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The dynamical structure factor S(q, m) of an electron liquid at metallic densities is
studied numerically on the basis of the quasi-one-pair excitation approximation obtained
in the preceding paper. The spin-averaged local field correction G(q) is estimated numer-

ically; the local field correction C(q) arising from only spin-antiparallel correlation is also
estimated. It is pointed out that inclusion of short-range correlations is important for the
quantitative estimation of the energy width of the quasiparticle I (p) at metallic densities.
Owing to the local field corrections and the energy width of the quasiparticle, the cutoff
wave number q, estimated by the present theory is considerably reduced, compared with
the random-phase approximation case. The spectral structure in S(q, co) is numerically
estimated from the wave number much smaller than q, up to the wave number twice as
large as the Fermi wave number. The calculated plasmon dispersion around q, is in ex-
cellent agreement with the observed one for Al in electron scattering experiments. In the
intermediate wave-number region the calculated spectra of S(q,co) reproduce distinctly a
plasmonlike peak and a broad peak in good agreement with experimental observations.
These characteristic features of S(q, co) are ascribed to the striking damping effect of
one-electron states originating from virtual plasmon emission under the influence of
strong short-range correlations at metallic densities.

I. INTRODUCTION

The characteristic features of the dynamical
structure factor S(q, to) of an electron liquid in the
long-wavelength region can, in principle, be under-
stood by means of the RPA. ' There appear the
well-defined plasmon exictation and the individual
excitations. The quantitative description of S(q, to)
in the random-phase approximation (RPA), howev-

er, becomes less adequate as the wave number q
approaches the vicinity of the cutoff wave number

q, . The plasmon peak there has a considerable
amount of width. Its dispersion is lowered, com-
pared with the RPA case. For the intermediate
wave numbers beyond q, the RPA description of
S(q,co) at metallic densities is no longer adequate,
even qualitatively. ' In the preceding paper we
have obtained the expression for S(q, to) in the
quasi-one-pair excitation approximation which is
adequate even for the intermediate wave-number

region. The purpose of this paper is to study nu-

merically the spectral structure in S(q, to) from
very small wave numbers up to the wave number
twice as large as the Fermi wave number pF, based
on the quasi-one-pair excitation approximation.

Electron correlations at metallic densities may be
characterized by strong short-range correlations
and the existence of higher-order excitations such
as two-pair excitations and one-pair —plasmon ex-
citations. In the framework of the quasi-one-pair
excitation approximation these effects are
represented by two quantities, the local field
correction G (q) and the energy width of the quasi-
particle I'(p). The local field correction G(q) im-
portant in the intermediate wave-number region is
reasonably evaluated by inclusion of the particle-
particle ladder vertex. The quantitative evaluation
of the energy width I (p) at metallic densities may
be achieved by including systematically local field
corrections to the RPA expression for I (p). The
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two quantities G(q) and I'(p) evaluated in a con-
sistent manner not only make the plasmon disper-
sion much more fiattened around q, than that in
the RPA but also reduce q, itself by a considerable
amount, as has been suggested' by DuBois at an
early stage. The continuation of the plasmonlike
peak into the one-pair continuum as well as the
broad peak can also be reproduced in good agree-
ment with experimental observations.

In Sec. II the numerical estimation of G(q) and
I"(p) will be given. In Sec. III the spectral shape
of S(q,co) for wave numbers smaller than pF will

be discussed quantitatively. In Sec. IV the spectral
structure in the intermediate wave-number region
will be discussed in comparison with the observed

spectra in x-ray ' and electron scattering exper-
iments. The last section will be devoted to con-
cluding remarks.

