
PHYSICAL REVIEW B VOLUME 25, NUMBER 6 15 MARCH 1982

Alloy broadening of impurity electronic spectra: One-dimensional
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A quantitative theory of inhomogeneous alloy broadening of impurity spectral lines is
developed for substitutional crystalline alloys, with the use of the embedded-cluster
method. Model calculations are presented for a defect in a tight-binding, one-state-per-
atom, one-dimensional binary-alloy crystal A„Bl „with nearest-neighbor interactions.
Among the interesting effects discussed are the splitting of the impurity spectral lines into
components which can be identified with the near-neighbor environment of the impurity
and the dependence of these lines on both the alloy composition x and the A-8 atomic-
energy difference.

I. INTRODUCTION

In a disordered system, fluctuations of local po-
tential energy in the neighborhood of an impurity
can both inhomogeneously broaden the impurity
spectral lines which lie within a barid gap and also
produce local environments which can immobilize
and hold excitations for relatively long times as
they hop from one impurity to another. A classic
set of experiments by Wolford, Streetman, and
Thompson' on the excitons bound to nitrogen im-
purities in GaAs~ „P„has recently served to
highlight the importance of this alloy-broadening
effect on the luminescence spectra of semiconduct-

ing alloys. These workers demonstrated that a
bound exciton hops from one nitrogen to another

by resonant energy transfer until it reaches a trap.
They also determined that the alloy fluctuations
which broaden the nitrogen impurity line can
greatly inhibit this exciton transport to traps. This
effect can thus be thought of as analagous to a
"self-trapping" of the exciton by the alloy fluctua-
tions. Finally, Wolford, Streetman, and Thompson
demonstrated that this alloy "self-trapping" can in-
crease the luminescence efficiency of this impor-
tant light-emitting diode material by reducing the
exciton diffusion length, thereby preventing the ex-
citon from reaching a nonradiative recombination
center.

Wolford, Streetman, and Thompson were able to
measure the alloy-broadened linewidth and line
shape of the nitrogen luminescence line as a func-

tion of host-alloy composition x. Unfortunately,
however, a satisfactory microscopic theory of this
line shape does not, to our knowledge, exist. The
purpose of the present paper is to lay the founda-
tion for such a theory and to develop a calculation-
al method which will be practical for application
to real alloys such as GaAsi „P„. For simplicity
and clarity of presentation, we consider here a
model alloy system and treat the effects of alloy
disorder on impurity spectra in a one-dimensional,
one-band, nearest-neighbor, tight-binding binary al-
loy. This model contains all of the essential physi-
cal elements of alloy broadening without the com-
plications of a realistic, three-dimensional, multi-
band, multineighbor model. The initial treatment
of such a model thus has the advantage that it en-

ables us to develop a calculational technique and to
test it on a system which is simple enough that the
essential physics are not obscured by mathematical
and computational complexities. The technique
developed here is based upon a generalization of
the embedded-cluster method, which was
developed earlier for calculating alloy vibrational
spectra. We shall show in subsequent work that
the basic ideas presented here, with some modifica-
tions for sp chemical bonding, can be applied suc-
cessfully to the problem of luminescence line
shapes in III-V alloys such as GaAsi „P„.

This paper is organized as follows. In Sec. II,
the model is discussed and the notation we use is
established. The basic formalism we use is out-
lined in Sec. III, where we briefly review the
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coherent potential approximation '0 (CPA) for
the alloy host, and discuss the application of the
embedded-cluster method to the treatment of the
effects of alloy disorder on impurity spectra. " In
Sec. IV, we present results, obtained by the
embedded-cluster method, for the alloy-
broadened line shapes of two different impurities
in this model alloy system. A brief comparison
with other theoretical approaches is made in Sec.
V, and in Sec VI we present a brief discussion and
conclusions. An appendix contains a discussion of
perturbation theory in powers of the minority com-
position.

manner, '

where the trace runs over all sites of the crystal, N
is the total number of atoms, and the double angu-

lar brackets denote an average over all alloy con-

figurations.
Inserted in the alloy host at the origin is a defect

with on-site matrix elements EI and a nearest-

neighbor transfer matrix element which we take to
be t, the same as for the rest of the crystal. The
Hamiltonian for the alloy in the presence of the
defect is thus

II. MODEL AND NOTATION (Sa)

In this paper we consider a binary alloy A„B~
which serves as the host for an isolated impurity,
I. Although we do all of our calculations for a
one-dimensional, one-state-per-atom, nearest-

neighbor tight-binding model alloy system, most of
the formalism is applicable in a straightforward
but tedious n1anner to three dimensions and to al-

loy systems with more realistic electronic structure.
Furthermore, most equations in this paper are,
with appropriate generalizations, valid in three di-

mensions.
The alloy-host one-electron Hamiltonian in the

tight-binding approximation is

Ho ——g~ )nE(n
~ g ~

n)t„„(n'~,
n, n'

n'Qn

where
~

n ) is an atomiclike orbital centered at the
nth site. Here we consider diagonal disorder and
nearest-neighbor interactions only; thus the on-site
matrix element E, is a random variable taking on
the values Ez and Ez with probabilities x or 1 —x,
respectively, and the transfer matrix element has
the form

U= iO)(EI —Eo)(Oi . (5b)

G =(E H+i 0—)

From this function, the total density of states, as
well as various local densities of states may be ob-

tained in the standard way. ' Of most interest in

this paper is the configuration-averaged local den-

sity of states at the impurity site. For a given al-

loy configuration, the local density of states at the
origin (impurity site) is

L,,(E)=——lm(0) G )0),

and its configuration average is therefore

I.(E)=(«.(E)» . (7b)

In this paper, we seek this configuration-averaged

density of states for energies E in the band gap of
the pure alloy, that is, where the density of states

Do(E} of the alloy host vanishes.

