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Thermal conductivity of superlattices

Shang Yuan Ren and John D. Dow
Department of Physics and Coordinated Science Laboratory, Uniuersity of Illinois at Urbana Cha-mpaign,

Urbana, , II1inois 6180j
{Received 21 September 1981)

The lattice thermal conductivity of superlattices is shown to depend on a new kind of
umklapp scattering process, called a mini-umklapp, associated with the mini-Brillouin

zone of the superlattice. Expressions for three-phonon mini-umklapp-scattering matrix

elements are obtained for superlattices consisting of lattice-matched simple-cubic layers.

The temperature dependence of the thermal conductivity is evaluated using an extension

of Callaway's phenomenological model.

I. INTRODUCTION

Man-made superlattices' have attracted consider-
able scientific interest brause of their great poten-
tial for use in new electronic devices. For the
most part, studies of such superlattices have
focused primarily on the electronic and optical
properties of technological interest, rather than on
the vibrational and mechanical properties. In this

paper we report a theory of phonon thermal con-
ductivity ln a superlattice consisting of alternating
slabs of insulating material.

It is well known in the theory of lattice ther-

mal conductivity that the normal three-phonon
scattering processes in which the total crystal
momentum is conserved cannot by themselves lead

to a finite thermal resistance. Only those processes
in which crystal momentum is not conserved con-
tribute to the lattice thermal resistance:
boundary-scattering, impurity-scattering, and

umklapp-scattering processes in which the change
of crystal momentum equals some reciprocal-lattice
vector G.

Man-made superlattices consisting of periodical-

ly alternating layers of lattice-matched crystalline
material have a large superlattice constant and

hence a small or mini-Brillouin zone in the direc-
tion of layering. The mini-reciprocal-lattice vec-

tors associated with this minizone give rise to
minimum-klapp processes which contribute to the
thermal resistance.

Here we use a phenomenlogical model of the

type proposed by Callaway for bulk thermal con-

ductivity to predict the additional temperature
dependence of the thermal resistance of a superlat-
tice. We employ a phenomenological rather than a

first-principles approach because (i) the theory of
thermal conductivity, as influenced by multipho-
non processes, is sufficiently complicated numeri-

cally that no successful a priori theory has been re-

ported, to our knowledge, and (ii) our purpose is to
explore the underlying physics of mini-umklapp
processes in the simplest available model.

II. THREE-PHONON-SCATTERING
MATRIX ELEMENTS

The basic physics is contained in the tPrge-
k k'k"

phonon scattering matrix elements: 4~~ ~-
Here we use the notation of Ref. 9: k, k', and k"
are the wave vectors of the three involved phonons,
and A,, A, ', and A,

" are corresponding vibrational

branches or polarization indices.

A. 1 X 1 superlattice

To illustrate how the superlattice affects 4, we
first consider the example of a 1&(1 isotopic one-
dimensional superlattice. We assume that the two
constituents A and 8 have the same lattice con-
stants and that the interactions between A-A, 8-8,
and A-8 are exactly the same. The only difference
between atoms A and 8 is the mass difference:
md+ms. In this model the unit cell in real space
is twice that of a bulk unit cell, and the mini-
Brillouin zone of the superlattice is half that of a
bulk Brillouin zone (Fig. l). Hence there are the
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two different types of umklapp processes depicted
in Fig. 1. Ordinary umklapps occur in three-

phonon scattering in the bulk crystals of both con-
stitutents, mini-umklapp processes occur only in a
superlattice. %e can imagine any bulk material of
A as a fictitious superlattlce with two constltu-

tents that are exactly the same; in this limit mini-

umklapp processes must be forbidden, giving zero
thermal resistance. Physically it is clear that the
mini-umklapps disappear in this limit of mz ——ms,
hence the mini-umklapp scattering rate must van-

1sh as some powcl of Ntg —ptlg.