II. LOCAL FIELD CORRECTION
AND ENERGY WIDTH

In this section we shall study numerically G(q)
and I'(p) after making a compact statement of the

S(q,co)=—[nv(q)] ' 1m[1/e(q, co)],

e(q, co)= 1+u (q)m(q, co), (2)

where u (q) is the Coulomb interaction. In the
quasi-one-pair excitation approximation ~(q, co) can
be written as-

~(q, co) = ~'"(q,~)
1 —G(q)u(q)K' '(q, co)

(3)

Here, r7' '(q, co) is the free polarization function
with energy widths of one-electron states included:

quasi-one-pair excitation approximation obtained in
the preceding paper. The dynamical structure
factor S(q,co) for co & 0 is related to the imaginary
part of the inverse dielectric function. The dielec-
tric function e(q, co) is written in terms of the prop-
er polarization function n(q, c.o):

-~oi 2 I dp f(p)[i —f(p+q)] f(p+q)[1 —f(p)]
(2~) co+i[1'(p)—I'(p+ q)]+@~—e-+- co+i [I (p+ q) I (p)—]+@~—e-

where f (p) denotes the Fermi distribution function at zero temperature and ez is the free-electron energy.
The local field correction G (q) and the energy width of the quasiparticle or the quasihole I (p) are given as
follows:

(q)v(q)= —,(I(p, p', q) —u(q)&--, + —,&1{p,p';q) —u(q) —I(p, p', p —p'+q))-„-,

I'(p) =J v(q)[l —G(q)][1—C(q)]1mdq 1

(2m) e(q, e —e- -)' P p —q

l, xpO
X [8(e,—e- -)—8(eF—e- -)], 8(x)= '

P —q P q ' 0, otherwise .

H, e is the Fe~i energy and I (p, p '; q) the particle-particle ladder vertex' which is the solution of the
integral equation

dk
( k) [1 f(p+k)][1—f(—p' —k I(, ';k) .

(2~)s e —e- -+e —o-,
p p+k p p' —k

The angular bracket ( ),denotes an averaged
P P

value over p and p
' within Fermi spheres. For

the dielectric function entering in I (p) of Eq. (6)
we employ the Hubbard type" of dielectric func-
tion with the local field correction G(q) of Eq. (5):

m"'(q, co)
e(q, co)= 1+v(q)

1 —G (q)u(q)n' '(q, co)

where m' '(q, co) is the free polarization function.
Note that a different type of local field correction
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We shall estimate numerically G(q), C(q), and
I'(P) and mention their behaviors as a function of
the wave number and the electron density.

A. G{q) and C{q)

Let us first mention the local field correction
arising from spin-parrallel correlation which is

given by the second term on the right-hand side of
Eq. (5). We may there neglect higher-order terms
with respect to the Coulomb interaction, since two
electrons with parallel spins are originally forbid-
den to be close to each other owing to the Pauli
principle. It can obviously be seen that for large
momentum transfers higher-order direct terms are
almost canceled by the corresponding exchange
terms. In other words, a shape of the so-called
Fermi hole is not expected to be appreciably affect-
ed by inclusion of the Coulomb interaction. There-
fore we may estimate that correction in lowest-
order approximation. An averaged value of
u (p —p '+ q) is chosen to be 4ire /(q +pz2), as
Hubbard first did. " So far as one is concerned
with the spin-parallel correlation, Hubbard's local
field correction is fairly good.

On the other hand, the local field correction
arising from spin-antiparallel correlation is strong-

ly affected by inclusion of the Coulomb interac-
tion. An averaging of I ( p, p '; q ) over p and p

'

within Fermi spheres may be represented approxi-
mately by its value at p=p'=0. An approximate
solution for I(0,0;q) obtained by one of us' (H.
Y.) is written as

(I(p, p ', q))--.=u(q)A (A, )F(q, A, ),

F(q, A, ) =2 2
23/2(2App/q)i/2

&& I2[2 / (2ApF/q)],

A (I,) =2)i, ' /I i(4A, ' ),
1/3

(10)

4
A, =ar, /m, a =

9m
=0.52106... ,

C(q) in addition to 6(q) enters in Eq. (6). This is

the local field correction arising from spin-

antiparallel correlation alone and is defined as

—C(q)u(q)=&I(p, p ', q) —u(q))--, ~ .