The Green's function for the alloy-impurity system

is defined as

rnn' i(~, nI+sn, n +i)'
where the nearest-neighbor interaction energy t is
assumed to be the same for all nearest-neighbor
pairs and independent of x.

The alloy Green's-function matrix is defined as

Go ——(E Ho+i 0)—
where E is an energy and i 0 is a positive ima-

ginary infinitesimal. The configuration-averaged
alloy density of states is defined in the usual

III. METHOD

We compute the density of states lo(E},Eq. (7),
using the embedded-cluster method. as developed

by Gonis and Garland and by the present au-

thors. ' The basic idea of this method, as used in

this paper, is that the alloy host is treated by
embedding a cluster in a self-consistent effective
medium, described hcic by thc coherent potential
approximation (CPA). ' We perform these cal-
culations using a cluster of X,+1 atoms, where X,



25 ALLOY BROADENING OF IMPURITY ELECTRONIC SPECTRA:. . . 3595

is even, and the central atom of the cluster is the
impurity responsible for the persistent impurity
level. Every distinct configuration of the N, alloy
constituent atoms which surround the impurity in
the cluster leads to a different impurity energy lev-

el. ' The levels associated with the various cluster
configurations are the components of the alloy-
broadened line shape.

For the model alloy considered here, both the
CPA ' and the embedded-cluster-method treat-
ment' of the alloy host are discussed in detail else-

where. However, it is useful, for reasons of com-
pleteness, to briefly summarize these methods here.
Other workers' ' ' have developed self-
consistent cluster theories (cluster CPA theories),
which could, in principle, be applied to the prob-
lem of alloy broadening of impurity electronic
spectra. However, these would be computationally
more difficult to carry out than the present theory.

A. Coherent potential approximation

In the single-site CPA treatment of the alloy
host, ' one seeks to approximate the random al-

loy by a translationally invariant effective medium
which is described by the best quasieigenstates of
the statistically averaged alloy. The effective-
medium Green's function is thus defined as the
configurations average of the alloy Green's func-
tion,

g.=&«.».
In the CPA, this Green's function is assumed to
satisfy

g, =(E—«H, » +i o)-',
where the configuration-averaged Hamiltonian is
written in the single-site approximation as

n, n'
n'+n

(10)

Here, 0(E) is the (as yet undetermined) complex
energy-dependent self-energy describing the single-
site CPA medium. The effective medium
described by this self-energy is determined by the
requirement that its quasiparticles scatter the
minimum amount, that is, that the single-site
effective-medium transition matrix is zero when
averaged over all possible alloy configurations.

This leads to the condition

« .»=;+(1—),=o,
where

(1 la)

+A(B) t 1 —[E~(B) 0(E)]&a
~ go ~

n & j

X [E~(a)—~(E)11 (1 lb)

E=[E—cr(E)]/2
~

t
~

. (12b)

B. Embedded-cluster method for calculation
of impurity spectra

In the present theory of impurity spectra we
treat the alloy host via the embedded-cluster
method. As applied here, an ensemble of
N, +1 atom clusters of different configurations is
embedded in a CPA medium described by the
Green's function & n

~ go ~

n'&, Eq. (12); the medium
is not altered to account for the effect of the im-

purity on it. Here, N, must be even and the cen-
tral site of each cluster contains the impurity atom.
The Green's function for the cluster with a specific
configuration has the form shown in Eq. (6) and
satisfies the Dyson equation

G =go+go VG

where V is a scattering potential which may be
written

V =H «Ho» =—Ho —«Ho» +U, (14)

is the single-site transition matrix for an A (B) site.
Equations (1 la) and (1 lb), when combined with the
diagonal matrix elements of Eq. (9), yield a self-
consistent equation for the self-energy 0(E). As js
shown elsewhere, ' for the one-dimensional
nearest-neighbor tight-binding model, this reduces
to a cubic algebraic equation.

In order to solve Eq. (11) and obtain the self-

energy, it is clearly necessary to express the
Green's function &n

i go ~
n & in terms of o(E).

Also, for use in the embedded-cluster method dis-
cussed below, it will be useful to have a specific
form for the general CPA Green's functions in the
site representation, &n

~ go ~

n'&. These functions
may be easily obtained in the one-dimensional
nearest-neighbor tight-binding model. In this case,
they have the form'

& n [go i
n'& =

t E+[(E) —1]'~'
$

'
"

X[(E)'—1]
—'"/2

f

r [, (12a)

where
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for sites within the cluster and which vanishes out-
side of the cluster. The (X,+1)X(N, +1) matrix
equation given by Eq. (13) may be solved numeri-

cally to yield

G=(1 g—o& 'go (15)

The configuration-averaged local density of states
at the impurity site may then be obtained by the
use of Eq. (7).

