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Wannier-Mott excitons in semi-infinite crystals: Wave functions
and normal-incidence reflectivity
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A method is developed to obtain Wannier-Mott —exciton wave functions in semi-

infinite crystals in the framework of the effective-mass approximation. An analytical ap-
proximation is shown to agree well with numerical wave functions and is used to compute
exciton nonlocal polarizability (in closed form) and s-wave reAectivity. The results are
compared with normal-incidence reflectivity experiments in CdS, ZnSe, GaAs, and InP,
and the experimental line shapes are well reproduced. The existence of an intrinsic dead

layer is confirmed and a new additional boundary condition is derived. It is shown that
the spike, frequently observed at the longitudinal-exciton frequency, is due to extrinsic
dead layers.

I. INTRODUCTION

The effect of spatial dispersion on exciton opti-
cal properties is not yet completely understood.
Since two polariton branches propagate in the
presence of spatial dispersion, an additional boun-

dary condition (ABC) is needed to determine their
relative amplitude, in addition to Maxwell's boun-

dary conditions. In their pioneering work, Hop-
field and Thomas showed the exciton polarization
to vanish at the surface, as already hypothesized by
Pekar, ' in the case of a tight-binding model of
Frenkel excitons with nearest-neighbor interactions.

They also introduced the concept of dead layer in

order to account for the repulsive image potential
that extended excitons feel near the surface. Since
then, the correct ABC and the existence of the
dead layer have been the object of a not-yet-settled
controversy.

It is clear that the ABC and an eventual dead
layer must be embodied in the nonlocal nonhomo-
geneous dielectric susceptibility of the vacuum-
crystal system. This was shown first in the frame-
work of the so-called dielectric approximation,
which assumes that the bulk, translationally invari-

ant, dielectric susceptibility e(co, r —r ') holds up to
thc surface. This approximation leads to an ABC
different from that of Pekar' and Hopfield and

Thomas and to no dead layer, but seems quite un-

physical, since it completely neglects surface ef-
fects.

Further insight was provided by some papers '

dealing with the relation between the kind of exci-
ton reflection at the surface and ABC. In general,
exciton reflection at the surface leads to a nonho-

mogeneous dielectric susceptibility. The dielectric
approximation results to be a particular case,
corresponding to diffuse reAection. These papers,
however, neglect the effect of the surface on exci-
ton internal motion, limiting themselves to the case
of Frenkel excitons. In recent years these have
been studied in great detail in a number of pa-

pers "where microscopic calculations of optical
properties have been carried out for quite sophisti-
cated models. Pekar's ABC has been confirmed in
the case of semi-infinite isotropic crystals.

On the other hand, microscopic calculations for
extended (Wannier-Mott) excitons have also been
performed. ' ' The existence of a transition re-
gion near the surface, where excitons are less prob-
ably found than in the bulk (dead layer), is con-
firmed, but the use of the adiabatic approxima-
tion' ' which is questionable for values of the ra-
tio M/p of the exciton total mass to the reduced
mass of order 10, as encountered in most semicon-
ductors, or too many other approximations in some
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calculations' ' make the results only qualitatively
correct. A further shortcoming of the adiabatic
approximation approach is that cumbersome calcu-
lations are needed in order to compute reflectance
line shapes, and therefore these are computed only
in specific cases (equal electron and hole masses, '

for instance) and comparison with experiments is
made' approximating the above-mentioned transi-
tion region with a homogeneous dead layer without
excitons.

A number of experiments have been perform-
ed' and interpreted in terms of a homogeneous
dead layer and various ABC' s. It has been
shown' that any ABC gives a good fit of normal-
incidence reflectivity if the dead layer depth is a
fitting parameter, while oblique incidence reflec-
tivity seems to favor Pekar's ABC. A further
complication arises, since extrinsic dead layers

often exist in semiconductors, due, for instance, to
built-in electric fields which may ionize excitons.
Extrinsic dead layers, much larger than the exciton

radius, have also been hypothesized in solid rare
gases. For these reasons, dead layer depths deter-
mined by fitting experimental line shapes are not
conclusive, and further theoretical work is required
in order to have a full understanding of the
behavior of extended excitons near the crystal
boundary.

The purpose of this paper is to formulate the
problem more rigorously. In Sec. II we compute
Wannier-exciton wave functions in a semi-infinite
crystal avoiding the use of the adiabatic approxi-
mation. The image potential is neglected in order
to make the calculation feasible. This approxima-
tion is justified in Sec. II. We believe that it does
not substantially lower the accuracy of our results
which should remain at least semiquantitatively
correct. A simple approximate wave function,
whose correctness is tested by comparison with nu-

merical calculations, is employed to compute exci-
ton polarizability in closed form in Sec. III. In
Sec. IV we solve the equation of light propagation
for an s wave. In Sec. V we compute normal-
incidence reflectivity that can be made to agree
with experimental line shapes in a number of semi-
conductors by varying only a few parameters. The
approximations involved in calculations and the re-
sults obtained are discussed in Sec. VI. We find
that the exciton polarization vanishes at the sur-
face, in agreement with Pekar' and Hopfield and
Thomas, and that there is a transition region,
roughly speaking, the dead layer, where excitons
are less probably found than in bulk. We find also

a new ABC, depending on exciton size and oscilla-
tor strength, that determines the relative ampli-
tudes of the two polariton branches. A partial ac-
count of this work has already been published else-
where.

II. EXCITON WAVE FUNCTIONS

A. Effective-mass Hamiltonian
and boundary conditions

We consider excitons at the fundamental edge of
a semiconductor with parabolic nondegenerate
valence and conduction bands, occupying the half-
space z & 0. The effective-mass Schrodinger equa-
tion is

X j[(p, pi ) +(—z, +zs)']

—(4z, )
' —(4zA ) (2)

e being the bulk dielectric constant. We assume
throughout this paper the boundary condition (BC)
that the envelope wave function 4(r, R) vanishes
when either the electron or the hole are at the sur-
face:

4(z, =0)=4(zi, ——0)=0 . (3)

This boundary condition has been shown to be
correct in absence of surface states when a large
surface barrier prevents electron and hole escape
from the surface ' and has been used for ex-
plaining surface effects on electroreflectance.
It has also been derived ' from the image potential
infinite barrier that electrons and holes experience
approaching the surface [see Eq. (2)] and has been
assumed in previous works' ' on the argument
of the present paper. The boundary conditions (3)
are, however, questionable in presence of surface
states. Recently a tight-binding model of excitons