where Ii (x) and I2(x) are the first- and second-
order modified Bessel functions, respectively, and

r, is the usual density parameter. The local field
correction 6(q) which is an average of spin-
parallel and spin-antiparallel correlations is calcu-
lated with Hubbard's local field correction and Eq.
(10) for q &pF where 6(q) plays an essential role.
On the other hand, for q (pF Eq. (5) is rather
inappropriate. For such a wave-number region we
then make an extrapolation in a form of
G(q) =aq +Pq +yq so as to reproduce the value

at q =pF and its derivative. The coefficient a is
chosen to reproduce the value of the compressibili-

ty in the Hartree-Fock approximation, which is
fairly good even at metallic densities. The other
coefficients P and y are determined by the extrapo-
lation procedure.

Another local field correction C(q) arising from
spin-antiparallel correlation alone is calculated in a
similar manner. For q (pF an extrapolation in a
form of C(q) =P'q +y'q is made so as to repro-
duce the value at q =pF and its derivative; we omit
a term of order q there, considering that spin-

antiparallel correlation makes a minor contribution
to the compressibility.

Calculated values of G (q) by the present theory
together with those by other authors"' ' are
shown in Fig. 1 for r, =2.0. The present value of
6(q) increases monotonously as a function of q.
Let us first compare it with Hubbard's 6 (q). It
can be seen that the contribution from spin-
antiparallel correlation plays an important role; the
difference between the two comes from this corre-
lation. Next we compare our local field correction
6 (q) with those by Vashishta and Singwi, and

Lowy and Brown. Values of our 6(q} are sinaller
than Lowy-Brown's values for any q, and are also
smaller than the Vashishta-Singwi values for
q & 1.6pi;. The following fact should, however, be
noted here. The two forms for the local field
correction have been proposed primarily aiming at
an adequate description of the pair distribution
function g (r) at short distances. On the other
hand, our form for 6 (q) is defined properly for
the purpose of describing dynamical aspects of
electron correlations and is founded on fundamen-
tal consideration. As has been elucidated in the
preceding paper, not all higher-order corrections to
the RPA that are required for the fulfillment of
g (r) & o for all densities can be reduced in a natur-
al way into a form of the local field correction
6(q). In this sense one must be careful in compa-
rins our form for 6 (q} with other authors' forms.
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RpA

Present theory

FIG. 3. Calculations of the local field correction

C{q) arising from only spin-antiparallel correlation for
various values of r, .

B. I'{p)

The energy width I'(p) has been numerically cal-

of
culated for various electron densities using valg v ucs
o G(q) and C(q) obtained in the preceding sec-
tion. Calculated values of I'(p) by the present
theory together with those in the RPA are shown
in Fig. 4 for r, =2.0. The energy width is com-
posed of two contributions': One comes from
particle-hole pair excitations and the other from
virtual-plasmon excitations. In the immediate vi-
cinity of p~ I (p) is proportional to (p —pp) . As p
goes away from p~ it does not continue to increase
in such a manner but becomes rather small, so far
as p (pz+q, . The energy width increases drasti-
cally at the threshold wave number near
wh

r near p~+q,
w ere a damping channel due to a plasmon-
emitting process opens. Such a qualitat' 1VC

avior of I'(p) as a function of p is common to
the two calculations. For the quantitative estima-
tion of I'(p} in the metallic region, however, it is
necessary to take the local field correction into ac-
count. The magnitude of I'(p) evaluated by the
present theory is reduced, compared with that in
the RPA, for all values ofp except a very small in-
terval around the threshold wave number. When p
is apart from the Fermi wave number, roughly by
an amount of pz, the reduction caused by the local
ield correction is pronounced. It is o h' fl

to the reduction of the contribution from the
particle-hole pair excitations. On the other hand,
t e contribution from plasmon excitations is rather

2
P/Pr

FIG. 4. Calculations of the energy width I'{p) in the
present theory and the RPA for r, =2.0.

insensitive to the local field correction, since the
coupling between a plasmori and an electron is as-
sociated with small momentum transfers.

