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We present a method for the numerical calculation of the anharmonic contributions to
the Debye-Wailer factor {DWF) for metals involving long-range interactions. The numer-

ical results of DWF obtained by the above method are compared with those of a molecu-

lar-dynamics calculation for a sixth-neighbor-interaction model of Li and Rb. It is shown

that an excellent agreement is achieved between the results calculated by the two methods
for the same model of the crystal potential. For Li and Rb the anharmonic contribution
to DWF of 0(

~ q ~
), where q is the wave vector, is about 10% of the quasiharmonic

contribution at T-T {T is the melting temperature). The two other anharmonic con-
tributions of 0(

~ q ~
) to DWF are found to be negligible in Li and Rb even when

T~T o

I. INTRODUCTION

—2M(q)

where for a wave vector q, 2M(q) is known as the
Debye-Wailer factor (DWF). 2M(q) is given in
terms of the ensemble average of the square of the
atomic displacement (u) in the direction of u,

2M(q) =C(u') . (2)

In Eq. (2), C is a constant and the angular brackets
denote averaging with respect to the harmonic vi-
bration of the crystal. The constant C assumes
different values for the various contributions to
2M(q) listed in Sec III. Exp.licit forms are indi-
cated in Ref. 3. When the temperature is greater
than the Debye temperature (en), the anharmonic
terms in the vibrating crystal cannot be ignored.
When this effect is taken into account in the
averaging process in Eq. (2), the determination of
2M becomes more complex.

Maradudin and Flinn have derived expressions
for 2M in the high-temperature limit for an anhar-
monic crystal by retaining the cubic and quartic

As early as 1914 the effect of atomic vibrations
on the intensity of x-ray scattering was studied by
Debye' and nine years later by %aller. Symboli-

cally, if the intensity at temperature T is I and that
at 0 K is Io then Debye and %aller showed that

terms in the Hamiltoman. There are four anhar-

monic contributions to 2M. The first two contri-
butions are isotropic and proportional to

~ q ~

whereas the other two are nonisotropic and propor-
tional to

~ q ~

. Maradudin and Flinn have also
performed numerical calculations of the

I q I

~ and

~ q ~

contributions to 2M for a nearest-neighhbor
central force (NNCF) model of a fcc crystal. They
have efnployed the leading term approximation in
the evaluation of the third- and fourth-rank tensors
arising in all the contributions and the Ludwig ap-
proximation in the calculation of the two

~ q ~

4

contributions. As shown by Shukla and %ilk in
the anharmonic Helmholtz free-energy calcula-
tions, both these approximations are poor. Wolfe
and Goodman have also calculated the above
mentioned four contributions to 2M for a fcc crys-
tal but without making any of the approximations
of Maradudin and Flinn. They employed the
general-tensor-force model, extending to sixth-
neighbor interaction, to compute the phonon fre-
quencies and eigenvectors of the harmonic model
but the third- and fourth-rank tensors were
evaluated for a NNCF model of a fcc crystal from
a Born-Mayer potential. However, it is well
known that even in such simple metals as alkalis
the forces are of a long-range nature and, as shown

by one of us, the nearest-neighbor interaction
leads to misleading results in anharmonic calcula-
tions of a bcc structure. A search of the existing
literature reveals that except for the harmonic cal-
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culation of 2M by Vaks et al. the anharmonic cal-
culations of 2M for the bcc structure, such as the
alkali metals, have not been carried out in the past.

In this paper we present a method for the nu-

merical calculation of the anharmonic contribu-
tions to 2M for metals involving long-range in-
teractions and compare our results for a model for
Li and Rb with the results of a molecular-
dynamics calculation for the same model. As
mentioned previously, the methods used by Mara-
dudin and Flinn and Wolfe and Goodman are
geared to the anharmonic calculations of 2M for
the NNCF model of fcc structure.

