperature the basic equidistant structure is
stable. %hen T decreases a soft mode develops at
wave vector q, given by Eq. (6.1). At T = T; the
frequency of this mode becomes zero and the basic
structure becomes unstable. Below T~ the structure

expands to a dilated, also equidistant, structure or
to a sinusoidally modulated structure with wave

vector q, . In general, this is an incommensurate
structure. When T decreases further the modula-

tion runs through a number of fractional periods.
For this temperature the modulation form is no
longer sinusoidal, but has a sawtooth form. Some
of the teeth correspond to a nearly simple period
solution. These are alternating with teeth of dif-
ferent period which can be identified with
"discommensurations. " Just below T; the soft
mode has been split up into two modes: a phason
and an amplitudon. The frequency of the phason
is, in general, only nearly zero if one is near the
stability limit. Finally, at still lower temperature
there may be a transition to a simple periodic solu-

tion. It is a lock-in transition to a superstructure.

VIII. THE CASE OF POSITIVE
NEXT-NEAREST-NEIGHBOR

INTERACTION

In the magnetic one-dimensional models the
structure is determined by the ratio of the nearest-

neighbor coupling constant J& and the next-

x„=0, P =0. (8.2)

The stability conditions follow from the eigenvalue

equations of the oscillations amund the solution

mcus =4sin (q/2) ( a+4cos (q/2)

+5[4cos (q/2) —1] I . (8.3)

The eigenvalues co are non-negative for arbitrary q

if

1 1

if ——, &5&+—,

1 1—1+ if 5&+—
45 2

1—4—95 if 5( ——
(8.4)

When a approaches the stability limit the frequen-

cy of the mode with wave vector q, goes to zero,
where

1 1—1 if ——, &5&+—,

cos(q a)= —(1+25)/45 if 5&+-
+1 if 5( ——,

(8.5)

For values of a below the stability line the basic
structure is certainly no longer the ground state.
Other solutions (with small integer periods) are the
following:

For large negative a the minima of V satisfy again

Eq. (3.6), but now alternating signs are favored.
This means that configurations with small (frac-
tional) periods will, in general, have a lower ener-

gy. This picture may change if
~

5
~

becomes large

enough.
First we discuss some solutions of Eq. (2.2) and

their stability. One of the equhbrium configura-

tions is the trivial one:
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N=2: x„=(—1)"v'

N=3: x„=2v' —~ leos
2&n,

3
K= —(1+a) /6

(a+5&0),

(a& —1),

N=4: x„=xsin +—,x = —2(2+~+5), ~=—(2+~+5) /4 (~+5+2&0)
STD

2 4

The stability limits for these solutions may be cal-
culated exactly (see Appendix B). They are plotted
in Fig. 14. Also a dilated equidistant configura-
tion may form a stable minimum:

x„=t, t'= —(~+4+95),
m= —(a+4+ 95)'/4 .

(8.7)

3-

Its stability limit is also indicated in Fig. 14. A
peculiar point in the diagram is the point a= —,,
5= ——,, where the solutions with N =1 (basic

structure), N = oc (dilated structure), and N =2 all

become unstable.
We did not investigate the phase diagram for

P=+ 1 as extensively as that for P= —1. Howev-

er, four main regions may be distinguished: In the

upper right-hand corner the basic structure (N = 1)
is the ground state. In the region including the

negative u axis lies the region where the antiferro-

distortive structure (N =2) is the ground state.
The boundary of this region is not indicated, only

the stability limit of this solution. For sufficiently

negative values of 5 these two solutions become

unstable for excitations with zero wave vector. To
the left of this stability limit is the region where

the dilated state is the ground state. Finally in the

right-hand lower corner is the region where the
ground state has a fractional period between 2 and
3. An example of a ground state for a = —1.S and
5=+1.5 is given in Figs. 15 and 16 where both its
modulation function u„and its dispersion relation
are given. It is noticeable that in this case there is
again a double zero at wave vector zero corre-
sponding to a displacement mode and a phason.
So although one is away from the stability limit
there is a phason with zero frequency. The reason
is that the modulation function u„ is sinusoidal in
this case (Fig. 15). The same happens for P &0 in

the region in the a5 plane where the ground state
has a period between 3 and 4. For both / & 0 and

P &0 this zero frequency phason mode is inherited
from that in the simple N =3 configuration, which
is discussed in Appendix B.