The ratio of I (p) to the quasiparticle energy
measured from the Fermi level takes its maximum
value

i
I'(p)

i l(ez —e~)=0.1,
at a certain wave number somewhat larger than

p~+q, . The magnitude of I (p) itself attains its
maximum value 0.2956'p at p =2.8pp where thc
ratio of I'(p) to the quasiparticle energy is smaller
(0.04). This fact supports that the quasiparticle
picture is still available even for the problem relat-
ed to the intermediate cxcitations.

The cutoff wave number q, is usually defined as
a position at which the plasmon joins the one-pair
excitation region. The value of q, calculated with
the dielectric function defined by Eq. (8) is 0.68'
for r, =2.0, while the RPA one is 0.73'. The
threshold wave number is reduced roughly by the
same amount.

The variation of I'(p) with respect to the elec-
tron density can be seen in Fig. 5. As r, becomes
larger, the magnitude of I'(p) increases generally
except for a small interval around the threshold
wave number. It should be noted here that the
reduction of I (p) caused by the local field correc-
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preceding section we have estimated q, from the
dielectric function of Eq. (8) which includes the lo-
cal field correction alone. Inclusion of the
quasiparticle's damping in the expression for the
dielectric function furthermore reduces the value of
qe

The pole of the inverse dielectric function is re-

lated to the plasmon excitation. The imaginary
part of the inverse dielectric function is written as

e2(q, ~)
Im

&(q,~) ei(q, co) +@2(q,co)

P/PF

FIG. 5. Calculations of the energy width I (p) in the

present theory for r, =2.0, 4.0, and 6.0.

where ei(q, co) and e2(q, co) denote the real and ima-

ginary parts of, the dielectric function, respectively.
In the RPA the dispersion curve of the plasmon
determined by the equation ei(q, co) =0 is quite
equivalent to the peak in S(q,co), since higher-
order corrections giving the damping of the
plasmon are not allowed for there. In the quasi-
one-pair excitation approximation, Eq. (11) can be
reduced into a scaled form:

tion is much more pronounced for r, =4.0, 6.0
than the case of r, =2.0; the curve of I (p) calcu-
lated in the RPA for r, =4.0 amounts roughly to
the one by the present theory for r, =6.0 shown in

Fig. 5. The maximum of I (p) increases roughly in

proportion to r, . The ratio of I"(p) to the quasi-

particle energy measured from the Fermi level at
the maximum point increases as r, becomes larger.
The threshold wave number by the present theory
increases more gently than that in the RPA as r,
increases.

e2(q, co)
Im

1 —G(q) Ei(q, co) +'&i(q, co)

Here, ei(q, co) and ez(q, co) are given as follows:

ei(q, co)=1+[1 G( q)]
—

U( q) ~(iso),

e,(q, co) =[1—G (q)]U(q)Pi (q,~),

(12)

(14)

III. DISPERSION AND DAMPING
OP PI.ASMON

The plasmon is a well-defined excitation for

q &q, . Its dispersion can be written as

co„i(q)=co~i+gq + for very small q. The ex-

act expression for the coefficient g is obtained
from the third frequency moment. Perturbation
calculations of a damping of the plasmon have
been performed' since the first attempt by Du-

Bois.' These calculations are valid only for small
wave number q &gq, . The dispersion and damp-
ing of the plasmon at metallic densities, however,
have not yet been understood in a satisfactory
manner except such an extremely long-wavelength
region. We shall study here the dispersion and

damping of the plasmon, giving particular atten-
tion to their behaviors in the vicinity of q, . In the

where Pi (q, co) and m2 (q, co) denote the real and-(0) -(0)

imaginary parts of Fr' '(q, co) defined by Eq. (4),
respectively. Let us consider Eq. (12). For the
understanding of the spectral shape of S(q, co) for q
smaller than pz it is advisable to investigate solu-
tions of ei(q, co) =0 instead of ei(q, co) =0, although
the solution of ei(q, co) =0 is different in a subtle

way from that of ei(q, co) =0. The precise behavior
of the solutions dominates the spectral shape of
S(q, co) in the vicinity of q, . Solutions of
q, (q, co) =() indicate, with reasonable accuracy, the

position of the plasmon peak and that of the indi-
vidual excitation peak immersed in the continuum.