The primary approximation in the application of
the embedded-cluster method to the calculation of
impurity spectra is thus that the Green's function
given by Eq. (15) is, in fact, the Green's function
for the random-alloy host in the presence of the
impurity. If one takes the cluster size large
enough and considers every possible configuration
of alloy constituents for a cluster of E, atoms, '

the configuration-averaged local environment seen

by the impurity will approach that seen by an im-

purity in the random alloy. Results obtained by
the use of this formalism on the model-alloy sys-
tem considered here are discussed in the next sec-
tion.

IV. RESULTS

The use of the embedded-cluster formalism
described in the last section for the calculation of
the local state density /o(E) for energies in the
band gap of the host alloy results in a spectrum
which is a series of 5-function impurity lines, one
for each distinct cluster configuration. Since 5
functions are difficult to handle numerically, in

practice the method we have used to obtain the
function lo(E) is to find, for each configuration,
the zero of the function 1/(0

~

G
~
0) which occurs

in the band gap, where G is given by Eq. (15).
Then, for a given composition x and cluster size

X„the local state density may be represented as

/o(E) =gP;5(E E; ), — (16)

with the normalization condition g,.P; =1. Here,
P; is the probability of random occurrence of the
ith cluster configuration, E; is the energy of the
impurity in the ith configuration (obtained by find-
ing the zero of the function 1/(0

~

G
~
0) for that

configuration), and the sum goes over all possible
configurations of the N, alloy constituent atoms in
the cluster. '

Because of the form of the function /o(E), which
will be referred to in what follows as the "line

shape, " it is useful to discuss the results for this
function in terms of configuration-averaged mo-
ments of the spectrum. The configuration-
averaged nth moment may be easily evaluated
from Eq. (16) and has the form

L„=((E")) =I dE/o(E)E", (17a)

or

L.=((E")&gP;E;" . (17b)

M. =(((E—((E)) )"» .

Of particular interest in the present paper are the
first moment, or configuration-averaged energy,
and the nth root of the nth moment about the
mean for n =2, 3, and 4. For these latter quanti-
ties, we shall use the symbols

b, =[M ]' =[(((E L, ) ))]'—
(L L2)1/2

a=[M, ]' '=[(((E L, )'))]' '—

=(Li —3L2+2L i )'/,

(19a)

(19b)

n=[M4]'"=[« (E-Li)'» ]'"
=(L4 4L2Li+6L2—L i —3L i

)'

(19c)

The quantities b and a are usually referred to as
the linewidth and skewness (or asymmetry), respec-
tively.

Again because of the form of Eq. (16), it is
sometimes useful to artificially broaden the 5-
function peaks to enable one to "see" the line

shape. For the cases discussed below we do this by
convolving Eq. (16) with a Gaussian of width I'.
The results of this manipulation are

d(E) =I /o(E')B(E E')dE', —(20a)

where the Gaussian broadening function is

e
—E /212

i/2ir I' (20b)

If the impurity energy E; lies outside the band gap,
the term for the ith configuration is not included
in the sum. It is also often convenient to discuss
the nth moment about the mean, which is defined
as
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Thus, we have

d (E)= gP;e
2n I

(20c)

A. Results for the case E~ ———E~ ——3.0, t =1.0,
EI ——0.0, and X,=8 (symmetric case)

0

-2

0,2 0.4 0.6 0.8 I.O

FIG. 1. First moment L
&

of the alloy-broadened line

shape vs alloy composition x for A„B~ „in the sym-

metric case Eq ———E~——3.0, t =1.0, N, =8, and

EI——0.0. The solid line is the total contribution to L ~

and the dashed lines are from the components lying
within the band gap associated with the impurity
nearest-neighbor configurations AIA, AIB, and BIB.

These parameters correspond to the case of an
alloy in the "persistence" limit, that is with the
band spectra of A and B nonoverlapping. In Fig. 1

we show the results in this case for the dependence
of the first moment or configuration-averaged en-

ergy I.i on the alloy composition x. The defect
potential produces an impurity spectral line be-
tween the A and B bands. We focus our attention
on this impurity line. The host energy bands are
shaded and the band edges are the same as in the
CPA. The solid line denotes the overall ("total" )
first moment I.i, which varies approximately
linearly with alloy composition x. When viewed
with finer resolution (see also Figs. 3 and 4), the
impurity line has three distinct components, which
are denoted in Fig. 1 as BIB,AIB, and AIA, and
are associated with configurations in which the im-

purity atom I is surrounded by two B atoms, one A

atom and B atom, and two A atoms, respectively.
With even finer resolution (see Fig. 4), these three-
component spectra exhibit even further fine struc-
ture.