k k'k"
In order to evaluate 4~~ ~- we assume there

are only nearest-neighbor interactions in our
model. In I.eibfried and Ludwig's notation, the

coupling parameters of tturd order in a site repre-

sentation, 4&0™~",are zero unless two of the site in-

dices, (O,p), (m, v), (n, ~), refer to the same atomic

site and the third to a neighboring site. Thus only

twelve of the parameters 4~0™"are nonzero; all of
thcsc have thc values +g, where g 1s a third-order

anharmonic force constant. '

ghegesired three-phonon matrix elements

4~~~
" are obtained from 4&~ by the usual

Fourier normal-model transformation. For the
present model we find

0 0 0 0 0 ~ 0 0 0 0

0 0 0 0 0

FIG. 1. (a) Schematic illustrations of one dimensional
1& 1 (upper) and 2)&2 (lower) superlattices. (b) Brillouin
zone of 1X 1 superlattice, its bulk umklapp process wave
vector (dash-dotted line) and its smaller mini-umklapp
process wave vector (dashed). (c) Brillouin zone of a
2&2 superlattice, its bulk umklapp process wave vector
(dash-dotted line), and the smallest mini-umklapp pro-
cess wave vectors (dashed).

, ~«+k'+k")g

x [exp(ik "a)—exp( ik "a)]—

~qq
ei(k~)ei(k'~')ez(k "~")+,

&2
eq(k&)e~(k'&')e~(k "A") exp[i( , k+k'+k")a]~1/2

+[exp(ik'a) —exp( ik'a)]— ,~, e
&
(kA)e, (k'1',)e, (k "g, ")

+ „,e2(k&)e&(k'~')e, (k "A,")exp[i(k+k'+k")a
Mg

+ [exp(ika) —exp( —ika)], ~2 e, (k A, )e ) (O'A, ')e, (k "g")

,q~ e)(kA, )e2(k'A, ') ep(k "A,")

X exp [i (k +k'+k")a] (2.1)

Here the wave vectors k are all in the direction of layering, e is a vibrational amplitude, and h(k) is unity if
k is a mini-reciprocal-lattice vector, but is zero otherwise. By using (2.1) and Fig. 1 we can discuss two spe-
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cial cases: ordinary umklapp processes and mini-umklapp processes. For the ordinary umklapp processes,
we have k+ k'+k" =2(2n /L) =2'/a, and

kk'k" 1
AAA g (M M )lg2

&&z
e~(kk)eq(k'A, ')e~(k"A, ")+»z eq(kA, )e~(k'A. ') eq(k"A, ") [exp(ik'a) —exp( —ik'a }]

»z e
&
(kA, )e

&
(k'A, ')ez(k "A,")+,

&z
eq(kA, )eq(k'A, ')e

~ (k "A,") [exp(ik "a)—exp( ik "—a ) ]
Mg M,'"

&&z
eq(kA, )e ~(k'A, ')e

~ (k "A,")+
& &&

e
~ (k A, )eq(k'A, ')eq(k "A,") [exp(ika) —exp( ika—)]

M 1/2

(2.2)

This umklapp process always occurs provided the anharmonic coupling exists (g+0) even if Mq ——Mz ——M,
in which case we have e~(kA, )=eq(kA, ) =e(kA, ):

@&&» —g e(kA, )e(k'A, '}e(k"A,")[exp(ika)+exp(ik'a)+exp(ik "a)1

exp—( —ika) —exp( —ik'a) —exp( —ik "a)] . (2.3)

Equation (2.3} is exactly the form of the three-phonon umklapp-scattering matrix element for a monoatomic

chain. For the mini-umklapp processes we have k+k'+k"=2m/L =m/a and

kk k"
k»»' —

2g(M M )1/2

,&z
e&(kA)e, ( kA'), eq( k"A,") ,,

&z
e—q(kA,)eq(k'A, ')e~(k"A,") [exp(ik"a) exp( —ik"a)]—

+ &&z e~ (k A)eq(k'1, ')e~ ,(k "A,")—
&&&

e~(kA, )e ~
(k'A, ')e~(k "A,") [exp(ik'a) —exp( ik'a )]—

&&&
e~(kA, )e~(k'A, '}e~(k"lL,")—

&&&
e~(kA, )e&(k'A, ')e~(k"A, ") [exp(ika) exp( —i—ka)]