Our motivation in performing the present calcu-
lations of 2M also arises for the following two rea-
sons. Firstly, the recent calculation of the high-
temperature specific heat of Rb for a sixth-
neighbor-model interaction by MacDonald et al.
showed large discrepancies at high temperatures
between the Monte Carlo results and the lowest-
order perturbation theory results which included
the cubic and quartic terms in the potential energy.
The difference in the two results for the specific
heat indicates the importance of the higher-order
perturbation theory corrections, because, for the
same model employed in both calculations, no ex-
pansion of the crystal potential is involved in the
Monte Carlo calculation. Clearly then it would be
of some interest to compare the results for 2M ob-
tained from the molecular-dynamics calculation
(which again does not require expansion of the
potential-energy function) and the lowest-order per-
turbation theory calculation for the same model of
the bcc crystal employed in both the calculations.
To the best of our knowledge the molecular-
dynamics calculation of 2M for the long-range po-
tentials in metals has not been reported so far.
Secondly, the recent measurements of the Debye-
Waller factor (DWF) or 2M in Li by McCarthy
et al. ' by incoherent neutron elastic scattering ex-
periments has shown large anharmonic contribu-
tions to DWF at all temperatures in their analysis
of the data.

The plan of this paper is as follows: Our
method of the lattice-dynamics calculation of 2M
is presented in Sec. II where it is shown that all
the contributions (harmonic and anharmonic) of
0(

~ q ~
) and 0(

~ q ~
) can be evaluated from the

knowledge of three different types of second-rank
tensors, viz. , S p, T p, and G p. This is followed
by a description of the molecular-dynamics calcu-
lation of 2M in Sec. III. The discussion of the nu-
merical results for Li and Rb obtained by the two
methods for a sixth-neighbor-interaction model is
presented in Sec. IV. Finally, the summary and
the conclusions of this work are given in Sec. V.

II. LATTICE-DYNAMICS CALCULATIONS

The lattice-dynamics calculation of the Debye-
Waller factor (DWF) or the average square of
atomic displacement is essentially a perturbation-

type calculation. There are four contributions to
the Debye-Wailer factor to 0(A, ) in the lowest or-
der of perturbation theory, where A, is the perturba-
tion expansion parameter. They arise from the cu-
bic and quartic terms in the Taylor's series expan-
sion of the crystal potential energy. Two of these
terms are of 0 (T ) and 0 (

~ q ~
) and the other

two are of 0 (T ) and 0(
~ q ~

), where q is the
wave vector. In the classical high-temperature lim-
it (T & 8ii), where 8i3 is the Debye temperature,
these contributions were first derived by Maradu-
din and Flinn. In addition to these four contribu-
tions there are two other contributions of 0(

~ q ~
)

which arise in the harmonic approximation and are
due to thermal expansion effects. The last two
contributions can be evaluated as one single term
calculated in the quasiharmonic approximation.

Representing the quasiharmonic (QH) contribu-
tion to DWF by 2M&H(q ) and the four A, contri-
butions by 2Mi(q), 2M'(q), 2M3(q), and 2M&(q),
respectively, their mathematical expressions are
given by

kBT
~

q. e qiji

2Mi(q)=
(kB&)' @(qiji —qi ji q~j» —qij3)[q.~(qi j»ll q e(qi j3)]

~ (ql jl )~ (q2j2)~ (q2j3)
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k T
2M (q)=, g ~(q 1+q2+ q3)@(q 1ji i2i2 q3 j3)c'( 'q 1J1 i2J2 i3i4}

2)V M
J&j2j3j4

[i'«i3J3)1[i «q3J4)1
~'(qiji)~'(q2j2)~ (q3j3)~ {i3l4}

k T2M3(q)=, , g g ~(ii+i2+q3+q4)@(ii jl l2J2 i3J3 i4i4)
12% M j j j jl234

[i ~(q 1J i)1[q'e( q2J2)1[q s( q3J3)1[q's'(q4J4)1

~'(ii ji)~'(q2 j2)~ (i3j3)~ {i.i4}

—(kBT)
2M4{i) y y y y +ql+ q2+ q3+( il+i5+is}

&@'(iiji i2i2 i3i3)@(—qiji, i5j5 isis)