By keeping only configurations in the sum in
Eq. (17b), which have a particular one of the three

impurity near-neighbor environments, and by ap-
propriately renormalizing the probabilites, it is pos-
sible to compute the moments of these component
lines. The dependences of the first moments on x
for these three lines are also shown in Fig. 1

(dashed lines), where the components are appropri-
ately labeled. As may be seen from that figure, the
component lines do not vary linearly with x, but
are, in fact, except for large and small x, almost
constant over most of the composition range. It is
interesting to note that the BIB line, for the model

parameters chosen, lies above the AIA line. This
occurs because the adjacent A' s, being higher in en-

ergy than the impurity, repel the impurity level

downward, while the B's, being lower in energy, re-

pel the level upward.
The present calculations have been performed in

the range 0.01 &x (0.99. However, they are ex-

pected to be most accurate in the range 1/N,
&x ( I —1/N, . Outside of this range, errors can

be expected to occur. For practical reasons, we
have not done any calculations for N, & 8. Thus,
we expect the calculations in the range 0.125
(x &0.875 to be the most accurate. However, by
doing an exact calculation for an isolated impurity
in a pure B or A lattice, it is possible to extrapolate
the present results to x~0 and x~1. We have
done this for the case shown in Fig. 1 and in that
figure the results of the embedded-cluster method
have been joined smoothly to the exact isolated im-

purity results at x =0 for the "total" and BIB lines
and at x =1 for the "total" and AIA lines. Similar
extrapolation for AIB at x =0 and x =1,BIB at
x =1, and AIA for x =0 would require the exact
treatment of pairs and triplets of impurities.

In Fig. 2, the composition dependences of the
linewidth b„ the skewness a, and the fourth root of
the fourth moment p of the alloy-broadened line
shape are shown for the same parameters as used
in Fig. 1. Since the impurity in this case is chosen
with an atomic energy halfway between the atomic
energies of A and B (E„= Ez ——3.0, EI ——0—.0),
the quantities b, and B (even roots of even mo-
ments about the mean) are symmetric about
x =0.5, while the skewness a (odd root of an odd
moment about the mean) is antisymmetric. It is
clear from this figure that the line shape, even for
this symmetric case, has significant third and
fourth moments for most compositions. Thus, the
overall line shape is not representable by a simple
function and the usual moment expansions of im-
purity line shapes may be, at best, slowly conver-
gent. Furthermore, the quantities 6, a, and p de-



3598 CHARLES W. MYLES AND JOHN D. DOW

0.6-

0.4

0.04—

0.0 5

—AIA
--AIB—-BIB

Ea =3.0
Et) =-3.0

=1.0
Et =0.0
Nc=8

0.2 II
I

I
I

I
I

I

0.0 I
I

1
I

I
I

I
/

/

-0.2 . /
/

r

-0.4

EA =3.0
FI =-3.0

= 1.0
Eg =00
Nc =8

0.02

O.OI

0.0
I

0.2
I

Og 0.6 0.8 I.O

FIG. 3. Linewidths 4 for the component lines of the
alloy-broadened line shape associated with the impurity
nearest-neighbor environments AIA (solid curve), BIB
(dashed curve), and AIB {dotted-dashed curve) as func-
tions of alloy composition x for the same parameters as
used in Fig. 1.

0.0 02 0.4 0.6 0.8 I.O
X

FIG. 2. Linewidth b (solid curve), skewness or asym-
metry a (dashed curve), and fourth root of the fourth
moment P (dotted-dashed curve) of the alloy-broadened
line shape as functions of alloy composition x for the
same parameters as used in Fig. 1.

viate considerably from the [x (1—x)]'~" composi-
tion dependence which is shown in the Appendix
to be predicted for the nth root of the nth moment
about the mean by a perturbation theory in powers
of the minority concentration. For example, the
linewidth b deviates by as much as 20% from its
expected [x (1—x)]' dependence, even if one nor-
malizes the perturbation and embedded-cluster
method results at x =0.5 to ensure maximum
agreement. " Furthermore, this deviation becomes
larger as n increases. This deviation is perhaps not
too surprising, since such a perturbation theory is .

expected to be strictly valid only in the limits
x —+0 and x~1.

Because we have performed these moment calcu-
lations only for clusters as large as E,=8, the
embedded-cluster calculation results for b„u, and
B are again expected to be most accurate in the
range 0.125 (x (0.875. However, at extremely
small (x ~0}and large (x ~1}alloy compositions,
the perturbation theory in the minority concentra-
tion discussed in the preceding paragraph is ex-
pected to be valid. Thus, in plotting Fig. 2, we
have smoothly joined our embedded cluster results
to the [x (1—x)]'/" dependence predicted by this
perturbation theory.

We have also calculated the linewidths of the
component spectra BIB,AIB, and AIA as functions

of alloy composition for the same parameters as
used in Figs. 1 and 2. In Fig. 3, we show the re-
sults of this calculation. As may be seen from that
figure, the overall shape of these curves for line
width versus x is not very different from that of
the overall linewidth shown in Fig. 2. However,
their maximum values (at x =0.5) are about an or-
der of magnitude smaller than the maximum value
of the "total" linewidth. Furthermore, as is intui-

tively reasonable for this case where the atomic en-

ergies of A and B are symmetric about the impuri-

ty, the AIB linewidth is symmetric about x =0.5
while the AIA and BIB linewidths are slightly
skewed towards small x and large x, respectively.
We have also computed the parameters a and P
for these component lines. These calculations
show that both the shapes of these quantities as a
function of x and their relative magnitudes in com-
parison with the corresponding linewidths are very
similar to those of their counterparts for the
overall lines.

