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Electronic energy-band calculations have been performed for the KMgF3 crystal by us-

ing the method of linear combinations of atomic orbitals with a self-consistent-field pro-

cedure. The basis set consists of 124 Bloch sums formed by atomic wave functions and

single Gaussians. The wave functions of the valence-band states are composed mainly of
F 2p orbitals. The bottom of the conduction band is an s-like (I &) state, Slightly above

this state are the K 3d bands which have sharp density of states. Transitions from the

valence bands to these K 3d bands are responsible for the prominent features of the joint
density of states below 20 eV and account for some of' the structures in the measured op-

tical dielectric function. Using a=1 for the exchange parameter, we obtain a band gap
of 9.6 eV, which is about 3 eV lower than the experimental value, but the calculated joint
density of states involving the K 3d states show good agreement with optical measure-

ments. By either raising a to 1.33 or using the XaP method we obtain a band gap of
12.4 eV, but the agreement between the joint density of states and optical data is wor-

sened. Also the valence band becomes slightly narrower but its general features are unal-

tered. The band gap reduces to about 7 eV when we set n to —or use the interpolation

formula in the exchange approximation. The x-ray structure factors are calculated using

five versions of the exchange approximation and the results all differ significantly from

the experimental values.

I. INTRODUCTION

Crystals of the perovskite structure comprise a
wide variety of properties. These include ferroelec-
tric crystals (BaTi03), antiferromagnets (KNiF3,
KMnF3), and nonmagnetic insulators (KMgF3).
Because of the relatively large number of atoms in

a unit cell, first-principles calculations of the
energy-band structure have been performed for
only a few cases, ' and no self-consistent-field
(SCF) calculations, to our knowledge, have been re-

ported. In this paper we present an SCF cnergy-
band study for KMgF3 which is one of the sim-

plest perovskite crystals in that it is highly ionic,
nonmagnetic and has a simple cubic structure.
The electronic states of the crystal are analyzed in
terms of those of the constituent atoms, and the re-

sults are compared with optical experiments.
Aside from the interest in the pure crystal, much
attention has been given to point defects in KMgF3
in recent years. A quantitative description of
charge distribution in the pure crystal is needed for
studying the electronic structure of point defects.

II. ENERGY-BAND CALCULATION

The crystal structure of KMgF3 ls of simple cu-
bic (sc) type as shown in Fig. 1(a). Each unit cube

contains an Mg atom at the center, a K atom at
each corner, and an F atom at each face center;
hence, one Mg, one K and three F atoms per unit
cell. The lattice constant is a =3.973 k For
linear combination of atom orbitals (I.CAO) band
calculations, wc construct Bloch-sum basis func-
tions for the Mg atoms, for the three sets of F
atoms that are not translation-related to onc anoth
er, and for the K atoms. If we place the origin at
a Mg atom, these Bloch sums can be written as

b; s( k, r ) =g exp(i k R„)p; s( r —R„),

bj". '(k, r)=+exp(ik R )P (r —R —t t)

bj"'(k, r)=+exp(ik. R„)p,"(r—R„—t,), (1)

bq" (k, r)=+exp(ik R„)P)"(r—R„—t 3),

b~ ( k, r )=g exp(i k R„)yx&( r R„ t "),
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(b) z

where R„represents a translational vector for the
sc lattice, and t and t' are vectors drawn from
the origin to the F and K atoms, respectively, i.e.,

t i
———,a(1,0,0),

t q
———,a(0, 1,0),

t 3= —,a(0,0, 1),
t '= —,a(1, 1, 1) .

For a minimal basis set, ' the localized func-
tions P are taken as the wave functions of all the
occupied shells of the free ions, and for ease in
computation, these atomic wave functions are ex-

panded in terms of Gaussian-type orbitals (GTO),
e.g.,

(2)

P~ = g a;exp( P;r2), — (3)

etc. Furthermore, one can greatly reduce the com-
putational work by using the same set of P's for all
three kinds of atoms. A common Gaussian set is
judiciously selected from the optimized exponents
for K, Mg, and F given in the papers of Huzinaga5
and Wachters, by demanding that it accurately
reproduce the free-ion SCF Hartree-Pock-Slater
wave functions and energies. The resulting P's
are: 25 873, 5984.9, 1712.02, 563.304, 204.797,
80.4187, 51.4089, 33.1145, 19.9361, 9.86221,
3.977 75, 2.691 63, 1.731 93, 0.977055, 0.620640,
0.396 147, 0.206 990, and 0.10, and they yield ener-

gy levels for K+, Mg +, and F within 0.1% of
the results of numerical solution of the Hartree-

o Q
K Mg F

FIG. 1. (a) Crystal structure of KMgF3. (b) Brillouin
zone for the simple cubic lattice.