[q ~~q2i2)1[i ~&q3i3)][i ~(qsi5)1[i ~~qsis)l
X

~ (qlJ1) (q2i2) (q3i3)ro (qsl5) (isis)

The various symbols appearing in Eqs. (3)—(7) have the following meaning: M is the atomic mass, kB is
the Boltzmann constant, T is the temperature, E is the number of unit cells in the crystal, and co(qj) and

e(qj) are the eigenvalues and eigenvectors, respectively, for the wave vector q and branch index j. The del-
ta function b,(qi+q2+ . . +q„) appearing in Eqs. (5)—(7) is unity if qi+q2+ . +q„ is zero or a vec-
tor of the reciprocal lattice (r ) and zero otherwise. The 4 functions appearing in Eqs. (4)—(7) are the
Fourier transforms of the third- and fourth-order atomic force constants. In general, the Fourier transform
of the nth order atomic force constant {r} &. . . &{ 1 ) is defined by the following:

@(qiji,q2j2. . . .q.j.)= „„g' X 0 p",(I)~ (qiji)~gq2j2) . . s,(q.i.)2~n/2

where the prime over the direct lattice vector ( I ) summation in the previous equation indicates the omission
of the origin point.

The numerical calculation of the above 6ve contributions to 2M(q ) can be greatly simplified for cubic
crystals. For example, when the symmetry operations of a cube are performed on the vector q, then due to
invariance of 2M(q ) many terms on the right-hand side of the expressions of 2M'{q), 2M1( q), and
2M2(q ) are equal and the other cross terms are zero. Making use of this property and the orthogonality of
eigenvectors we obtain the following simplified expressions for 2M&H( q },2M1( q), and 2M2( q).

2M
~q J 6) q&J]

B~~qlll»'qlJ1»q2J2» i2J2
6N M - - J,~, CO (qi ji}CO (q2j2)
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@(qljl, q2J2 'q3J3)@( ql jl q2J2 'q3J3}
2M2 q =

2
dl ql+q2+q3

~ ( llj 1)~ (q2J2)~ (q3 j3)

The expressions for 2M3(q) and 2M4(q) are quite lengthy even for cubic crystals. Therefore, we first
describe the calculations of 2M1(q). Substituting the expression for 111 from Eq. (8) into Eq. (4) and ex-
pressing the two whole Brillouin-zone (BZ) sums in terms of the two following tensors S~p( 1 ) and Trs( 1 ),
introduced previously in anharmonic calculations by Shukla and Wilk, we have for 2M1(q) the following:

—
i q i

(ksT)
2M1(q) 2 3 g g p~prs( ~

1
~
)[S~p(0) S~p(1)][Trs(0) Trs(1)]3' M ] ~pyg

S ( 1 ) ~ ~a qj ~P qj
( )

~( )~( ')

co (qj)

(12)

co (qj)

The calculation of 2M~H(q) can also be carried out from the knowledge of the S p(0) tensor obtained
from the following expression:

f q /

2ksT
2MgH(q) = [$~(0)+Syy(0)+S (0)] .

(14)

The expression for 2M3(q) can be reduced in terms of the fourth-rank tensor H2„„, with the help of the
plane-wave representation of the 6 function, which requires the introduction of another direct lattice sum
(1) in the calculation. Each of the four BZ sums are again expressed in terms of S p( 1 ) and the final ex-
pression for 2M3( q) is

(ksT)
3 q = '4

4 ~% qkqpq. q, Ap
A pvE'

02„„,= g' g g p,p s(
~

r 1 ~
)[S 2 ( 1 ) —S 2 ( 1 —1 1)][Sp„( 1 ) —Sp„( 1 —1 1)]-, --p"

)& [$~( 1 ) —$~( 1 —11}][Ss,( I )—Ss,( 1 —11)] .