=E4(r,R), (l)

where R is the center-of-mass position, r = r, —rI„
r, =(p„z,), and ri, =(pi„zs) are the electron and
hole position, respectively, and the exciton energy
E is measured from the conduction-band bottom.
The image potential is'

2e e—1
V; (r,Z)= ——

a @+1
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near solid surfaces has been developed by Altarelli
et aI. neglecting the hole motion and the image
potential. A layer with exciton binding energy
smaller than in bulk (dead layer) is found in ab-
sence of surface states, in agreement vvith calcula-
tions founded on Eq. (3) and the adiabatic approxi-
mation. ' ' However, when empty (filled) surface
states are present below (above) or near the con-
duction-band bottom (valence-band top), an in-

crease of exciton binding energy near the surface is
found, in contrast with the results derived from
Eq. (3). However, this BC could be valid also in
the presence of surface states for the effect of the
image potential neglected in Ref. 32, which could
prevent carriers from approaching the surface.
Though the validity of (3) is an open question, we
assume it in this paper, neglecting in this way the
microscopic structure of the surface.

In order to make the problem of finding wave
functions tractable when the adiabatic approxima-
tion is not used, we are forced to neglect the image
potential in (1). We show below that this does not
lead to serious errors if BC (3) is used. Actually

this BC has roughly the same effect as the image
potential on electron and hole motion, since it re-

pels both from the surface. Calculations' in the
framework of the adiabatic approximation have
shown that the inclusion of the full image potential
in addition to BC (3) has little effect. A further
argument not founded on the adiabatic principle is
that the image potential is small @shen the

electron-hole separation is smaller than the dis-
tance from the surface. The solid lines in Figs. l
and 2 show the ratio of the image potential to the
Coulomb energy, computed when the electron-hole
distance is equal to the exciton radius a~, as a
function of the center of mass distance from the
surface Z, for CdS and InP, respectively. This ra-
tio is smaller than 0.1 for Z larger than the exciton
radius a~. Since the BC (3) repels excitons to a
distance from the surface much larger than as, as
mill be shown later, the image potential can be
neglected. Therefore, in this section, we are going
to solve Eq. (1) with boundary condition (3) and

V; (r,Z)=0.

B. Formal solution

Equation (1) is separable in r and R, but a
single-product wave function does not satisfy the
boundary conditions (3). Then we write the solu-
tion as a linear combination of product wave func-
tions, each being a solution of (1) with the same to-
tal energy E, that ho@eever is differently shared be-
tween internal and center-of-mass motion:

+ +
@(r,R) = —exp(iK~~ R~~)it(r, Z),

2m.

Analytical

5 iv(o, z)i

Cd 8

0
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Z (A)

FIG. 1. CdS. Right-hand scale: exciton oscillator strength (l((O,Z)
(

in units of )q&i(0) (
/2n as function of the

center-of-mass depth Z, for Eq (center-of-mass energy) =2 meV. The analytical approximation, computed according to
Eq. (20) is compared with variational wave functions, computed as shown in Sec. II C, including exciton states up to
n=3 and n=5. Left-hand scale: the ratio of the image potential to the Coulomb potential computed for electron-hole
separation equal to az, and z, —zI, =a&/V 3. We choose the case where the hole is nearer to the surface {z,&z„) since it
yields a larger image potential.
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FIG. 2. InP. Right-hand scale: exciton oscillator strength
( g(O, Z} [i in units of [yi(0} (

/2', computed as function

of the center-of-mass depth Z, for Ez ——0.05, 0.1, and 0.2 meV. The analytical approximation, computed according to
Eq. (20), is compared with variational wave functions, computed as shown in Sec. II C, including exciton states up to
n=5. E„&0.02 for all variational wave functions. Left-hand scale: image potential, computed and normalized as in
Fig. 1.

y(r, Z)= [~(1+ ~A (')]-'"
[exp( iK,Z)—+A exp(iK, Z) ]

)& q&&(r) +gc„qr„(r )exp( P„Z)—

where qr((r) and y„(r) are respectively, the ground
state and excited hydrogenic wave functions with

energy E„, g'=E —(ri K~~/2M~~, K=(K~~,K, ),
E, &0, is the center-of-mass wave vector, such that
O'= —R'+ R K, /2M', R* is the effective Ryd-

berg, and

P„=[2M'(E„—Ã)/(ri ]'/~ .

M~~ and Mq are, respectively, the exciton mass

parallel and perpendicular to the surface plane.
We are considering solutions with E greater than

E& ———R*, and smaller than Ez ———R*/4, so that
oscillating center-of-mass wave functions occur
only together with pi. The internal motion wave,

'

functions are those of the hydrogen atom, since
they must be regular as r tends to zero and to in-
finity. The cylindrical symmetry around the z axis
allows the azimuthal quantum number m to be the
same for all terms in the sum in (5). We restrict
ourselves to the case m=0, since only such exci-
tons are optically allowed. The wave function (4)
is correctly normalized, as shown in the Appendix.

The c„'s and A must be found imposing the
boundary conditions (3), namely that wave function
vanishes at z=Mj Z/m, (z, =0), and at
z = —Mj Z/ms (zs =0). Substituting for Z in Eq.
(5), we find that the function

P(r)= y((r)Iexp[ —iK,s(z) )z []+A exp[iK, s(z) )z
(
]]+pc„y„(r)exp[ P„s(z) (z [

]— ir(1+AA')]'~~,

where s(z}™./Ml for z) 0 and s(z) =mh/Ml for z(0, must be identically zero, in order to satisfy Eq
(3). If we multiply by the hydrogenic wave functions pk(r), which are a complete set in the r space and in-
tegrate over all space, we find the system

A (k
/
exp[iK s (z)

f
z

[ ] /
I ) +pc„(k /

exp[ Ps (z)
f

z
/ ] /

n ) =——(k
f exp[ iK s (z) [z

f ] /
I ) .—

There is an equation and an unknown c„(A for the ground state) for each hydrogen state n, so that the
nonhomogeneous system has at least one solution. In the following section we will show practical methods
to find the wave functions.
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C. Variational approach

In order to carry out practical calculations, it is unavoidable to retain only a finite number of hydrogenic
excited states in the sum in Eq. (5). In this case, the wave function is still an exact solution of the
Schrodinger equation, but the boundary conditions (3) cannot be rigorously satisfied. A similar problem is
present in the cellular method of band calculation.