B

(2.4)
kk'k"

In the limit of no superlattice, we have M~ ——Mz and e~(kA, ) =ez(kA, ); thus C&~~ ~ for mini-umklapps van-

ishes, as expected. In the general case of a superlattice (mzQmz), we can solve the equations of motion for

e, (kX)/e, (kX):

ep(kA, )

e((kA, )

2 cos(ka)
1

B
2

Mg +MB
MgMB

1/2
4sin (ka)
MgMB

(2.5)

If we define
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1 1 1 1+
Mp 2 Mg Mg

(2.6a)

and

1 1 1 1

M 2 Mg Mg
(2.6b)

then we find

ei(kA, )

ei(kA, )

Mp

coska
1 1

0

'2

cos (ka)+ 5 sini(ka)

„1/2 (2.7)

By inserting (2.7) into (2.4) we will have 4ii i- as a function of 1/Mo and b,(1/M), a rather complicated ex-
pression.

The three-phonon scattering matrix element simplifies greatly in the case of small isotopic mass differ-
ence: b(1/M)/(1/Mo) « 1. Then we find

~ 1

e2(ki, ) =1+C(k) =1—C(k)
M LV

ei ki, 0

Mp

where we have

1 —cos(ka)
cos(ka)

Thus the matrix element becomes

(2.8)

(2 9)

4ii i-= —,g i~2 ei(kA, )ei(k'A, ')ei(k"A,")
Mp

X I [C(k")—C(k) —C(k')+ —,][exp(ik "a)—exp( ik "a)]—

+ [C(k') C(k") —C(k)+—, ][exp(i—k'a) exp( —ik'a)]—

+[C(k}—C(k') —C(k")+ , ][exp(ik—a} exp( —i—ka)]] . (2.10)

The most important feature of this three-phonon
mini-umklapp matrix element is that it is propor-
tional to the fractional "disorder" of the superlat-
tice hM/Mo. Thus we expect mini-umklapp-
scattering rates to be proportional to the square of
the amplitude of the broken symmetry.

B. X~ X%2 superlattice

An Ni XN2 superlattice consists of alternating
slabs of N, layers of material A and N2 layers of

I

B. Even for the isotopic superlattice discussed
above, analytic solutions for the mini-umklapp-
scattering matrix elements are not easily obtained.
Since our purpose here is to emphasize the phe-
nomena rather than to present specific and detailed
calculations, we concentrate on those features of
N ~ )& 1V2 superlattice mini-umklapp-scattering that
we expect to be general and independent of the
specific model. We do note however that even for
an Ni XN2 superlattice there are Ni+N2 1 dif-—
ferent mini-reciprocal-lattice vectors; each of these
vectors (and integral multiples of them} corre-
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sponds to a mini-umklapp scattering.
The general features we expect of such scattering

are that the scattering rate should be proportional
to (b, M/Mo), the square of the amplitude of bro-
ken symmetry, and approximately proportional to
the square of the smallest mini-reciprocal-lattice
vector, i.e., proportional to (N&+Nz)

III. RELAXATION- TIME APPROXIMATION

Even if the mini-umklapp-scattering matrix ele-
ment can be evaluated, the solution of the
Boltzmann equation to determine the resulting
thermal conductivity is normally not possible.
Thus we follow the established tradition of con-
structing a phenomenological theory of thermal
conductivity, with the nature of the phenomenolog-
ical elements dictated by the microscopic theory of
the three-phonon matrix element (Sec. II).