A final illustration of this case where the impur-
ity atomic energy is halfway between those of A
and B is show'n in Fig. 4. That figure displays the
Gaussian-broadened impurity line shapes, comput-
ed by the use of Eq. (20), for the alloy composi-
tions x =0.05, 0.1, 0.3, and 0.5. In generating
these curves the same parameters as for Figs. 1 —3
were used and each line shape is shown for three
different choices of the Gaussian width I . The
narrowest peaks (spikes) shown in Fig. 4 (solid
lines) correspond to I'=3X10, the next nar-
rowest peaks (dashed lines) to I'=3 &(10 2 and the
wide envelopes (dotted lines) to I =3&& 10 '. It is
clear from Fig. 4 that these predicted line shapes
are rich in structure that would be missed by most
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FIG. 4. Gaussian-broadened impurity line shape for the aBoy A„B) „for the same parameters as used in Fig. 1.
Three different Gaussian broadenings are displayed: I =3)(10 (solid curves), I =3X10 (dashed curves), and
I =3X10 ' (dotted-dashed curves). (a) x =0.05, (b) x =0.1, (c) x =0.3, and (d) x =0.5. The line shapes for different
x are symmetric about x =0.5, upon reAection through E=0.O. Thus, only line shapes for x &O.S have been shown.

simple perturbation or moment expansion theories.
The finest resolution curves (solid lines) for the

line shapes clearly show the existence of many im-

purity energy levels; each level corresponds to a
different configuration of alloy constituents in the
cluster (some of these are degenerate or almost de-

generate). It is also clear from Fig. 4 that, in con-
firmation of the moment information shown in
Figs. 1 and 3, these narrow peaks form three dis-
tinct groups, which may be identified with cluster
configurations containing the AIR, BIB, and AIB
impurity nearest-neighbor configurations. These
groups of peaks are labeled corresponding to these
identifications. The relative heights of the peaks
and the shapes of the broader curves are deter-
mined by the relative probabilities of the oc-
currence of the cluster configuration which gives
rise to a particular level for a fixed composition
x.' The vertical scale in Fig. 4 is arbitrary; the
curves are normalized so that the highest peak
height is always unity.

The curves with intermediate resolution (dashed
lines) in Fig. 4. tend to smooth all but the gross

features of the energy-level structure, but still
clearly reflect the fact that the spectrum has three
main components. The curves in Fig. 4 with larg-
est broadening (dotted-dashed lines) each show
only an almost featureless Gaussian-like bump
which forms an envelope over the curves for the
smaller broadenings.

The line shapes for different x are symmetric
about x =0.5; that is, the x =0.5 line shape is
symm. etric in energy about E =0 and the linc
shapes for x on either side of x =0.5 are mirror
images of one another. Thus, only line shapes for
x &0.5 have been shown in Fig. 4. For example,
the x =0.3 line shape would be identical to the
x =0.7 line shape if the latter were plotted versus

E instead of E. T—his behavior is to be expected,
because the impurity level is halfway in energy be-
tween those of the two alloy constituents.

In a real alloy, the actual impurity line shape
could range anywhere from those shown in Fig. 4
for the finest resolution to those shown for the
broadest resolution, depending on the physical
miahanism responsible for this level broadening.
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FIG. 7. Lincvadths 6 for the component lines of the
alloy-broadened line shape associated with the impurity
nearest-neighbor environments AIA (solid curve), MB
(dashed curve), and AIB (dotted-dashed curve) as func-
tions of alloy composition x for thc same parameters as
used in Fig. 5.

large X.
It is clear from Fig. 6 that the linewidth b„ the

skewness o;, and the fourth root of the fourth mo-
ment P, all deviate significantly from the
[x (1—x)]'~" composition dependence shown in the
Appendix to come from simple perturbation
theory. This deviation is even more striking in the
asymmetric case than in the previously discussed
symmetric case, since the moments about the mean
are not symmetric about x =0.5, as an extrapola-
tion of this simple pertubation theory away from
x~0 and x~1 predicts. However, such a pertur-
bation theory is still expected to be accurate as
x ~0 or x~1, even in this asymmetric case. For
this reason, and because the embedded-cluster-
method calculations are again inaccurate in those
limits, we have joined the embedded-cluster results
shown in Fig. 6 smoothly to the perturbation-
theory results at large and small x.

For the same case, we have also calculated the
composition dependence of the linewidths of the
component spectra BIB,AIB, and AIR. In Fig. 7,
we show the results of this calculation. As may be
seen from that figure, the linewidths of the AIA

and AIB components are, unlike the overall
linewidth (Fig. 6), almost symmetric about x =0.5.
In contrast, however, the BIB linewidth is extreme-

ly asymmetric about x =0.5 and is, in fact, essen-

tially completely depleted for x &0.7. The reason
for this is the same as the above discussed reason
for the asymmetry of the overall linewidth.
Indeed, Fig. 7 shows that the asymmetry of the to-
tal linewidth is due, in large measure, to the large

asymmetry of the BIB linewidth.