In Fig. 6 the solution of ei(q, co;[G,I ])=0 (case
III) as well as that of ei" (q, co) =0 (case I) is
plotted as a function of q for r, =4.0. In order to
illustrate the importance of the energy width I (p)
in the vicinity of q„we also plot there the solution
of Zi(q, ro;[G, I =0])=0 (case II), where only the
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3.0- 3.0

2.0 2.0

1.0- [.0

0.5
q/pF

(.0 0.5 (.0

FIG. 6. Solutions of P~ "(q,~) (I),
e,(q, ~;[G,I'=0])=0 (II), and e~(q, co; [G,I ]) = 0 (DI)
for r, =4.0 are plotted as a function of q/p~. Line A

indicates the upper bound of one-pair excitation
co/e~ ——(q/p~}'+2q/p~. Line C indicates the
characteristic boundary co/e+ ——2q /pF —(q /pF )'.

local field correction is taken into account. Each
of these three equations has two solutions for a
value of q smaller than a certain wave number
somewhat larger than q, . The upper solutions
correspond to the plasmon mode; these solutions in
cases I and II where the energy width is not in-
cluded are situated precisely at plasmon peaks in
their S(q,co). As q approaches q„ the upper curve
in case I becomes still steeper and is tangent to the
upper bound of one-pair excitations at q =q, where
the relation co~i(q)=ez +~ ez hold—s. The curve in

case II is located inside the RPA curve. The
plasmon dispersion in case II is lowered, compared
with that in the RPA; as q approaches q„ it in-
creases in such a way that it is also tangent to the
upper bound at q =q, . The value of q, in case II
is reduced by a considerable amount. The curve in
case III is located inside those in cases I and II. The
plasmon dispersion in case III is not shifted appre-
ciably from that in case II for q &0.7pF but it is
significantly lowered as q approaches an intersect-
ing point of the plasmon curve and the upper
bound, compared with case II. It is noted here
that the two curves in case III are not tangent but
are intersecting. The lowering of the plasmon
dispersion in case III around the intersecting point
originates from the drastic increase of I (p) arising
from plasmon emission. The plasmon peak in

S(q,co} in case III is shifted somewhat to the low-

energy side from the solution of ei(q, co;[G,I ])=0
since e2(q, co;[G,I']) does not vanish there. Strictly
speaking, the conventional definition of q, is not
available when I (p) is included. Instead, we shall
name here the above intersecting point as a cutoff
wave number. Similar curves in the cases of I—III

FIG. 7. Solutions of P~ "(q,co) =0 (I),
&i(q, ai;[G, I'=0])=0 (II), and ei(q, co;[G,I'])=0 (III) for
r, =6.0 are plotted as a function of qfp~. Lines A and
C have the same meaning as in Fig. 6.

are also plotted for r, =6.0 in Fig. 7 where one can
see that the above situation around q, is more pro-
nounced. Thus, the plasmon dispersion in the vi-

cinity of q, is strongly affected by the local field
correction G (q) and the energy width I (p}. In
Fig. 8 values of q, estimated in the above three ap-
proximations are plotted as a function of r, As.
the electron density is lowered, the value of q, cal-
culated in the RPA increases monotonously and
exceeds the Fermi wave number p~ about at
r, =5.0. Such a behavior of q, as a function of the
electron density is not reasonable, since the
wavelength of the collective oscillation should be,

I.O

0.5

FIG. 8. Values of q, estimated from e& ""(q,co) (I),
e&(q, co;[G,l =0]) (II), and e~(q, co;[G,I']) (III) are plot-
ted as a function of r, .
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at least, of the order of interparticle distance. Ex-
perimentally observed values of q, for real me-
tals appear to be still smaller than that predicted
from the RPA. Even at the highest metallic densi-

ty the value of q, evaluated in the quasi-one-pair
excitation approximation is reduced by an appreci-
able amount, compared with the RPA result. The
reduction of q, is much more pronounced as the
electron density is lowered.