IX. DISCUSSION

On the example of a simple one-dimensional
model it was shown that even for short-range in-
teraction an incommensurate crystal phase may oc-
cur as ground state. The origin of this incommen-
surability is the competition between the interac-
tions with the first-, second-, and third-nearest
neighbors. The interaction with third-nearest
neighbors is essential to have a finite modulation
period. The model is applicable for ionic and
molecular crystals because the incommensurate
phase does not arise from interaction with another

0-
0.75

0.25-

-2

3.5 2.5 1.5 0.5 0.5 1.5 2.5 3.5

- 0.25-

-0.75
0 2 4 6

I I I I

8 10 12

FIG. 14. Stability limits for some solutions of Eq.
(2.2) with P=+ l.

FIG. 15. Modulation function u„ for the ground state
at a= —1.5, P= ~1, and 5=+1.5. The curve is the
function 2 cos[q(x —6a)] with q =8m/1 la.
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q

FIG. 16. Dispersion relation for the solution of Fig.
15. Notice the acoustic phonon and the phason branch
which both go to zero for q =0.

(sub)system. Moreover, it is translationally invari-
ant. For most values of the interaction parameters
the ground state is the basic equidistant structure,
a dilated equidistant structure with other lattice
constant or a superstructure.

The model has an finite number of stable equili-
brium configurations. In energy these are, in gen-

eral, separated by high barriers. This will have
consequences for the thermodynamical behavior:
At not too high a temperature the system may stay
for a long time in one of the configurations which
is not the ground state. Relaxation to the ground
state will then be slow. This is especially so out-
side the direct environment of the phase transition
line, where the barriers are still relatively low.
However, near the phase transition to the super-
structure this slowing down can be important.

The excitation spectra show only a small number
of gaps if the form of the modulation is simple.
This is in agreement with the results for a one-

dimensional model with modulated spring con-
stants. ' In general, however, the spectra are rath-
er complex with many gaps. Nevertheless, there
are structures and certain bands which change only
slowly as the wave vector of the modulation is
changed. The most important of these is a gap
originating from the wave vector 2rrs/¹, where X
is the actual period and 2s the number of nodes in
one period.

In a simple mean-field approximation a change
in temperature means a change in the interaction
parameters. In this way the parameter space may

be considered as a phase space. In thi. s approxima-
tion one may have for decreasing temperature the
following sequence of changes. First a soft mode
develops: One of the phonon modes gets a zero
frequency (of course this is well known) at tem-

perature T;. Below T=T; the structure has a
sinusoidal modulation (in general incommensurate).

For still lower T the modulation becomes more

edgy and at T =T, a phase transition to a super-

structure is possible. This sequence of events de-

pends strongly on the parameters and the change
of the parameters with temperature.

The model clarifies the nature of excitations
which are characteristic for incommensurate

phases: the phasons and amplitudons. These have
been introduced in phenomenological theories, but
it turns out t4at they appear also as excitaiions in
a dynamical model. These excitations describe os-
cillations in the phase and the amplitude, respec-
tively, but they are just phonons. The phonons be-

longing to the direct environment of such a point
in the dispersion curve can then be said to belong
to the "phason branch. " The name "phason" only
describes a main property of the mode. Actually
the amplitude of the mode changes also. (In the
case of a sinusoidal modulation it is just a phase
mode. ) Only near the transition temperature T; or
in the region in the phase diagram where the
ground state has a period between 2 and 3 (if
P & 0), or between 3 and 4 (if P & 0), the frequency
of the phason is (nearly) equal to zero. In general
it is not, even not for incommensurate phases.
This can be an explanation why it is difficult to
find the phason. ' In the literature it is suggest-
ed that its frequency is always zero in an incom-
mensurate phase. Notice, however, that a phason
with zero frequency may even exist in a commens-
urate phase.