In Fig. 8 we display the Gaussian-broadened im-

purity line shapes, computed by the use of Eq. (20)
for the same parameters as used in Figs. 5 —7. In
that figure the line shapes for x =0.05, 0.1, 0.3,
0.5, 0.7, 0.9, and 0.95 are displayed, each with
three different Gaussian broadenings, I =3X 10
3g 10, and 3&10 '. As in the symmetric case,
the line shapes are very rich in structure and show

many features which are unobtainable by the use
of simple moment-expansion or perturbation
theories.

The most interesting features of this case are
again a direct result of the asymmetry of the im-

purity atomic energy with respect to the atomic en-

ergies of A and B. This asymmetry manifests itself
in at least two ways. The first and most prom-
inent of these is the lack of symmetry of the line

shapes about x =0.5. The second is a lack of sym-
metry about E =0, as is illustrated vividly by the
very asymmetric x =0.5 line shape [Fig. 8(d)],
which should be contrasted with the line shape
symmetric about E =0 obtained for the EJ ——0 case
[Fig. 4(d)]. A large portion of this lack of symme-

try is due to the fact that, as discussed above, the
BIBcomponent of the line shape becomes partially
"autoionized" for x & 0.5, having some subcom-

ponents above the A-band edge.
The finest resolution curves in Fig. 8 (solid lines)

again show clearly the existence of many energy
levels corresponding to the many possible cluster
configurations for N, =8. Again, the subcom-

ponent groups BIB,AIB, and AIR can be clearly
distinguished in the figures, although as the BIB
configurations begin to produce levels above the
A-band edge for x & 0.5, the BIB subcomponents
below the band edge become spread out and over-

lap the AIB lines. These groups of peaks are la-
beled in the figure corresponding to the appropri-
ate impurity nearest-neighbor configurations. The
relative heights of the peaks and the shapes of the
broader curves are again determined by the proba-
bilities of occurrence of the particular configura-
tions that give rise to them.

The line-shape curves with intermediate (dashed
lines) and large (dotted-dashed lines) broadenings
shown in Fig. 8 wash out most and all, respective-
ly, of the fine structure shown by the narrow
broadening. The curves with intermediate
broadening do, however, still show the three dis-
tinct components. However, those with the largest
broadening each show an almost featureless but
asymmetric bump.
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C. Dependence on cluster size N,

We have repeated some of the calculations dis-

cussed above for clusters of size N, =4 and N, =6.
In general, we find a substantial difference between

the N, =4 and X,=6 line-shape results, and only
minor differences between the N, =6 and N, = 8

results. Thus, it appears that the dependence of
the major alloy-broadening effects on cluster size
has saturated in one dimension at X,=8. This is
consistent with all of the results presented above,
which show that the main effects are due to the
nearest neighbors of the impurity and that second
and more distant neighbors make only minor con-
tributions to the alloy-broadened line shape. A
typical result for the dependence of the alloy
broadening on cluster size is shown in Fig. 9,
where we show the linewidth b, as a function of
composition x for the case Ez —— Eii ——3—.0,
r =1.0, EI ——0.0, and for N, =4 (dashed curve) and
8 (solid curve). The N, =6 results show no major
differences for N, =8 and are indistinguishable on
the scale of the figure from the latter results for
most values of x.

Fig. 10 we display the results of this calculation
for the symmetric case Ez —— E—z, t =1.0,
EI ——0.0, x =0.5 and%, =8.

For. values of the energy difference 5 smaller
than are shown in the figure (5(3), the spectra
cease to be "persistent" and the energy gap in the
alloy (in the CPA) closes up, causing the impurity
line to become amalgamated with and resonant
with the alloy-host band spectra. This is the
"amalgamation" limit of Onodera and Toyozawa, 8

and occurs when the band width becomes compar-
able with 5. As 5 increases above 3.0, the gap
opens up and the linewidth becomes larger with in-

creasing 5; this is the limit in which the spectral
components of A and 8 persist. This increase in
linewidth with increasing 5 can be qualitatively un-

derstood by noting that as 5 increases, the impurity
sees an increasingly larger fluctuation in potential
difference between the A and B atoms. As this
fluctuation increases, the linewidth of the
configuration-averaged impurity line would be ex-

pected to increase. However as the A-8 energy
difference becomes very large (5=13) the linewidth

decreases and saturates as a function of 5.