We look for wave functions that minimize the mismatch of the boundary condition, namely the function
F( r ), Eq. (7), that should be zero if the BC (3) were rigorously satisfied. Therefore, we try to fulfill the
condition.

f d r ~F(r) ~2=min.
r space

We require that the derivatives of (3') with respect to c„' and A' vanish. We get

gc M„= T„( —K) A—T„(K—,),

(3')

(8)

r

A f(K,)+pc'T (K, ) +A QM„c„'c +pc T'( K, )+—gc'T ( K,)—
m nm m m

=f( K, )+g—c T*(E,), (9)

with

and

M„=(n ) exp[ —s(z)
~

z
~

(P„+P )] (
m ),

(10)

T„(K,)=(n [ exp[s(z) ~z
~
(iK, P„)](0—),

I

In deriving (14), we have taken advantage of the
reality of the hydrogenic wave functions involved,

namely those with m=0. The solution of (14)
which minimizes (3') is

A = —
~
f(K, ) —h(K, )

~
/[f(K, ) —h(K, }],

(16)

f(K, )=(0( exp[2is(z) (z (K,] (0) . (12)
giving

fd'r ~F(r) ~'

Here n and m label excited hydrogenic states, and

~
0) the ground state. We multiply Eqs. (8} by c„'

and sum them over n, then substitute into the
second set of large parentheses of the left-hand side
of Eq. (9) and get

A f(K, )+A+c~ T~( K,)—
=f( —K )+pc T (K, ) . (13)

Now we solve the system (8}, inverting the matrix

~nm:

c„=—g(M ')„[T ( K, )+AT (K, )] .—

Insertion of the solution into (13) yields

A [f(K, ) —h (K, )]=f*(K,) h*(Kz), (14)—

=ir '
1 —

~
f(K, )—h(K, )

~

—g(M ')„~T„(K,)T~ (K, ) . (17)

In order to check the validity of the approach,
we compare the integrated mismatch of boundary
condition (17) with that of the bulk exciton wave

function. This is I/Wiry&&(r)exp(iK. R), normalized
to 5(K—K'} in the half-space z& 0, and yields a
boundary mismatch I/ir. Therefore, the validity
of the present method requires the error, Eq. (17),
to be much smaller than 1/m, namely

E„=1 —
i f(K, ) —h(K, ) i

—g(M ')„T„(K,)T'(K, ) ((1 .

where

(15)

We consider the case of CdS in order to show the
convergence of the method. Figure 1 reports

~

g(O, Z}~, that is proportional to the exciton os-
cillator strength (see Sec. III), in the case Es
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=Pi K, /2M ' ——2 meV for various truncations of
the sum in Eq. (5). If only the n =2 level is in-

cluded, E,=0.088, already valuably smaller than 1.
Inclusion of the levels up to n=4 reduces E„ to
0.034, while the level n =5 leads to a little im-
provement (E„=0.032). We conclude that the in-

clusion of a few hydrogenic states, from 10 (n =4)
to 15 (n =5} gives quite accurate wave functions
with boundary mismatch E, of the order of 0.03.
Calculations for smaller values of Ez and different
materials (GaAs, InP, ZnSe) give similar or even

better results.

D. Analytical approximation

The method of the preceding section involves ex-
tensive numerical calculations and is not practical

for computing optical properties. We show here a
simple analytical approximation that we will check
by comparison with the numerical calculations.
This approximation has already been reported in
detail in Ref. 26, but we prefer to repeat it for the
sake of completeness and in order to correct some
print errors of Ref. 26.

The analytical approximation can be derived
under the assumption that the c„'s rapidly ap-
proach zero above the exciton ionization edge. In
this case, the relevant E„'s in Eq. (5} range from
E2 R'——/4—to about zero, so that E„—g' and P„
are nearly constant, the latter ranging from
(3R*M~/2')'~ to (2R'Mj/fP}'~, if g' is very
close to —8'. This allows one to replace the P„'s
in Eq. (5) by some mean value P, for not too large
Z and Mz values.

The use of boundary conditions (3) yields:

f(r) =pc„y„(r)= '
—y&(r)[exp( iK,m,—z/Mj )+A exp(iK, m, z/Mz}]exp(m, Pz/Mq} for z &0

qr&(r)[e—xp(iK, msz/Mj )+A exp( iK,—msz/Mq)]exp( msPz/M—j ) for z &0 .

f(r) is continuous at z=O, and also df (r )/dz
must be continuous, leading to

A = (P iK, )(P—+—iK, )

The final result for g(O,Z), that is relevant for cal-
culation of the dielectric susceptibility, is

1((O,Z) = (2m) 'i
pre(0)

&([exp( iK,A)+—A exp(iK, Z)

—(1+A)exp( PZ)] . —(20)

I =P '=(p/Mg )
'~ as, (21)

of the order of one half of the exciton Bohr radius
for the relevant values of p, /Mj. After the transi-
tion region,

1((O,Z) = 2(2n. )
' —i sin[Kg (Z —l)]q), (0), (20')

provided A is expanded up to first order in K,/P.

Equations (5) and (20) describe an exciton traveling
with momentum fiK, towar—ds the surface, being
completely (

~
A

~

=1) back refiected, together to
an evanescent wave localized in a depth —1/P near
the surface. The choice of P in the previously
mentioned range has practically no effect on wave
functions and we choose P = (2M&R'/fP)'~ .

Hence, the transition region depth is about

I

This is the same behavior of excitons starting after
a dead layer of depth l with boundary condition
g(O,i}=0. For this reason, we will often call I the
dead layer depth, but it must be emphasized that
we are dealing with a continuous transition region
and by no means with a homogeneous dead layer.

We were not able to show the validity of the
main assumption of this subsection, namely that
the c„'s are rapidly approaching zero above the ex-
citon ionization edge. Thus, we check the analyti-
cal approximation by comparison with the numeri-
cal wave functions computed as shown in the
preceding section. The solid line in Fig. 1 is the
analytical approximation to

~
g(0~

~

in CdS for
Ez ——2 meV, that well agrees with numerical
curves. Figure 2 reports comparison between
analytical and numerical wave functions in the
case of InP for various values of E&. It is clear
also from calculations appropriate to different
cases that the analytical approximation gives quite
accurate wave functions, embodying the essential
physics of the problem. The initial ranges in Figs.
1 and 2 where

~
g(O,Z)

~

is very small, of about 10
A in CdS and 100 A in InP, yield a striking evi-
dence of the dead layer.