It is common to consider changes in the phase
of the modulation function which are decoupled
from the amplitude changes. In this way it is pos-
sible to write down a sine-Gordon equation for the
phase. The solutions are the discommensurations
(or solitons) which one believes to have seen experi-
mentally. ~' One should be careful with the in-

terpretation, because, as our model shows, the
discommensurations do not correspond to a mere

phase change. In general the amplitude changes
also (cf. Fig. 4). However, if one assigns a phase
to each value of u„(e.g., if A is the maximal value
iil a llalf period by definl'tloll cosp»: Qq/3) one

may consider the difference between this phase and
that of a simple periodic configuration. In Fig. 17
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... o(=0 5=0.25... a=0.86=2.0
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FIG. 17. The difference in phase between a solution and a regular sinusoidal function, (a) The solution of Fig. 4
compared with a period X =6 structure (a=0.0, P= —1, 5=0.25} (b) the ground state at a=0.8, P= —1, 5=2.0 com-

pared with a sinusoidal function eith period 3. In this case the solution itself is nearly sinusoidal, like the solution of
Fig. 15.

this difference is plotted for the solution of Fig. 4
compared with a period X=6 configuration. The
resulting graph is very similar to the one obtained

from the sine-Gordon equation in a continuum ap-

proximation.

The sound velocity and the specific heat are two
closely related properties which depend smoothly
on the modulation wave vector. For simple odd-
integer periods both quantities have anomalies.
The results presented in Ref. 27 differ slightly
from those presented here, because of another
choice of sequences of solutions. In Ref. 27 we in-

cluded also solutions of the type (n~, m ) whereas
here we considered only sequences (n~, m~) with p
and q even which correspond, in general, to solu-
tions with lower energy. Moreover, in these se-
quences the anomalies at odd-integer periods do
not occur so that the curves are smoother.

Although the model is only one dimensional one

may assume that the main characteristics apply
also to two- and three-dimensional systems. Actu-
ally, the use of a mean-field approximation for the
study of phase transitions is only justified if we
consider the model as an approximation for a
higher-dimensional system with strong anisotropy.
A preliminary calculation shows that many
features carry over to higher-dimensional models.

APPENDIX A: CONTINUUM
APPROXIMATION

+5'(x„—x„2P/2+ x„/4], (Al)

a'=a+4P+95, P'= —P—25, 5'= —5.
(A2)

In the continuum approximation one may write

aV= Jdx[of~/2+( /4+p(P) /2] (A3)

with

rr =a+413+95, p= —P—65 . (A4)

The minimal energy is obtained for a solution of
the differential equation

In this appendix we present some results for our
model in the continuum limit. Equation (3.8),
which gave a first indication of the form of the
solutions of Eq. (2.2), can be generalized for arbi-

trary values of the parameters a and P. To that
end we write the potential energy V as

V=g[a'x„/2+P'(x„—x„,) /2
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pP'=ok+a' (A5)

which may be integrated yielding

x=xz+ f dt[(t +2ot +2c)/2p] '/, (A6)
00

where c is an integration constant. The solutions
can be distinguished according to the sign of p (i.e.,
the sign of the leading polynomial coefficient) and
the sign of the roots —o+(o —2c)' of this poly-
nomial.

/=a dn x —2p
L L

' 1/2 '

a —b

a

The modulus k of dn(x, k) satisfies 0& k & 1.

Case III: pg0, o p0

x =1/ —2p
dt

tp [o2 t2)(b2+t2)]1/2

For c&0 the mots area = —o+(o —2c)'/
and b=—o —(cr— 2c—)' N.ow

(A9)

Case I: p~o, &go

For 0 & c & o. /2 both roots are posltlve:
a = —o+(o —2c)'/ and b = o (cr —2c)'—/. —
The solution (A6) is in this case

1/2
a +b
—2p

(A10)

x=v2p fp& dt
Q [t2 2)(t2 b2)]1/2

where sn(x, k) is a &acobi elliptic function with
modulus k =b/o. " For c &0 one of the roots is
negative and the integral diverges.