%e note here that for cubic crystals we need to calculate only the following components of H~„„,. viz. ,

Hxxxx ~ Hyyyy ~ Hzzzz i Hxxyy ~ Hxxzz~ Hyyzz~ Hxyxy~ Hxzxz~ Hyzyz

The calculation of 2M4(q) is quite tedious. The plane wave representation of the b, function method,
used in the calculation of 2M3( q ), produces very complicated expressions for the numerical work. Howev-

er, the expression for 2M4( q ) involving the largest number of BZ and branch index summations can be sim-

plified in the following manner. First, we change the sign of q3 and q6 in Eq. (7) which yields a negative
sign due to the property of the 4 function, i e., 4( —q 1 jl, —q5 j5, —q6 j6)= —4( q 1 jl, q5 j5, q6 j6). Next,
we use the even function property of the 4 function, i.e., 4( —q 1

—q5 —q6}=b(q 1+q&+ q6) and the sym-

metry in the sums (q2 j2, q3 j3) and (q& j5, q6 j6) to express 2M4(q) in the following form for computational

purposes:

(krl T)3
2M4(q)= 3 2 g g gpg&gsZ prs,4X M ~F5

where
G p(q 1Jl)Grs(q 1Jl)

2( +
qr Jr

(18)
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@ qi ji qzjr q3J3 e qzJz ett q»3
G ti(q& ji }= 6 qi+ qz+ q3

12J2 ~ 13J3
(20)

and a similar expression for Grs(q i ji). Once
again for cubic crystals we only need to calculate

Zzzzz ~ Zyyyy~ Zzuz,
'

Zxxyy~ Zxxzz~ Zyyu~ Zxyxy~ Zxzxz

Zpgpg 0

In the numerical calculation of the above contri-
butions to 2M( q ) we have employed two methods.
The first method required the evaluation of single

whole BZ sum in the calculation of the tensors
S tt(1) and Trs(1). The whole BZ sum in each

case was reduced to the (—„)th portion of the ir-

reducible sector by the method presented in Shukla
and Wilk. The riecessary equations have been

presented fully in their paper and there is little

point in reproducing them here. Concerning the
density of points in the whole BZ, we have used a
simple cubic mesh of step length 20 which yields
16000 points in the whole zone. The procedure in
our program was to first calculate and store values

of S~ti(1) and Trs(1) for a wide range of 1 vec-

tors and then selix:t the required values of the
functions as needed in the calculation. This was
the method followed especially in the calculation
of 2M3(q). The calculation of 2Mi(q) and

2MqH(q ) was obviously much more straightfor-
ward than 2M3( q).

The calculation of 2M&( q) and 2M4( q) is best
carried out by the second method (commonly
known as the scanning method) the details of
which can be obtained from Maradudin and Flinn
and Flinn and Maradudin. " Some further details
concerning the calculation of the Fourier transform
of the cubic anharmonic force constant

4(qi ji, qq jq, q3 j3) can be obtained from Shukla
and Taylor. ' The number of wave vectors or the
density of points in the whole BZ required for the
convergence of the type of multiple Brillouin zone
sums, arising in the calculations of 2M&(q ) and

2M4(q ), have been discussed previously ' in the
calculation of the anharmonic contribution to the
specific heat (C„")of bcc metals. Since the multi-

ple Brillouin-zone sums arising in 2M'(q),
2M4(q },and C„" are similar, once again we have

used a simple cubic mesh of step length 6 in the
calculations of 2M'(q) and 2M4(q). This step
length yields 432 points in the whole Brillouin
zone.