The image potential, computed for electron-hole
separation equal to az, has been plotted in Figs. 1

and 2 (solid lines). It is small with respect to the
Coulomb interaction when the exciton wave func-
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tion is appreciably different from zero, so that it is
justified to neglect it.

In conclusion, we have shown that the analytical
wave function (20) is a suitable approximation to

the exact exciton wave function in presence of the
boundary conditions (3). We will use it in the fol-

lowing sections in order to compute exciton reflec-

tivity.

III. EXCITON PGLARIZABILITY

The polarization P(R) at a site R is related to the macroscopic electric field E(R) through the nonlocal
polarizability X(R,R '):

P(R)= fd R'X(R,R')E(R') .

Both P(R) and E(R) are cell-averaged quantities, and X(R,R') is assumed to be a scalar quantity. In the
framework of linear response theory, X(R,R') is given by

X(R R ~) X (~)$(R R )8(z)8(z )+~—2g (o
I 1«) I v)(vl j«) I

o)
E„+(r + r) + E„(~-+rr)

(22)

(23)

where 0 is the cell volume, 4(R„Rs) the exciton wave function normalized as in Sec. II and
~

R„Rs ) is

the state where an electron occupies the conduction-band Wannier state at R, and a hole is in the valence-

band %annier function at RI, . The cell-averaged density-current operator matrix element is

(0~ j(R)
~

v)= ice(2m—)
' g 4„(R„RI)f, 1 r[a„*(r—Rs)e. Va, (r —R, )

( R R~)

where
~
0) is the crystal ground state, v labels the relevant excited states, namely the exciton branch of in-

terest, with excitation energy E, and Xo(co) is the nonresonant polarizability, including the contribution of
higher-energy transitions, that is assumed not to be affected by spatial dispersion. I is the exciton lifetime
broadening, and j(R) is the cell-averaged density-current operator (in the direction of the electric field),
whose matrix elements can be computed from exciton wave functions, as described in the following.

The exciton state
~
v) can be expanded in Wannier functions according to

~v)=n g C,(R„R„)~R,R„),
R RI,

—a, (r —R, )e.Va„'(r —Rs )], (24)

where e is the versor of the electric field and a„(r) and a, (r) are, respectively, valence- and conduction-band

Wannier functions.
The integral is clearly different from zero only if R, and R~ are very close to R, because of the local

character of Wannier functions, so that we may replace the smooth effective-mass function 4&(R„Rs ) with

its value at R, =RI, ——R and get

(0~ j(R) ~v)= —f«(2m) '& (R,R) g f -d'r[a.'(r Rs)e V—a, (r R,)—
R RI,

—a, (r —R, )e "Va„'(r—Rs)] . (25)

Using the k=O Bloch functions u, (r) and u„(r), this can be written as

(0
~
J(R)

~
v) =(e/m)4, (r =O,R)P

where 4„is expressed as function of the electron-hole relative coordinate r and center-of-mass coordinate R,
and
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is the momentum-operator matrix element.
The density-current operator matrix element is proportional to the probability amphtude of finding elec-

tron and hole at the same site, as it is well known in the case of infinite crystals .We have restated the re-
sult in the case of crystals with surface where translational invariance perpendicular to the surface is miss-

ing, because we did not find a satisfactory derivation in the literature.
Inserting Eq. (26) into (22}, using (4), and multiplying by 2 in order to account for spin degeneracy, we

find for the exciton polarizability, Fourier transformed in the xy plane:

X(J:
~~~,

Z,Z') =Xo(~)5(Z Z')+—2e'
~ P

f~ (O,Z)p'„» (O,Z') p„» (O,Z'Hgk {O,Z)

~N +++
II /2MII++@~ /2M' ~ '~ E~ +++ II /2MII +WE~ /2M'+'W+'i P

(28)

for Z and Z &0. Here n labels the states of exciton internal motion and K~~ is the surface-plane projection
of the light wave vector. Since we are interested in co values near the n = 1 exciton frequency coo

=(Es R)/fi, w—e consider explicitly in the integral only the first (resonant) term in large parentheses for
n= 1 and include other contributions into the background term Xo. Furthermore, we use for f„» (O,Z) the

analytic expression {20),that is valid only for small k, values. This is justified since the difference between

(20) and the correct wave function, being appreciable only at large E„hwebnoth denominators of (28) are
nonresonant, gives a nonresonant contribution to polarizability, which is included in go. After this, one
recognizes, using Eqs. (19) and (20), that the integrand in (28) is an even function of X„and the integral can
be extended to —oo. The integral can then be easily computed by extension to the complex-E, plane and by
the method of residui. After simple algebra, the result is

X(E~),Z,Z') = Xo(co)5(Z Z') +i ao—Min)0/{ 2fiq)

&((exp(iq
~
Z —Z'

~
)+(q+iP)(q —iP) 'exp[iq(Z+Z')] 2q(q —iP)—

X texp(iqZ —PZ')+exp(iqZ' —PZ) —exp[ —P(Z+Z')]I ),
with

and

q =[2M&(flu ficoo fi E~~/2—M~~+—iI )I+], (Imq&0), (30)

ao ——2ei [P (

'
) y, (0) )

2/(m2co'~0) .

Xz(K~~,Z,Z'}=Xo(co)5{Z Z')+iagooMi—(2fiq) '[exp(iq
(
Z —Z'

~
) exp[iq(Z—+Z')]],

which is the same result derived by Zehyer et al. and Johnson and Rimbey for Frenkel excitons using
Pekar's ABC.

As Z or Z' tend to oo, only the first exponential within the bold parentheses of Eq. (29) is nonvanishing
due to the positive imaginary part of q. Therefore, X(Z,Z') becomes a function of

~
Z —Z' ~, as it must in

the bulk, and its Fourier transform is

(32)

It is clear from (29} that the resonant exciton polarizability vanishes if either Z or Z' are zero as a direct
consequence of boundary condition (3). This clearly demonstrates the validity of Pekar's ABC in the case of
Wannier excitons at the surface (not below the dead layer, as generally assumed' '").

Although it is incorrect to use the effective-mass approximation in the case of Frenkel excitons, Eq. (3)
yields the correct result also in this case. In fact, the Frenkel-exciton liinit can be obtained when R' (and P)
tends to 00. In this case {29)reduces to
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1

2 A'01@00

X(Kll,K, )=Xo(co)+
[gyes)o+ fpKll /2Mll+A E~ /2M' —(fzco+ii )]

If we extract fmm Xo a nonresonant term

—,ao(fin)o)

Rcoo+A Kll /2Mll +Pi K, /2Mj +fuu+i I

analogous to the second term in large parentheses in Eq. (28), to be added to the second term of Eq. (33},
and compute the dielectric constant e= 1 + 4+X we find

(33)

4~ao(~o)'
«(co,Kll, K, ) =«o+ (34

[(e'o+XiKll/2Mll+rPK, '/2M, )'—(r + r)'] '

with «o ——1 + 4nXo, that agrees with Eq. (25) of Ref. 3, if Mll =M& is assumed and terms of the order K
are neglected. This shows that ao defined in Eq. (32) from microscopic quantities is the same as the exciton

polarizability a of Ref. 2 and allows comparison of fitted ao values with those quoted in the literature.

IV. LIGHT PROPAGATION: s %'AVE

In this paper we shall consider the case of normal incidence reflectivity. However, in this section we solve

Maxwell's equations in the more general case of obliquely incident s wave, since it can be done with no
further effort.

We consider s light polarized in the y direction propagating inside the crystal (Z & O). The electric field is
of the form:

g (X,Z) =E (Z)exp(iKllX),

where Kll =co sin8/c, and 8 is the angle of incidence. Inserting (35) and (29) into the light-pmpagation equa-

tion, we obtain

d Ey(Z)

dZ 2 + «o —Kll Es(Z)+ dZ'Es(Z')exp(tq
~
Z —Z'

~
)= iBD exp(iqZ—) iBFex—p( pZ), —

e' ~ 2q

(36)

(3&)

B =(aP/c')4~aoM, coo/A',

D =(q ip) ~ I dZ'[ —+iP/2q)exp(iqZ )—exp( PZ )]E&(Z )—
F=(q ip) 'I—dZ—'[exp( —PZ') —exp(iqZ')]Es(Z') . (39)

0

Equation (36) is very similar to Eq. (3.13a) of Ref. 3, apart from the terms with known spatial dependence

in the right-hand side. We solve it by using the same method of Ref. 3. We apply the differential operator

d /dZ + q to both sides of Eq. (36) and obtain a differential equation:

d Ey(Z) 2
co2 ~ d Ey(Z) 2 «oco

dZ c dZ c
+ q2+«0 —Kll + q2 —Kll —B E (Z)= —lBF(q2+P2)exp(-PZ) .

The general solution of this equation that is bounded as Z~ co is

E~(Z)=S'~exp(iq~Z)+8'2exp(iqzZ} iBF(q +P —)(qf+P ) '(q2+P ) 'exp( PZ), —

whcrc 8 1 and 5 2 aI'c two constants to bc dctcfIIlined and g) and g2 afc thc solutions of thc qustion

(41)
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(42)

with Imq, &0, namely bulk-polariton wave vectors. The last term in (41) is a particular solution of the
nonhomogeneous differential equation (40).

If we insert (41) into the original integro-differential equation (36), we find that the latter is satisfied only
if N', and N'z satisfy the condition

8'l 8'2
=i[2qD iBF{—P iq—)(q i+P2) '(q2+P ) '],

92 —0
(43)

that plays the role of ABC. The unknowns quantities D and F can be computed by inserting Eq. (41) into
their definitions (38) and (39). An inhomogeneous 2)&2 linear system is obtained whose solution yields D
and F. Then the electric field (41) and the ABC (43) take, respectively, the form:

E„(z)=g g';[exp{iq;Z)+2P(P +q )(q; —q~) '(P —iq;) 'exp( PZ)]—, (41')

2

$[q;—i(5+P)](q; —q ) '(P —&'q;) 'g';=0, (43')

where

5=Pc iI(2iragficoo) '[(qi+P )(qi+P )+B] .
The electric field is a linear combination of two waves that, while reducing to bulk polaritons as Z in-

creases, are modified in a depth of the order of 1/P below the surface. The ABC Eq. (43'), which depends
on exciton parameters through P and 5, states that the resonant part of polarization vanishes at the surface.

The refiectivity is easily computed, matching the electric field inside the crystal given by Eqs. (41 ) and
(35) to the external electric field

g'„(Z)=exp( —iK~~X)[exp(iK,Z)+r exp( iK,Z)],— (45)

where K, =~(cosQ)/c, through Maxwell's boundary conditions, namely, for the s wave the continuity of g„
and d 8'~/dZ for the surface, r, the complex refiectivity amplitude, is calculated after long but simple alge-
bra:

r =[ (P+iK, )+8'—i(P+iqi)+8'2(P+iqz)](P —iK, )

8'i 2iK, (q i q——)(P iq i )(q—i —q ——y)D

@'i=—2iK.(q2 —q'){P—iqi)(qi —q —1» '

D = (qi —q y)[ 2P(P +q—)(P —iK, )+i(K,+qi—)(qi —q~)(P —iqi)]