Finally, spectral shapes of S(q, co) for some typi-
cal values of q smaller than p~ are shown for
r, =2.0 in Fig. 9. Even for q much smaller than

q, the plasmon has a finite width. Such a damp-

ing of the plasmon is caused by implicit inclusion
of two-pair excitations in the framework of the
quasi-one-pair excitation approximation. Accord-
ing to standard perturbation calculations of a
damping of the plasmon, the contribution from
two-pair excitations is of order q for small q, while

that from one-pair —one-plasmon excitations is
much smaller and is of order q .' But when q ap-
proaches the vicinity of q, a straightforward per-

turbation calculation is of no use, as has been ex-
plained in Six:. IV of the preceding paper. In a
wave-number region that is neighboring the one-
pair continuum, a coupling between one-pair exci-
tations and one-pair —one-plasmon or two-pair ex-
citations must be allowed for, which is successfully
achieved in the quasi-one-pair excitation approxi-
mation. The quasiparticle state starts to decay
drastically when its wave number exceeds a certain
value about p~+q„as has been mentioned in Sec.
II. Correspondingly, the width of the plasmon
peak increases abruptly in the immediate vicinity
of q, .

IV. DOUBLE-PEAK STRUCTURE
IN THE INTERMEDIATE
VIVE-NUMBER REGION

In this section we give a theoretical interpreta-
tion of the double-peak structure observed first at
Bell Laboratories using inelastic x-ray scattering.
An anomalous behavior of the plasmon dispersion
around q, observed in electron scattering experi-
ments is also interpreted. The peak position of
the spectra of S(q, co) for q & q, is almost dominat-
ed by the solution of ei(q, co) =0, as has been ex-

plained in Sec. III. The equation ei(q, co)=0, how-

ever, has no solution for q larger than about q, .
As q increases from q„ the local field correction
and the energy width of the quasiparticle play a
much more important role. The frequency depen-
dence of ei(q, co) becomes much gentler. The spec-
tral shape of eq(q, co), on the other hand, starts to
be modified in a remarkable manner. Consequent-
ly, the spectral shape of S(q,~) in the intermediate
wave-number region depends chiefly on the spec-
tral structure in e2(q, co); the denominator in Eq.
(12) has a minor effect. Numerical calculations of
S(q, co) have been performed for various electron
densities, r, =1.5, 2.0, 3.0, 4.0, and. 6.0.

A. Spectral structure for r, =2.0

I

m/C.
2

FIG. 9. Calculated intensities of S(q, m) in the
present theory for r, =2.0 are shown as a function of
co/eF for q/pF ——0.4, 0.6, and 0.8. The peak position of
Stq, co) for each case is indicated by the corresponding
upward arri@.

We first discuss the numerical result for r, =2.0
in comparison with the experimental spectra for
Be (r, =1.88), since the double-peak structure for
Be was observed distinctly by Platzman and
Eisenberger. Calculated spectra of S(q, co) for
I'g =2.0 are shown in Flg. 10 for various m'ave

numbers. Experimental spectra for Be are shown
in Fig. 11. A plasmonlike peak accompanied mith
a mell-developed shoulder or a broad peak can be
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an experimental resolution function of width 5 eV;
the width of 5 eV is less than half of the measur-

ing unit used in Fig. 10. We shall note here that
in our calculated spectra the broad peak is accom-
panied with a smail dip located about at 3.0@~.
Such a small dip is certainly flattened in the exper-
iments carried out a Bell Laboratories but it could
be observed if much higher resolving power is at-

tained. It may be worthwhile to clarify here the
origin of the plasmonlike peak and the broad peak
together with that of the small dip. Let us denote

by p, the threshold wave number where the damp-
ing channel due to virtual plasmon excitations
opens (see Fig. 4). Then, re (q, co) can formally be
separated into three parts as follows:

-(o)(
) 2 f dp f( )[1 f( )]

I (p) —I (p+q)
~ '+' ~'i' (2~) (co+~ —~- -)'+[I'(p) —I'(p+q)]'

~p —~ p+q
'+ ' ' ' ~ (& ) ( + —-, -, )'+[I'(p) —I (p+ q)]'

dp
&

I p+q —I p
(2ir) (co+@&—e + ) +[I (p) —I (p+q)] (15)

The flrst term on the right-hand side of Eq. (15)
includes a rather small energy width, since

~ p+ q ~ &p, . Its spectral shape is very similar to
that for the noninteracting system when co & co~i.

For co & co~&, however, the spectrum decreases
abruptly, forming a cusp about at co&~, and almost
vanishes at co=@& —

e&
—q. The small dip can be

I

traced back to this terminating frequency of the
spectrum of the first term. On the other hand, the
second term makes a contribution to the broad
peak. The third term is of little importance for
8+0.

In Fig. 14 the calculated dispersion curve of the
plasmon and the plasmonlike peak as well as that

UJ /GF

FIG. 14. Calculated positions of the plasmon peak and its continuation together with those of the individual
excitation peak are shown as a function of q/pF. The open circles denote the experimental results by Batson et al.
(Ref. 5) and the crosses those by Zacharias (Ref. 4). Lines A and C have the same meaning as in Fig. 6. Line 8
indicates the lower bound of one-pair excitations co/e~ ——(q/pz } —2q/p~.
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of the individual excitation peak is shown in com-
parison with the observed ones in electron scatter-
ing experiments. * The corresponding dispersion
curve in the RPA is also drawn there. The posi-
tion of the plasmon peak starts from the plasma
frequency 1.33ez at q =0. Just before q, our
dispersion curve bends appreciably from the RPA
one. Its continuation into the one-pair continuum
exhibits a very small dispersion, compared with the
RPA result. Excellent agreement with the experi-
mental observation has thus been obtained. The
fine structure for q p0.9' has not yet been ob-
served in the electron scattering experiments. But
even for q p 0.9' the observed dispersion curve by
electron scattering is in very good agreement-with
the calculated location of the well-developed
shoulder. It might be reasonably interpreted, if
one averages the calculated fine structure over ap-
propriate width of frequency.

B. Spectral structure for
other densities

We shall examine how the spectral shape of
S(q,m} varies with the electron density. The spec-
tral shape of S(q,co) for r, =1.5 which corresponds
roughly to an averaged density of graphite
(r, = 1.53) has been calculated. The fine structure
can also be obtained in the intermediate wave-

number region. The plasmonlike peak and the
we11-developed shoulder or the broad peak are very
similar to those for r, =2.0. The plasmonlike peak
for r, =1.5 is somewhat sharper and its intensity is
stronger, compared with the case for r, =2.0. The
well-developed shoulder grows into the broad peak
at a wave number somewhat smaller than that for
r, =2.0. A switching over of the two strengths oc-
curs at q =1.9'.

We shall next mention the spectral shape for r,
larger than 2.0. The calculated spectra for r, =3.0
appropriate roughly for Li (r, =3.22) and 4.0 are
shown for several wave numbers in Figs. 15 and

16, respectively. Note that the fine structure be-

comes less pronounced as the electron density is
lowered. The width of the plasmonlike peak be-

comes much broader and its intensity is weaker,
compared with the case for r, =2.0. The position
of the plasmon and the plasmonlike peak measured
in units of e~ is shifted to the high-energy side.
The location of the mell-developed shoulder and
the broad peak measured in units of e~ is, by a
small amount, shifted to the low-energy side. As
the electron density is lowered, it is more difficult