Case II: p&0, o'&O

Ol'

x =7 —2p
fp [o2 t2)(t2+b2)]1/2

For c g0 the roots may be denoted by a =—o.

+(o —2c)'/ and b= —o —(o—2 —2c)'/2.

Equation (A6) becomes

1.c., tl1c sanlc cxplcss1011 Rs Eq. (Ag)
0(k (—,. For (j(c(o /2 cxplesslo11 (A6) 18 11ot

real.
Hence for all three cases there are periodic solu-

tions. Notice, however, that only the sy and cn
functions satisfy the condition that g(x)dx =0,

0
the dn function does not. So the latter does not
correspond to a periodic solution in the displace-
rnents.

The potential energy density can be calculated
using Eq. (A3):

K(k)f dx[crg /2+( /4+p(g')~/2],

(Al 1)

where E (k) is one quarter of the period of the
Jacobi elliptic functions. The resulting expressions
are the following.

Case I: p&0, a&0

' 1/2 1/2
a+& a
—2p a +b

2
(

2 2c)1/2]/3
6

where cn(x, k) is an elliptic function with modulus

k =0 /(a +b ) wlllcll satlsfles ~ (k ( 1.
For 0(c (0 /2 tllc roots Rl'c o = —o+(o

—2c)' and b = —cr —(cr —2c)' . Then the
solution is

x=V' —2p
dt

[(02 t2)(t2 b2)]1/2

or

+a[o —(o —2c) ]
E(k)

(A12)

(A13)

where E(k) is the second complete integral. In
this region, 5 & —P/6 and a (—4P—95, the solu-

tion ls an elllptlc sn function with 111odulus

—o —(o' —2c)2 1/2

—o+(o' —2c)'"
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For c=O one has k=O. Hence the solution is a
sine function with amplitude v' c—/cr and P =0.
For c =o. /2, one gets k =1 and the solution is a
tanh function with amplitude i/ —o and
P = o—/4 T.he latter is the most stable solution
(minimal energy). It is the dilated solution (3.4)
with one kink.

Case III: p~Q, g ~O

We have

—+[cr+(o' 2—c)'r ] ——+—(o —2c)'~z
4 2 6

Case II: p~O, 0 gO

+ —,cr(cr —2c )
&gz E(k)

(A17)

We have

+[o+(o' —2c)'r']—
4

X ——+—(o —2c)2 1/2

2 6

+ —,o(o —2c)
z z i' E(k)

In this region, 5 & —P/6 and a & —4P—95, the
solution with c g 0 is a cn function with modulus

k =[—o+(cr —2c)' /2(cr —2c)'r ] . (A15)

For c=O the modulus k=1. The solution then is a
1/cosh function with amplitude V 2cr and —W=O:
It is a localized state. For c~—00 the modulus
k tends to —, and P" to —c/12, which goes to
positive infinity. However, as a function of c the
potential energy has a minimum at finite c, i.e., at
finite k and finite period: c = —1.5o, k = —,,
period =6v'p/a, y.=—0.29oz. The depth of the
minimum in the continuum approximation is in
agreement with the depth in the discrete calcula-
tion (Fig. 5). The predicted position of the min-
ilillliii, liowevei, ls off by a factoi. Tliis is due to
the fact that for the minimum one has inverse
period 0.16, which cannot very well be described in
a continuum approximation.

Solution (A9) with 0 & c &cr /2 has a potential
energy density

m =——2cr(crz —2c )
'~z

+ [ cr+ (o — 2)'c]r—
3 K(k)

APPENDIX 8: ANALYTIC SOLUTIONS
WITH PERIOD Z, 3, OR 4

For small-integer period N Eqs. (2.2) can be
solved analytically. We give here the solutions and
the parameter values of a and 5 for which the
solutions are stable.

For %=2 one can write

x„=(—I)"A, u„=(—I)"A/2 .

The energy per particle then becomes

K=(a+5)A /2+3 /4,
which is a minimum for

A = —a —5 (a+5&0) .