D. Dependence on the A-B
atomic energy difference

V. COMPARISON WITH OTHER
THEORETICAL APPROACHES

For some purposes it might be useful to study
the effect on the alloy-broadened impurity line
shape of changing the A-B atomic energy differ-
ence. To this end, we have calculated the
linewidth b as a function of the atomic difference5:Eq Eli f—or a fixe—d alloy composition x. In

The present approach treats a cluster of N, + 1

atoms exactly, within the approximation that the
cluster boundary conditions are specified by the
CPA medium. Thus, insofar as the effects of the
effective medium on the alloy-broadened impurity
line shape can be neglected, this theory is an exact
treatment of alloy broadening for an N, +1 atom

EA =3.0
Eg =-3.0

=10
Et =0.0 0.4

0.3

0.2 0.2

0.0 0.2 0.4 0.6 0.8 1.0

O. I

0.0
3.0 5.0 7.0 9.0 II.O

I

13.0
FIG. 9. Linewidth 5 of the alloy-broadened impurity

line shape as a function of alloy composition x in the
symmetric case Eq ———E&——3.0, t =1.0, and EI ——0.0,
for two different cluster sizes: N, =8 {solid curve) and
N, =4 {dashed curve).

FIG. 10. Linewidth 5 of the alloy-broadened impuri-
ty line shape as a function of 5=E~ —E~ in the sym-
metric case E& ———E~, t =1.0, Ei ——0.0, N, =8, and
x =0.5.
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cluster. For 1V, large enough and for the short-
ranged interactions considered here, the effects of
the medium on the impurity energy levels should
be minimal. Furthermore, our studies of the
linewidth as a function of X, have shown that
there is little change from X,=6 to X,=8. Thus,
the present theory, although somewhat tedious,
does produce an adequate alloy-broadened line

shape, within these limitations. This is to be con-
trasted with other approaches which may fail in
certain cases, even for a Hamiltonian of the simple
form considered here.

For example, a perturbation expansion of the al-

loy line shape in powers of the minority consti-
tuent concentration (x or 1 —x) is likely to be un-

reliable and, at best, slowly convergent in the alloy
regime 0.05 &x &0.95. For the parameters chosen
in Figs. 1 —10 and for most alloy compositions x,
the nth moments about the mean M„deviate signi-
ficantly from the x (1—x) dependence which is
shown in the Appendix to result, in lowest order,
from such a perturbation-theory expansion. In
fact, except for the case of the "symmetric"

(EI ——0.0) impurity, these moments are not even
symmetric about x=0.5, as extrapolation of this
simple perturbation theory away from x ~0 and
x ~1 would predict. Furthermore, the electronic
spectra in alloys are nonanalytic functions of the
composition, so that there is some question as to
whether such a perturbation theory even converges
to a physically meaningful limit.

As another possible approach to the theory of al-

loy broadening, one might develop a perturbation
expansion in powers of the defect-host potential
difference U. Such a theory can likewise become
unreliable (and in fact divergent) because of strong
mixing between the impurity level and the continu-
um, especially if some of the components of the
alloy-broadened impurity line lie near a band edge
or are resonant with a band continuum. Thus, a
perturbation theory in the defect-host potential
difference should be avoided when the impurity
level lies near a band edge.

The impurity lines shown in Figs. 1 —10 are
often considerably asymmetric and have significant
third, fourth, and higher moments. Thus, the
description of the alloy-broadened line shape by a
simple moment expansion is probably not possible.
Since the usual moment theories of impurity line
shapes usually only keep the first few moments
and furthermore usually assume a simple function-
al form for the line shape, such a theory would at
best be slowly convergent and require many mo-

ments and at worst give an erroneous description
of the impurity line shape.

The importance of compositional fluctuations in
determining the allay-broadened line shape is
highlighted by the fact that the wings of the
broadened impurity line are dominated by lines
corresponding to significant fluctuations of the lo-
cal environment from the average. For example,
the particular cluster configuration AAAIAAA is
certainly atypical for the alloy Ao iBQ 9 but
nevertheless contributes significantly to the line
shape in this case. Thus, in our calculations we
have had to consider all possible configurations of
a small cluster, even the atypical ones, weighting
each configuration by its probability of occurence
for a particular composition x.' This contrasts
with our earlier work on the alloy density of states,
where we considered only cluster configurations
with the average alloy composition. '

The fact that compositional fluctuations are im-

portant in determining the alloy-broadened impuri-

ty line shape means that the exact numerical deter-
mination of the impurity local-state density for
20000-atom or larger chains using, for example,
the negative-eigenvalue theorem method, will
not produce the correct alloy-broadened line shape
either. In order to obtain the spectrum of isolated
defects in such a chain, one must keep the defect
concentration will below —,% or —100 atoms.
However, we find that the number of local en-
vironments contributing significantly to the wings
of the alloy-broadened line is also of the order of
100.' Thus, the number of defect atoms one would
use with this method is too few to obtain a statisti-
cally complete and representative sampling of the
possible impurity environments.

A multisite self-consistent cluster-CPA
theory' ' would provide an approach to alloy-
broadening theory that would be superior to the
present theory. However, the computational labor
involved would likely be enormous and perhaps
prohibitive: The self-energy for every site of every
cluster would have to be determined self-
consistently. Less ambitious, non-self-consistent
theories, such as a theory based on clusters embed-

ded in an average t-matrix approximation medi-
um' ' are computationally more tractable than
the present approach, but less reliable.