+(qi —q y)[2P(P +q )(—P iK, ) i {E—,+q2—)(qz q)(P —iqz)],—

(47)

(48)

(49)

y=(q+iP)[2P(P+iq) i +P K~~ /B —1] .— (50)

A. Results

We calculate normal-incidence reAectivity from
Eq. (46) for a broad range of physical situations.

The difficulty is to handle the quite large number
of parameters, namely coo, P, 4m.ao, eo, Mi, and I'.
Most of these parameters are not independent, for
instance, eo and %coo. We proceed as follows:
First, we choose a very small value of I, but not
zero, in order to avoid vanishing of the imaginary
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parts of qt and q2, since the computer must choose
solutions of Eq. (42) with Imq; & 0. We use
I =10 R*, that is smaller than 0.03 meV in all
cases considered. Then we identify the main
parameter of our approach, that is the ratio of
dead layer depth I/P to the inverse light wave vec-
tor in the medium. This parameter
5=(r0/c) t/co/P, which dcscrtbcs tllc strength of
the dead layer perturbation on light propagation,
increases with decreasing exciton binding energy,
that is with increasing dead layer depth. In Table
I we report the relevant parameters for a number
of semiconductors. We calculate the reflectivity
for the extreme cases, 5=0.046 in CdS and
5=.1.25 in InAs, and also for GaAs (5=0.17), InP
(5=0.13},and ZnSe (5=0.083). The values of co,

Mj, and trtroo are taken from Table I, whtie we con-
sider in each case three values of 4mao, namely

10,3&10, and 10, to encompass the range
of values quoted in the literature. Table I shows

that spatial dispersion (M ') and dead layer effect
(5), though not strictly related, increase together.
This occurs because quite fiat bands (little disper-
sion) are often associated with large gapa and large
exciton binding energy (small 5}.

The reflectivity 8 =
~

r
~

is shown in Figs. 3 —5

as a function of fi(ro coo), respect—ively, for CdS,
GaAs, and InAs. The results computed in the case
of InP are qualitatively similar to those of GaAs,
while those of ZnSe are similar to those of CdS.

The curves of Figs. 3 —5 encompass a broad range
of physical situations and give quite a complete in-

sight on exciton reAcctivity in semiconductors.
First we observe that the spike, frequently observed
in refiectivity' ' at the longitudinal exciton fre-

quency, never appears. This means that the intrin-
sic dead layer we consider is too small to generate
it. Wc believe that the spike must be explained by
extrinsic dead layers, rather than by some inade-

quacy of the approximations involved in this calcu-
lation.

Let us consider Fig. 3, where dead layer effects
are the smallest. The effect of increasing oscillator
strength, in addition to an obvious increase of
reflectivity-structure amplitude, is a large shift of
the dip to high energies, because of increasing
longitudinal-transverse exciton separation, and a
smaller high-energy shift of the maximum. Fig-
ures 4 and 5 show that the combined effects of
spatial dispersion and dead layer drastically affect
line shapes, especially those corresponding to large
oscillator strength. Careful comparative examina-
tion of Figs. 3—5 shows that such effects are simi-
lar to those of decreasing oscillator strength, name-

ly a shift of the structure to lower energies, and a
reduction of the positive-negative peak ratio. Fi-
nally, it is worthwhile noticing that quantitative
line shapes are sensitive even to small 5 values. In
fact, the ZnSe reflectivity, not shown in the fig-
ures, is appreciably different from CdS reflectivity,

TABLE I. Electron effective mass (m, ), hole effective mass (mj, ), reduced mass (po), ex-
citon total mass (M), effective Rydberg (8*),n=1 exciton resonance energy Eo——E~ —8*,
and parameter 5=(co/e)~e+P describing the importance of dead layer effects, for a num-
ber of semiconductors. In the case of degenerate valence bands, mq is the hole "spherical
mass, "defined in Ref. 47, and M =m, +mq is an estimate of the exciton total mass. Data
are from Ref. 47.

CdS
ZnS
CdTe
ZnSe
ZnTe
InP
GaAs
GaSb
InSb
GaP
Ge
AlSb
InAs

0.16
0.39
0.096
0.17
0.09
0.077
0.066
0.047
0.015
0.013
0.038
0.011
0.024

0.74
0.42
0.34
OA3

0.45
0.16
0.16
0.11
0.041
0.195
0.082
0.11
0.058

0.13
0.20
0.075
0.13
0.075
0.052
0.047
0.033
0.011
0.078
0.026
0.01
0.017

8.1
8.1

9.7
8.7

10.1
12,1

12.5
15.2
16.8
11,1
15.4
9.9

11.8

28
42
11
17
10
4.9
4.1

2
0.5
8,6
1.5
1.4
1.7

0.90
0.81
0.44
0.60
0.54
0.24
0.23
0.16
0.056
0,21
0.12
0.12
0.089

2.524
3.758
1,599
2.783
2.380
1.305
1.516
0.808
0.240
2.731
0.889
2.219
0.408

0.045
0.059
0.071
0.084
0.10
0.13
0.18
0.18
0.18
0.22
0.26
0.50
1.25
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FIG. 3. Theoretical reflectivity computed for CdS as
described in the text for 4Tap=10 3 &(10 10 '.

I
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FIG..5. Theoretical reflectivity computed for InAs as
described in the text for 4map=10 3&(10 10

even though both involve very small 5 values and

very similar Mz and eo values.

B. Comparison with experiments

I. CdS

We compare our results with the experimental
data of Evangelisti et al. ', namely with the spec-
trum shown in the second curve (from the top) in
Fig. 3 of Ref. 16. This spectrum is expected to be
very close to the fiat band condition (namely, no
surface electric field), since it has the maximum
amplitude of the n=2 exciton structure. ' This
choice should avoid surface electric fields, not con-
sidered in the theory, which may ionize excitons
and give rise to extrinsic dead layers. Further-
more, an inhomogeneous electric field would at-

0.4- o EXPT,

0.3

EORY

tract excitons toward the surface (where the field is
stronger), and the competition between both effects
may affect reflectivity line shapes in an unpredict-
able way. We fit the experimental data varying
only coo, 4mao, and I . We use the value Mj ——0.94
(effective masses are measured in free-electron
mass units) from Brillouin scattering experi-
ments, eo——8.0 and R*=2S meV from Ref. 16.
Figure 6 shows the good agreement we find with
experiments. The fit parameters %coo——2.SS2 eV,
4~ao ——0.85)& 10, I'=0.34 meV are in reasonable
agreement with values quoted in the litera-
ture, ' ' although the first and second one are
somewhat smaller. We believe our parameters to
be more reliable than others that are determined in
the homogeneous dead layer approximation.

0.4- 10 IAP

0.1

0,2

2545 2549 2553 2557

ENERGY {mdiv)

-2 0 2
+(m-ms) (mel)

FIG. 4. Theoretical reflectivity computed for InP as