After performing all the relevant direct-lattice
and the Brillouin-zone sums in the expressions of
the above contributions to 2M, we find the follow-

I

ing simplified expressions for 2M')H(q), 2Mi(q),
2M, (q), 2M, (q), and 2M4(q):

2MgH ——(ks T)Se)Hq

2Mi (kttT——) Siq

2M' (ktt T——) Sgq

2M3 (ks T—)—[A (q„+qi, +q,')
2 2 2 2 2 2+6B(q„q„+q~q, +q, q„)],

(21}

(22)

(23)

(24}

2M~ =(ks T}'[C(q„+q~+q, )+(2D

+4E)(q„q„+qYq, +q, q„)j . (25)

III. MOLECULAR-DYNAMICS CALCULATIONS

The classical equations of motion for 250 parti-
cles were integrated using the Beeman algorithm
which is described by Schofield' and by Sangster
and Dixon. ' The force law was obtained using
the same effective pair potential employed in the
lattice-dynamics calculations. For lithium, dis-
tances were measured in units of o =2.665 A, the
position of the smallest zero of the pair potential
and the energy was scaled by e= 588.5k&, the
depth of the well of the pair potential where kz is
Boltzmann's constant. The time unit employed
was'=(mo /e)' = 3166)&10 ' s where m is
the mass of a lithium atom. The time increment
used when integrating the equations of motion was
ht =0.01~. The particles were placed in a cube

The numerical values of the constants S&H, S~,
Sz appearing in the above q terms and the other

constants, viz. , A, B, C, D, E, in 2M3 and 2M4
terms for three different volumes of Rb and one
volume of Li are presented in Table I.

The model potentials used in these calculations
and in the molecular-dynamics calculation dis-

cussed in Sec. III were constructed following the
procedure of Price et al. ' The Li potential
parameters are a =3.478 A, r, =1.40, m'/m
=1.30, A =0.999, r, =3.236, and 8=0.258. The
parameters for the Rb potentials are listed in Table
1 of Ref. 8.
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TABLE I. Constants used in the calculation of 2M for Li and Rb [see Eqs. (21)—(25)].
S~H is in units of 10 4 erg 'cm2; S~ and S2 are in units of 10' erg 2cm2, A, 8, C, D, and E
are units of 10' erg-'cm',

3.478
5.661
5.700
5.739

1.1131
3.7294
3.9091
4.1014

8

—5.8078
—16.0902
—17.2686
—19.6313

7.7178
26.3573
29.1339
32.3254

D

0.2583
2.7472
3,1483
3.7213

E

3.478
5.661
5.700
5.739

—0.0114
—0.1982
—0.2323
—0.2604

—0.2426
—2.9911
—3.4420
—3.9791

0.0023
0.0661
0.0685
0.0701

—0.1254
—1.5073
—1.7484
—2.0362

containing 5+5+5 bcc unit cells and periodic
boundary conditions were employed to minimize
surface effects. During the course of each compu-
tation, the kinetic energy per particle and the
Fourier coefficients for the density with wave vec-
tors pointing in the [100j, [110j,and [11 lj direc-
tions of the cube were calculated and stored for
latex processing.

The influence of the initial bcc configuration
was ehminated by carefully aging the system for
several thousand time steps before collecting data.
The stability of the results was checked by com-
paring averages made during sequential computa-
tions (the final configuration for one computation
was the initial configuration for the following
computation) and only when temperature stability
was achieved did we assume that the influence of
the initial conditions had been eliminated. The
fluctuations in the kinetic energy were used as an
indicator of the stationarity of the system in the
follovnng way. The microcanonical ensemble ex-
pression relating the kinetic energy fluctuations of
N particles to C„, the specific heat at constant
volume, is' '

sociated with incomplete equilibrium in a constant
energy system. We required that ihe estimate for
C„jks obtained using Eq. (26) be in the range of
3—4 before the results %'ere accepted as stationary.
We performed calculations for four states over the
temperature interval 189 K & T &470 K. %e note
that the variation of the system energy with tem-
perature over this interval, as shown in Fig. 1 is
C, /kz ——3.1+0.3. The uncertainty in the tempera-
ture was determined from the rms fluctuation in
the kinetic energy.