Fock-Slater equations. To test the wave functions
we compute the free-ion atomic form factors that
give rise to nonvanishing structure factors of the
KMgF3 lattice. The agreement between the form
factors computed from the Gaussian-basis wave
functions and those from the numerical wave func-
tions is within 0.2%%uo.

For the valence-band (VB) states, one can
achieve high accuracy by including as basis func-
tions the minimal set (Bloch sums of the K
1s,2s, 2p, 3s, 3p; Mg 1s,2s, 2p; F 1s,2s, 2p atomic or-
bitals) plus a number of Bloch sums formed by sin-

gle Gaussian orbitals (SGO), i.e., using simply
exp( Pr—) or x exp( Pr ), e—tc., for the ((i func-
tions in Eqs. (1). The use of SGO for band-
structure calculations has been discussed by Sim-
mons et al. The short-range SGO are not used to
supplement the minimal set because the former
control only the part of the electron cloud near the
nuclei which remains free-ion-like. As to the
long-range SGO, it has been shown that two
single-Gaussian Bloch sums (normalized) formed
by long-range SGO of different P are nearly identi-
cal even though the two individual Gaussians are
quite distinct. For instance we find that single-
Gaussian Bloch sums with P &0.1 merely duplicate
the P=0. 1 one in the present work. The Bloch
sums of the middle-range SGO are most effective
in strengthening the variation freedom of the basis
set. Guided by test calculations using various
combinations of SGO, we select the following set
of single-Gaussian supplement: three s type
(P=0.977055, 0.396 147, 0.10) and three p type
(P=1.73193, 0.62064, 0.10) SGO for Mg, two s
type (P=0.62064, 0.10) and two p type
(P=0.62064, 0.206990) for K, and three s type
(P=0.977 055, 0.396 147, 0.10) and three p type
(P=0.977055, 0.62064, 0.206990) for F. This

makes a set of 85 Bloch-sum functions. Since the
crystal charge density is dictated entirely by the
wave functions of the occupied states, this basis set
should be sufficient for determining the SCF crys-
tal potential.

As a starting point for an SCF energy-band cal-

culation, we take the zeroth-order approximation
of the crystal electron density as a superposition of
the free-atom electron density of the K+, Mg +,
and F ions at the appropriate sites,

3

p',~(r)= g g [pM, +(r —R„)+pF (r —R„—t;)+p&+(r —R„—t ')] .
v i=1

(4)

This gives directly the zeroth-order crystal Coulomb potential Vz '. For the exchange interaction we use the
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standard XA approxlmstlon~

Vx ———( —,)a[3p,~(F)lIr]I ~I .

We first choose a= 1 for the exchange parameter. (In Sec. IV we vary the exchange parameters and study
their effects on the energy bands. ) To handle this term, we compute the values of [p,~{r)]'~ for 353 non-

equivalent points in a unit cell, and least-squares fit them to a lattice superposition of certain localized func-
tions,

[p,' '(F)]'~ = g g [gl, (F—R„)+g,(r —R„—I;)+gl,(F—R„—t ')],

where the subscripts lc, 2c, and a stand for mono-
vRlent cst1on, divalent cat1on, snd SIllon, 1cspcc-
tively. We find it possible to obtain a very good
fit by taking all the g functions as being spherical-

ly symmetrical and of the form'0

pa exp( gr)—+ pa'rzexp( —g r) .
J

The crystal potential (including both the Coulomb
Rild cxcllallgc part) ls expanded 111 R Fourlcr scrlcs

V,~(F)= g V(K,}cosK„r,

where K„designates a reciprocal-lattice vector of
the sc system, and V(K„) can be determined from

pM, I+(F), p„(r ), p„,(F), gl, (F), g, (r), and gi, (F)
in a manner similar to Eq. (6) of Ref. 11. This ap-
proximate version of the crystal potential may be
referred to as the overlapping-atomic-charge
(OAC) model. It differs from the overlapping-

atomic-potential {OAP) model in that the OAP
model further approximates the exchange potential

Rs thc suill of tllc p of tllc llldlvldllal Rtollls

rather than the cubic root of the sum of the atomic

charge density. The OAC model generally pro-
vides a better approximation than does OAP be-

cause thc latter tends to overestimate the exchange

term in the region where charge density is small.