The present theoretical approach, of treating the
host as a self-consistent single-site-CPA, transla-
tionally invariant medium, and then (non-self-

consistently) embedding in it clusters of moderate
size offers a good balance between the need for
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theoretical accuracy on the one hand and computa-
tional tractability on the other.

We have presented a general technique for calcu-
lating the effects of local environment on the spec-
tra of impurities in alloys. To develop this tech-
nique and test the method, we have applied it here
to a simple model binary-alloy system where the
electrons are treated in the nearest-neighbor tight-
binding approximation. By embedding an ensem-
ble of clusters containing N, +1 atoms in a CPA
medium and letting the impurity be the central
atom of these clusters, we have shown that one can
calculate the alloy-broadened line shape of the im-

purity. Although the model chosen here is a sim-

ple one, the method does produce accurate alloy-
broadened line shapes and shows promise for appli-
cation to impurity spectra in real alloy systems.

The primary deficiency of the method, as
presented herc, is that it is not self-consistent.
However, by introducing self-consistency as is done
in the cluster-CPA theories, ' ' this deficiency
can be remedied —at some computational cost. As
a rule, the primary effect of including self-
consistency is to shift the band edges and impurity
lines slightly, without greatly altering the qualita-
tive physics.

The general conclusions of this work are the fol-
lowing: (i) the nearest-neighbor environment of the
i~purity greatly affects persistent impurity lines
and can either broaden or split those lines, (ii)
second and third neighbors contribute significantly,
often asymmetrically broadening the impurity
lines, and (iii) the present method approach, al-
though somewhat tedious, will generally produce
an adequate alloy-broadened line shape, even when
other methods fail. In future papers, the present
method will be modified to account for sP bond-

ing snd will be applied to real III-V semiconduting
alloys.

pe«rm these calculations. The other author
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APPENDIX: PERTURBATION THEORY
IN POWERS OF THE MINORITY

COMPOSITION

=xVj'+2x(1 —x)eo+(1—x)'e"
i . (Al)

If only lowest-order terms in x are kept, this be-
comes

I.„—=2xeo+(1 —2x)e" i . (A2)

One possible theory of alloy broadening of im-
purity spectra is a perturbation theory in the alloy
Iliiilority coinpositioil. Tlie followlilg is a disclls-
sion of such a theory, along lines first suggested by
Sankey. This theory does, however, assume that
(as is found in our theory) there are three distinct
components of the alloy-broadened line shape
characterized by the three possible nearest-neighbor
environments and denoted as BIB,RIB, snd AIR.

As in the text, we consider an alloy A„B~ „in
the "persistence" limit and consider only impurity
potentials U which produce energy levels in the
band gap of the alloy. Let the band-gap energies
which result from the impurity nearest-neighbor
environments BIB,AIR (=BIA), and AIM, be
denoted, respectively, as e~, eo, snd e ~. The prob-
abilities of occurence of these three environments
are P&

——x, Po 2x (1—x), an——d P i
——(1—x),

respectively. For the following rough pertur-
bation-theory calculation we assume that the
parameters ei, eo, and e, are independent of x.

Let x be the alloy minority composition. Under
the above assumptions, the nth moment of the
overall ("total" ) impurity line is easily calculated
from Eq. (17b) and has the form

L.„=«Z")}=QP, E,"

One of the authors (C.W.M.) gratefully ack-
nowledges the support of grants from the National
Science Foundation (No. ECS-8020322), the Robert
A. Welch Foundation (No. D-796), and the
Research Corporation, each of which have support-
ed this research at various stages; and thanks Tex-,
as Tech University for a grant of computer time. to

The nth moment about the mean is calculated
from Eq. (18) and is

(A3)
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i=o-
( 1)N

—i( (Ei) )L ll

(1)5—/LIB

where the standard binomial expansion has been
used in the second step in Eq. (A3). Noting the
definition of the nth moment I, and the properties
of the configuration average, we may rewrite Eq.
(A4) as

(A7)

and varies as (x)' " for all n

If, by contrast, we were to consider 1—x as the
alloy minority composition and develop a perturba-

tion theory in terms of this parameter, all of the
above manipulations would carry through with the
replacements x~1—x, e]~e &, and e &~a&.
Thus, we would find in this case, to lowest order

in 1 —x,

i=o .

The substitution of Eq. (A2) into Eq. (A4) leads to

( 1)B—I

M„=2(1—x)(eo—ei )", (AS)

(A9)

X [2xeo+(1—2x)e' i]

Physically, it is reasonable that to lowest order
these moments should be symmetric about x =0.5.
This argument, combined with the above mathe-
matical manipulations thus clearly leads to

X [2xeo+(1—2x)e, ]" (A5) M„~x (1—x) (A10)

It is easily shown that, to lowest order in x, this
has the form

M„=2x(eo—e i)" . (A6)

Thus, to lowest order in x, the nth moment of the
impurity spectral line about the mean is linear in x
for all n. The nth root of the nth moment about
the mean is

h„a: [x (1—x)]'~" .

In conclusion, it is perhaps worth noting that all of
the above arguments will hold as well for the mo-
ments of the component lines AIA, AIB, and BIB,
if one considers them each to be split into three

groups corresponding to the possible second-
nearest-neighbor environments.
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