(82)

(83)

Because the value of p„[Eq. (5.4)] is independent
of n, the force constants are invariant under the
lattice translation a. The frequency of the eigen-
modes with wave vector q is given by

This is the same expression as (A14). Again F =0
for c =0 and for c~—00 the modulus k tends to
—, and P to —c/12&O. However, now P is posi-
tive for all c. Hence this solution has always
higher energy than the null solution.

Because xo in (A6) is an integration constant,
the solutions (A7) —(A10) represent a choice of this
constant. Other solutions are obtained by a simple
shift in X. Since this does not influence the energy
density it means that in the continuum approxima-
tion there is always an excitation with zero fre-
quency, corresponding to a shift of the modulation
wave. This is the phason Inode, which is not al-

ways present in the discrete case. In the continu-
um approximation it is the Goldstone mode corre-
sponding to the translation symmetry of Eq. {A5).

For c =0 one has k =1. Hence the solution is a
1/cosh function with P =Zo . For c =oz/2 one
has k =0. Then the solution is a constant v' o.
It corresponds to the dilated solution (3.4) and
P = —o' /4.

Nl6) =4 sin
2

—2a —35+413cos
2

2

+5 4cos —1
2

{84)
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The solution is stable if ~ «0 for all q, i.e.,

if p= —1: for 5& —,, a& —2+35

«» 5& —„a& —(1+35+1/45)/2

if p=+1: for 5& ——,, a&2+35

for —
2 g5g 2, O,'g —$

«r 5& —,, a&(1—35—1/45)/2.

For X=3 the solution is of the form

x„=A cos(2~n/3+y) .

u„=A/2, 0, —3/2

for n =1,2, 3 in the unit cell. The dynamical equation becomes

—3a —3p+25(1 cosq) —mco2 — p(1 e'«)—
Det P(1—e'~) 25(1 —cosq) —mm

(3a+4P)e'e —P P(1—e'e)

(3a+4P)e '~ —P
P(1—e'~)

—3a —3P+25(1—cosq )—m ro

The potential energy per particle is

P =(a+P)A /4+32 /32,

which becomes minimal for

3 = —4(a+p)/3 (a+p & 0)

independent of the phase p. Choosing +=0 the solution is given by

(85)

(86)

(88)

(89)

(810)

For any a, p, and 5 there are two modes with co =0 and q =0. For this value of q Eq. (810) becomes

Det

3a+3P
0

—3a —3P—mN

(811)

One of the eigenvectors with co=0 is (1,1,1)/W3,
which corresponds to an acoustic translation mode.
The second one is (1,—2, 1)/~6, which corresponds
to a shift of the phase q&: It is the phason mode.
The eigenvector for the mode with mao
= —6(a+p) is (1,0,—I)/~2. It is an amplitude
mode as one can see by comparing the eigenvector
with Eq. (89). The eigenvalues mco of Eq. (810)
are positive for all q for sufficiently large 5.

For X =4 the solution is of the form

A = —(a+2p+5) if a+2p+5&0.
The corresponding solution in u„ is

(814)

u„=O,A/2, 0, —A/2 (815)

for n =1,2,3,4 in the unit cell. Since the values of
p„[Eq. (5.4)j are independent of n, the force con-

stants are invariant under a translation a. The
eigenvalues of the normal modes are

x„=A cos(mn/2+q)

for which the energy per particle is

u = (a+ 2P+ 5)A '/4

+(sin qr+cos4y)A~/8 .

(812)

(813)
4cos'~ —~

2
(816)

This is minimal for The solution (815) is staMe if aP & 0 for all q, i.e.,
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if p= —1: for O&5( —,', a&1+35

«r 5& —,, a&3—5 —(1+25)/85

The eigenvalue (814) for q =+a./2 corresponds to
two modes which can be considered as degenerate

phase and amplitude modes. The eigenvalue is

if p=+1: for 5& —,', a& —5 —35+1/45 rnto = —4(a+2p+5) . (818)

for ——, &5( —,, a& —3—5

for 5& ——,, a( —1+35. (817)
Notice that, contrary to the case E=3 there is no
zero-frequency phase mode.
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