We employ a generalized version of Callaway's
relaxation-tine approximation and treat only the
three-phonon scattering and boundary-scattering

I

=BUT co +C/L,

3 2=By(T co

(3.1)

(3.2)

Here BU depends on temperature but B~ does not.
The second term on the right side of (3.1) is a
boundary-scattering term; the first term is a three-
phonon umklapp-scattering term. For bulk um-

klapp processes, BU contains a temperature-

dependent factor e
" ', with 8 the Debye tem-

perature, and a a constant.
According to Ziman, a three-phonon umklapp-

scattering rate is proportional to the square of the
change of total crystal momentum involved. Thus
we assume for a N~ XNz superlattice that the
mini-umklapp processes contribute to the scatter-
ing additively:

contributions to the thermal conductivity. The
scattering rates ~ ' for normal and umklapp
scattering are assumed to have Callaway's postulat-
ed form:

BU=CU[e
' ' +(bM/M) (NI+Nz) e ' ' ], (3.3)

where CU is a temperature-independent constant.
The factor N&+Nz appears in the exponent be-

cause crystal momentum conservation (modulo a
reciprocal-lattice vector) dictates that the energy-
conserving scattering processes involve two pho-
nons of a wave vector approximately half the dis-

tance from the center of the Brillouin zone to the
minizone boundary; these phonons have an energy
or a thermal activation temperature of
-8/a (N&+Nz)

Because he could not separate Bz and BU, Calla-

way just neglected the temperature dependence of
BU and took the value of BU+Bz determined at
75 K to be a constant. That is, he actually
neglected BU and took BU+B~——B~. Instead of
doing this, we assume mini-umklapp processes will
dominate the thermal resistance of a superlattice,
and take BU+B~ ——BU, with BU having the tem-
perature dependence shown in Eq. (3.3). We might
have overestimated the temperature dependence of
BU+B~, in contrast to Callaway, who underes-
timated it.

By using these approximations and the data for
C/L, a, 8, and BU+BN, we can calculate the
thermal conductivity of a fictitious Ge-like super-
lattice. Our results are shown in Figs. 2 and 3.
Figure 3 displays the temperature dependence of
the thermal conductivity for the same kind of su-

I

perlattice as in Fig. 2, but with a sample size ten
times larger. The mini-umklapp-scattering effect
becomes more evident in this latter case.

It should be emphasized that the mini-umklapp
scattering produces a (25% reduction of the
thermal-conductivity peak. Experiments searching
for this effect should take steps to guarantee that
phonon scattering by defects introduced in super-
lattice fabrication does not mask the mini-umklapp
scattering.
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FIG. 2. Temperature dependence of the thermal con-
ductivity for 1)&1,2X1, 2X3, and 5X5 superlattices,
compared with the bulk thermal conductivity, after Ref.
7. The model sample size is I.=0.18 cm; we assume
dBf/M=1. 0, C=3.5X10' cm/sec, a =8, 8=375 K,
BU+BN ——2.77X10 secdeg at 75 K. After Ref. 8.
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crystal value. The reduction is most significant in

large samples rvith small superlattice periods and.

with large differences between the superlattice

layers. %e propose that these concepts be tested

experimentally.
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FIG. 3. Temperature dependence of the thermal con-

ductivity for 1&1, 2&1, 2X3, and 5& 5 superlattices.

The sample size is an order of Inagnitude larger than in

Fig. 2, where I.=1.8 cm. %'e assume hM/M=1. 0.

IV. CONCLUSION

Mini-umklapp three-phonon scattering is

predicted to significantly reduce the lattice thermal

conductivity of a superlattice below the perfect-
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~oA-rather complicated and more realistic model can

lead to essentially the same result. Suppose we have a
simple cubic crystal, but in the x direction this crystal
is composed of alternating layers of atoms A and 8.
There are only nearest-neighbor central forces between

atoms, and the interaction potentials between A-A, 8-
8, and A-8 are the same. The only difference be-

tween the A and 8 atoms is their masses. According
to Leibfried and Ludwig, in this system the coupling

OPtl7f

parameters of third order 4I ~~ depend on only one in-
ijk

dependent parameter a&, and the motion in the x, y,
and z directions can be separated.