described in the text for 4rao ——10, 3)& 10, 10 '.

FIG. 6. CdS exciton reflectivity. Experimental data
from Ref. 16. The solid curve is the fit computed ac-
cording to the present theory with eo——8.1, M& ——0.94,
8» =29 meV, ~p ——2.55 eV, 4~ao ——0.85)&10
I =0.34 meV.
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2. Gais

M' '=(Ms +Mi )l2 . (51)

On this ground and in order to avoid complica-
tions introduced in our theory by two exciton
branches, we fit reflectance spectra of these materi-
als using a single exciton branch with total mass
M', in the spirit of ascribing otherwise unexplica-
ble discrepancies to band degeneracy.

We consider GaAs exciton reflectivity measured

by Sell et al. ' and choose the spectrum of sample
40 in Fig. 4 of Ref. 19. We have already shown
that the spike at the longitudinal-exciton frequency
should be a consequence of extrinsic dead layers
(or surface roughness ), and therefore choose this
spectrum, since it shows the smallest spike. We fix
the values R*=4.1 meV, eo ——12.6, and
M*=0.298, '9's9 and find the best fit (Fig. 7, bro-
ken line) for ftcoo 1.5150 eV,——4irao ——0.22 X 10
and I =0.035 meV. coo agrees perfectly with the
values quoted in the literature, ' ' ' ' I is in rea-
sonable agreement with them, and 4mao is some-

We apply this theory also to GaAs, InP, and
ZnSe which have degenerate valence bands, even

though it has been carried out just for single bands.
In this case, two exciton branches appear with
the same binding energy, but different total mass,
namely heavy (Ms) and light (Mi) excitons. How-

ever, Sell et al. ' computed exciton refiectivity in
GaAs in the homogeneous dead layer approxima-
tion and showed that it is quite well reproduced by
a single exciton branch with M =M*, where

what larger than the values obtained froin absorp-
tion data (0.16X10 ~).'94~

Apart from the spike, which cannot be repro-
duced by this theory, the fit is not satisfactory on
the high-energy side, where the computed reflec-
tivity is systematically lower than the experimental
reflectivity. We believe that this is caused (at least
partially) by neglecting the co dependence of the
background dielectric function eo(co), which in-

cludes the contribution of higher exciton states.
We estimate the order of magnitude of their co-

dependent contribution, representing higher exciton
states as a single osc&llator resonant at
cog =~0+R*/A, with the same oscillator strength
as the exciton ground state. In this way we find
that eo(co) and the computed reflectivity increase
on the high-energy side by the exact amount need-

ed to reproduce the experimental reAectivity at
%co=1517 meV.

The agreement between theory and experiment is
better if eo and M* are changed slightly. Choosing

eo ——12.8 and M' =0.23, we find I =0.01 meV,
4mao ——0.21 X 10, and unchanged coo, and the fit
is improved on the high-energy side (dotted curve
in Fig. 7). However, we do not trust this improve-
ment, since the energy dispersion of the polariza-
bility of higher exciton states should be revealed in
some way. It must be remarked that this theory
reproduced ref)ectivity line shapes in two very dif-
ferent cases as CdS (small dead layer) and GaAs
(large dead layer) without taking the dead layer
depth as an adjustable parameter.

3. InP

0.31- —expt.

f
t hear.

0.27- G& As

/'8
//

I
f

1511 1513 1515 1517
4m (meV)

FIG. 7. GaAs exciton reflectivity. Experimental data
from Ref. 19. Computed curves: dotted line, E'p=12.8,
M =0.23, R*=4.2 meV, %coo——1514.8 meV,
4rrao ——0.21 X 10, I =0.01 meV. Broken line,

eo——12.6, M*=0.298, R*=4.2 meV, %coo——1515 meV,
4mao ——0.22X 10, j. =0.035 meV.

We fit experimental data of Evangelisti et al. 's

taken at 2 K, using R'=4.9 meV, eo ——12.1,' and
M' =0.3.39 The best fit was obtained (Fig. 8) with
the parameters ficoo 1.4183 eV, 4—i—ra0=0.3X 10
and I =0.01 meV. The experimental data are
reproduced better than in the case of GaAs, be-
cause of the absence of the spike. The low- and
high-energy nearly-constant discrepancies can be at
least partially ascribed to having neglected energy
dispersion of the polarizability of higher exciton
states. A slightly better fit, not shown in Fig. 8
but already reported in Ref. 26, is obtained if small
adjustments of 8' (5.6 meV) and M' (0.25) are al-
lowed, leading to ficoo ——1.4184, 4mao ——0.29 &(10
I =0.004 meV. As a trend, the fit improves as
M' decreases. In fact, we tried to use the value
M'=0.53, computed according to Eq. (51), from
recent magnetoreflectance data, but we were not
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FIG. 8. InP exciton reflectivity. Experimental data

from Ref. 18. Theoretical curve: e0——12.1, M*=0.3,
R*=4.9 meV, ficoo ——1418.3 meV, 4ma0 ——0.31&(10
I =0.015 meV.

4. ZnSe

We fit exciton reflectivity data of Feierabend
and Weber ' using eo——8.1, M'=0.57, computed
from Brillouin scattering experiments according
to Eq. (51), and R'=21.2 meV, computed from

e, =8.66 (static screening) and @=0.12. We do
not use the measured value 8*=17meV, since it
is probably affected by polaron shift, as
Venghaus suggests in order to explain discrepan-

cy with the computed value. The best fit (Fig. 9)
is achieved for ficop ——2.8020 eV,
4irao ——0.39&(10,and I =0.2 meV and is fairly
satisfactory, not showing the discrepancies present
in the case of GaAs and InP. The longitudinal-
transverse splitting, determined from the above
values of E'p and 4n.ap, is 0.7 meV, in good agree-
ment with the experimental value 0.9+0.2 meV.
Such agreement seems to confirm that the GaAs
and InP discrepancies result from the neglect of
the energy dependence of the polarizability of
higher exciton states (in addition to extrinsic dead

layers), rather than to valence-band degeneracy. In
fact, the former effect should be negligible in ZnSe

able to reproduce the experimental line shape. The
low-energy positive peak becomes higher, narrower,
and slightly shifted to higher energies with respect
to the experiinental data. This failure could be as-

cribed to the inadequacy of the single exciton-
branch approach, but could bring some doubt on

the reliability of valence-band parameters deter-

mined in Ref. 39.

FIG. 9. ZnSe exciton reflectivity. Experimental data
from Ref. 21. Theoretical curve: eo——8.1, M*=0.6,
R*=21.2 meV, fmo ——2802 meV, 4n.ao ——0.88', 10
I =0.2 meV.

and CdS, where n=2 excites are, respectively, 13
(Ref. 45) and 21 meV above the n = 1 level, but not
in GaAs and InP, where the separation of the first