The structure factor for wave vector Q is just
the mean-square density fluctuation of wave vector
Q; that is,

S(Q)= & ngn (2),

~ ~ ((~)')
ks 2 2 (g &2

100 200 300 400 500

Here, E is the lonetic energy per particle.
((~)'&= &a'& —&X&'»d the»gul: b.,k.t.
indicate a microeanonical average evaluated as

T
&f)= Jdrf(i) . —

0

The estimate for the speclf11c heat obtained us1ng

Eq (26) is fair. ly sensitive to temperature drifts as-

FIG. 1. Mo/ecular-dynam1cs results for the energy-
temperature variation for Li at constant volume. The

energy is in units of a=588.5k~ where k~ is
Boitzmann's constant. The uncertainties in the tefnpera-

tufe are determined from the Auctuations in the kinetic

energy. The straight hne corresponds to a specific heat

at constant volume C„/k~ ——3.1+0.3.
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where

1
n& —— g exp(iQ ri)

N )
(29)

is the Qth Fourier coefficient of the density. If
Q=G, a reciprocal-lattice vector, then

S(G)=N exp[ —2M(G)],

where exp[ —2M(G)] is the Debye-Wailer factor.
The wave-vector dependence of 2M obtained from

our molecular-dynamics results were examined by

plotting 2M/Q vs Q . Our results may be
represented as

(30)

2M i ((~ )2) (31)

The ((br)~) and F values obtained from this

analysis are listed in Table II for the four tempera-

tures simulated. Each computation was 2000
time-steps long. Fourier coefficients for the [110],
[200], [220], and [222] reciprocal lattice vectors

were generated for each step. In order to improve

statistics, the average in Eq. (28) was made over

three equivalent, orthogonal directions for each

wave vector. The quoted uncertainties for I' were

obtained by comparing results from different runs.

The values of ((hr ) ) were not sensitive to these

variations.
The molecular-dynamics results for rubidium

were taken from another study of rubidium (un-

published work)' using a potential with o =4.48 L
and a=393k~. The methods employed were the

same as those used in the lithium calculations ex-

cept that only the (200) Bragg peaks were obtained.

For this reason, the F coefficient of Eq. (31) can-

not be obtained from these calculations. The

((br) ) values listed in Table II are for no =0 95.
(a =5.739 A) where n is the number density and

o=4.48 k

IV. DISCUSSION

The numerical results reported in this paper
were obtained using the potential of Price et al. '

truncated at the sixth-neighbor distance. A sum-

mary of the lattice-dynamics and molecular-
dynamics results for Li and Rb is contained in
Table III.

For the temperatures considered, the two
methods are in good agreement although the re-
sults begin to separate at the highest temperatures.
This is consistent with the specific-heat results for
Rb obtained previously using the Monte Carlo
method and lowest-order perturbation theory. In
that calculation, significant differences in C„were
found for T & 340 K but only small differences
were found for T g 340 K. The results of these
two calculations indicate that lattice dynamics pro-
vides estimates of thermal properties of Rb which
are consistent with simulation results for tempera-
tures up to the melting point but which underesti-
mate thermal values at higher temperatures.

From the results presented in Table III it is ap-
parent that the anharmonic portion of the q con-
tribution to the Debye-Wailer factor is of the order
of 10% of the quasiharmonic contribution at the
melting temperature. This is true for all three
volumes for Rb and for the one volume for Li for
which we have carried out our calculations. Using
lattice dynamics, the q contribution was found to
be unimportant in all cases. The largest contribu-
tion to 2M comes from the quasiharmonic portion
of the q term. On the other hand, the molecular-
dynamics results indicate that a q term is needed
to adequately represent 2M for Li at higher tem-
peratures. This indicates that the lattice-dynamics
calculations underestimate the magnitude of the q
anharmonic contribution.

The density and temperature variation of
((b,r) ) for Rb, as predicted by lattice dynamics, is

TABLE II. Molecular-dynamics results for the Debye-Wailer factors of Li and Rb.