I I

2 3
l l

4 5 6
h)/6F

FIG. 15. Calculated intensities of S(q,u) in the
present theory for r, =3.0 are shown as a function of
~/e~ for q/p~ ——1.4, 1.6, 1.8, and 2.0.

to discern a shoulder from a plasmonlike peak.
Even for q as large as 1.6' the two peaks for
r, =4.0 are still so much overlapped that we can
see a unified peak. Then, the shoulder grows into
a broad peak at a larger wave number for large
value of r„' c.g., for r, =4.0 the splitting into the
two peaks can somehow be seen for q as large as

2'. A switching over of the two strengths occurs
at q =2.2@~ for r, =4.0. The above tendency is
due to the fact that the local field correction as
well as the energy width plays a more important
role as the electron density is lowered. The intensi-

ty of the broad peak as well as that of the
plasmonl1kc peak 1s wcakcncd by a cons1dcrablc
amount, accofd1ng as thc high-energy ta11 grows.
The whole spectral shape becomes much blunter
owing to effects of the energy width I (Ji).

For comparison experimental spectra for Li by
Platzman, Eiscnbcrger, and Schmidt are shown in
Fig. 17. A shoulder can be discerned for q as large
as 1.4p~, whose spectral shape has a resemblance
to the calculated one for r, =3.0. The shoulder ob-
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proximation has thus succeeded in explaining the
observed double-peak structure as well as the unex-

pected dispersion of the plasmon around q„
without any adjustable parameter. Their physical
origin can be traced back to the characteristic
behaviors of the local field correction and the ener-

gy width of the quasiparticle. The fine structure
consisting of a plasmonlike peak and a broad peak
or a shoulder has commonly been observed for a
wide variety of different metals and even for sem-
iconductors such as Si. This may be understood, if
one considers that the excitation spectrum as high
as 'tlM plasII1011 cxcltatloll Is llttlc influenced by
precise features of low-lying excitation spectra in
the vicinity of the Fermi level. So far as the well-

defined plasmon excitation is observed for small
wave numbers, its continuation into intermediate
wave numbers may possibly be observed, since it is
ascribed to the striking damping effect of the
quasiparticle due to the virtual plasmon excitations
under the influence of strong short-range correla-
tions. It is hoped that both x-ray and electron
scattering experiments on S(q,al) will be carried
out with still higher resolving power.

As a consequence, we may safely say that an
clcctroll llqllld IIlodcl wltll thc uniform posltlvc
background can be applied for metallic phenomena
of intermediate wave numbers as well, so far as
one is concerned with intermediate excitations.
The notion of a quasiparticle might often be sup-
posed to work well only for phenomena of low-

lying excitations. The quasiparticle picture, how-
ever, has thus proved to be practically applicable
for the problem of intermediate excitations, provid-
ed that the energy width of the quasiparticle and
the irreducible particle-hole interaction are evaluat-

ed in a quantitative manner at metallic densities.
Using their own forms for 6 (q) and I'(p), Mukho-
padhyay, Kalia, and Singwi ' have first obtained
the spectral shape which has some resemblance to
the. observed one, although the fine structure can-
not distinctly be reproduced. Their forms for G(q)
and I'(p) are not appropriate for the detailed
description of the spectral shape. Now we may say
that in a sense we have justified their underlying
idea from a diagrammatic point of view.

Finally we shall comment on contributions from
pure multipair excitations which are beyond the
scope of the present calculation. They are in-
coherent and appear as a broad background. Cal-
culated values of S(q,oI) for frequencies much
higher than the upper bound of one-pair excita-
tions may be overestimated, although they are ex-
tremely small and bear little relation to the spectral
structure in S(q, co) in the intermediate excitation
region. The asymptotic form of S(q,ol) in the
quasi-one-pair excitation approximation is of order
al for high frequencies, while the correct asymp-
totic form is of order ol "~. The incoherent
contrlbutlons of S(g,ol) could lclllcdy flic ovcl'csfl-
mation for very high frequencies.
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