two exciton states is of the order of 3 meV, com-
parable with the amplitude of the energy range of
Figs. 7 and 8.

VI. DISCUSSION

We have calculated Wannier-exciton wave func-
tions in semi-infinite crystals and optical reflectivi-

ty from them. Of course, several assumptions are
involved in this calculation. First, we use the
boundary condition (3), leading to the "dead layer, "
that has been derived schematizing the vacuum
crystal interface as an infinite energy barrier at the
surface, with the perfect crystal potential just in-
side. Recent calculations which neglect the im-

age potential showed that the microscopic structure
of the surface can alter this picture, leading to an
accumulation layer of excitons, if surface states are
present inside the gap. However, we believe that
the effect of surface states on bulk excitons should
be smaller, because of the long-rarige image poten-
tial, that repels electrons and holes from the sur-

face, and should prevent them from feeling the
short-range surface-state attractive potential. We
also neglected the effect of built-in electric fields
that could affect exciton motion both by ionizing
them near the surface, e.g., introducing an extrinsic
dead layer and attracting excitons toward the sur-
face where the field is larger. Though difficult, it
should be interesting to study this situation, be-
cause the interplay of attractive (short-range sur-
face potential, field inhomogeneity) and repulsive
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(image potential) surface forces could strongly af-
fect exciton reflectivity. In this study, we assume
flat bands up to the surface, an experimental con-
dition that could be controlled in principle. Even
if this condition has never been rigorously tested
for all experiments we consider, in the case of CdS
we tried to reproduce the experimental spectrum'
expected to approach it closely, as explained in Sec.
V B. In the spirit of neglecting the microscopic
structure of the surface, we also neglect surface
roughness.

The other assumptions, namely to neglect the
image potential and the use of the analytical ap-
proximation for exciton wave functions, have been
found to be justfied in the paper and should not af-
fect our calculations in a qualitative way. One
may expect our dead layer to be slightly underes-

timated because of neglecting the image potential,
as shown in Ref. 14. Minor assumptions, per-
formed for the sake of simplicity, have been to
neglect the frequency dependence of the non-

resonant polarizability and the band degeneracy.
The former has been shown to affect agreement
with experiments in quite a recognizable way.

Though involving these more or less justified as-

sumptions, our theory is able to reproduce experi-
mental refiectivity line shapes in a broad range of
physical situations from relatively strong exciton
binding (CdS) with a small dead layer to that of
poorly bounded excitons (GaAs and InP) with

large dead layers by varying only a few parameters,
namely the exciton resonance frequency coo, oscilla-
tor strength 4~ao, and lifetime broadening I'. We
never found normal-incidence reflectivity struc-
tures with the spike at the longitudinal exciton fre-

quency and therefore ascribe it, when present in

experiments, as in the case of GaAs, to extrinsic
dead layers. This is substantiated by the fact the
spike is not found in InP, whose intrinsic exciton
parameters are very similar to those of GaAs.

The microscopic calculation shown in this paper
confirms the existence of the dead layer or, more
precisely, of a transition layer, of the order of
(p/M)' aii, where exciton wave functions (and
polarizability) are smaller than in the bulk. Since
this is clearly an order-of-magnitude estimate,
there is no discr'epancy with previous estimates of
about 2aq, based on the homogeneous dead layer
approximation. ' ' On the other hand, it should
be emphasized that our dead layer is related to the
exciton polarizability X(Z,Z'), while that of Refs.
14 and 18 are related to exriton polarization
P(Z) =f dZ'X(Z, Z')E(Z'), so that one must not

0

expect them to be the same thing, in view of the
strong nonlocal character of exciton polarizability.
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APPENDIX

where Z is the exciton center-of-mass coordinate,
and r =(r~~,z). P is a wave function of energy E,
satisfying the equation

r

fP 8
Q=EQ, (Al)

2p
'

2M~ QZ2 gr

and f' of energy E', satisfying a similar equation.
If we multiply Eq. (Al) by g'~, and the analogous
equation for P'* by g, and subtract, we get

(E' E)P'*g= ——
2p

2M, '5Z ' ' az '
Now we integrate in the region 0&z &L, r~~ & oo,
—Mi Z/m~ (z (MiZ/m„and let I. tend to infin-
ity. The integral of the first term can be
transformed at fixed Z, using Green's lemma, into
an integral over the surface bounding the r-space
volume. This integral vanishes because of boun-
dary conditions (3) and the regularity of y„(r) at
infinity. The other integral can be performed first
over Z, from the maximum between m,

~
z

~
/Mi

and m~
~
z

~
/Mi to I., giving

In this appendix we show that the wave function
(5) is correctly normalized. Since the R~~-

dependent part is already normalized to
5(K~~ —Kt~), it is sufficient to show that the

P(r,Z)'s are normalized to 5(E, E,'); that —is
M~Z/m

f dZ f dz fd r~~P ~(r,Z)g(r, Z)

=5(E,' E,), —
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(E' E—)f d r f dZQ'«f= 6—/2Mi f d r
a11 space 0 all space t)Z t)Z

I

so the only contribution to normalization is from the boundary Z =L. At Z =L, the evanescent waves do
not contribute to the sum in (5), and g depends only on A. The integral on r is easily carried out, due to
normalized property of yt. We get

M~Z/m

f dZ f ~ z&
dz fd r~~~g(, Z)f' (r,Z)= i[—2n(1+ ~A

~

)(1+ ~A'~ )]

X([exp[i(K,' K)L—] A'«A—exp[i(K, —K' )L]I/(K' —K )

+ IA exp[i(K, +K,')L]—A'«exp[ i(K, +—K,']L)I/(K,'+K, ))

+a(L)5(K,' K, ) . —

a (L) must be zero, since the integral is a continuous function of K, and K,' at finite L.
When L tends to co, the integral is a rapidly oscillating function of K, —K,' and only the first term must

be retained, since it is large at K,' =K,. In this case, A' can be replaced by A, and A'*A=
~

A
~

=1 as is
shown in parts C and D of Sec. II. The result is

M~Z/m
lim f dZ f fd r~~P'«(r, Z)g(r, Z)=m ' lim (K,' —K, ) 'sin[(K,' K, )L]—

L~oo

=5(K,' —K,),
showing the correct normalization of (5).
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