T (K)
Li

((hr )') /(o') Fi(o. ) T (K)
Rb

((hr )') /(o')

1&9+8
290+11
382+15
470+18

0.0130
0.0190
0.0272
0.0367

0.000 04+0.00004
0.000 08+0.000 03
0.000 18+0.00002
0.000 31+0.00065

65+2
158+4
218+6
279+8
340+10

0.005 87
0.0136
0.0195
0.0267
0.0345
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TABLE III. Summary of (u ) results for Li and Rb using lattice dynamics and molecu-

lar dynamics. (u ) in units of 10 '6 cm2. Quasihamonic (QH) and anharmonic contribu-

tions are listed separately. The q contribution to AH is negligible.

QH AH Molcclllar-dynamics

189
290
382
470

0.02904565
0.0445674
0.0587060
0.0722299

Li
0.001 300 55
0.0030620
0.005 3129
0.0080426

0.030 346 21
0.047 629 38
0.064018 94
0.080272 62

0.0308
0.0450
0.0644
0.0869

65
158
218
279
340

0.036807
0.089469
0.123445
0.157987
0.192529

0.001 022
0.00604
0.0114998

0.018 836
0.027 973

0.037829
0.095 510
0.134945
0.176823
0.220502

0.0393
0.0910
0.130
0.179
0.231

presented in Table IV. As expected, ((«) ) in-

creases with increasing temperature and decreases

with increasing density. Based on ihe above dis-

cussion, we expect that a molecular-dynamics

study of 2M for the two higher densities would

only confirm these results.

V. SUMMARY AND CONCLUSIONS

We have examined the influence of anharmonici-

ty on the Debye-Wailer factor of the alkali Li and

Rb. This was done by comparing the results of
lattice-dynamics calculations with those of molecu-

lar-dynamics simulations for the same model po-

tential and thermodynamic states. Several interest-

ing observations result from this comparison.
The first observation is that the lattice-dynamics

values of the Debye-Wailer factor are in good
agreement with the molecular-dynamics values for
temperatures up to the melting temperatures of
both Li and Rb. At higher temperatures, there is

an indication that the anharmonic terms are not

adequately described by the q terms appearing in
Eqs. (24) and (25). This suggests that the domain
of validity of the lattice-dynamical theory included
most of the solid phase for the alkali metals.

Experimental results for the Debye-Wailer factor
of Li were reported in Ref. 10 in terms of the coef-
ficient of Eq. (31). A comparison of the experi-
mental results found in Fig. 7 of Ref. 10 with the
corresponding molecular-dynamics results listed in
Table II reveals that the experimental values of the

q coefficient are approximately twice the magm-
tude of the molecular-dynamics q coefficients
while at 290 K, the experimental value of the q
coefficient is smaller than the molecular-dynamics

by at least a factor of 4. Since anharmonic effects
contribute to both the q and q coefficients, as in-
dicated by Eqs. (22) —(25), it is not possible to state
how the potential used in our calculations would
have to be modified in order to account for the ex-
perimental results. We can assert that the lattice-
dynamical theory presented here would provide a
good way to test other potentials for Li.

Finally, we observe that the quasiharmonic ap-

De»&ty and «mp««««epmden««((d» }')/o' for Rb as determined by
lattice dynamics.

T (K.) ~3 0.99 0.97 0.95

0.005 13
0.01289
0.018 17
0.023 75
0.029 55

0.00539
0.013 59
0.01919
0.025 14
0.031 34

0.005 65
0.01428
0.020 17
0.02643
0.03296
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proximation, in which the co(qj)'s are determined

for the volume of interest rather than for the T=0
K equilibrium volume provides a good starting
point for lattice-dynamical calculations. For the
Debye-Wailer factor for the alkali metals, it pro-

vides about 90% of the answer. The procedures
set forth in Sec. II for evaluating the anharmonic
contribution to the Debye-Wailer factor provide
the remaining 10%.
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