With the OAC crystal potential and the basis set

mentioned earlier, %rc compute thc ovcllsp Rnd

Hamiltonian matrix elements by the Gaussian

technique vrhich has been described in the litera-

ture. '" Upon solving the secular equations for
four k points in the Brillouin zone (BZ), i.e., I", X,
M, and R (see Fig. 1), we obtain the first-order
crystal clcctroll dcllsl'ty froill tlM occupied-stRtc

wave functions through a four-point numerical in-

tegration over the BZ. %e compute the electron

density Rlld its cubic loot, fol 353 polllts within R

fundamental wedge of a unit cell, and perform a
local decomposition by least-squares fit,

3

p.«F)= g g [pl. (r —R,)+p."'(r—R.—t;)+pI,"(F—R,—t ')],

[p'&(F)]'"=g g lgz"(F R.)+g—.'"(F R, t—I )+g—I,"(r R„—t—')], (10)

where the superscript (1) designates first iteration

and the functions p;(r) and g;(r) may be expanded

by spherical harmonics as

gfI«)+&PI'I (W».

Each fI(r) is in the exponential form of Eq. (7).
When the charge density is written in terms of
exp( —gr), the expression for the Coulomb potential
can be integrated analytically. [Evaluation of the
Coulomb potential would be more comphcated if
one used Gaussians to fit fi(r).]

The local cubic symmetry around the K Rnd Mg
sites excludes the l =1,2, 3 terms for the cations,
Whereas the RQ1OQ local tetragonal symmetry ex-
cludes the I=1 and l =3 terms for F . %e are
able to fit p,'~(r) and its cube root accurately using
only I =0 terms. This does not mean that ttM

crystal charge density around each site ls sphcrl«.
For instance the crystal charge around s Mg site
consists of the spherical term p2&(r) plus contribu-
tion from the F terms p, (F—R„—t;) situated at
the six first-nearest-neighbor sites and the K+
terms pi, ( r —R„—t '} at the eight second-nearest
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neighbor sites, etc. The contribution from the
neighboring ions produces a. nonspherical com-
ponent of p,~(r) around the Mg site. Nevertheless
as a test calculation ere include the I g 0 terms in
the curve fit and find that the only appreciable
l&0 component is the I =2 term of F . Inclusion
of this term decreases the band gap by 0.03 eV and
has negligible effects on the x-ray structure factors
except a change of 0.15 in the (100) value and 0.09
in the (110) value. A more detailed account of the
x-ray structure factors is given in Sec. IIIB.

From p"' and g"' we derive the Fourier coeffi-
cients of the improved crystal potential which pro-
duces a set of improved energies and wave func-
tions. The iteration procedure is repeated to arrive
at an SCF solution. Computational methods for
the SCF iteration have been described. "

For calculating conduction-band (CB) energies
we employ an extended basis set of 124 functions
which cover Bloch sums of occupied orbitals,

unoccupied orbitals, and SGO. They include Mg
1s,2s, 3s,2p, 3p, 3d orbitals, K 1s,2s, 3s,4s, 2p, 3p,
4p, 3d orbitals, F 1s,2s, 3s,2p, 3p, 3d orbitals, two s
type and two p type (@=0.620 64, 0.206990) SGO
for all three kinds of atoms, and two d type
(P=0.620640, 0.396147) SGO for K. Figure 2
shows the SCF energy bands calculated with this
extended basis set and a= l. The energy of the
upper I ~5 state of the VB is set to zero. A sketch
of the BZ for sc crystals is included in Fig. 1. %e
arrive at the 124-function set by starting with a

le.0

-30
X Z M Z R S X

FIG. 2. Valence and conduction bands of KMgF3
calculated by using exchange parameters a= 1, P=Q.

large set of 209 functions which include additional
s-, p-, and d-type single-Gaussian Bloch sums for
K, Mg, and F. The calculated CB energies at the
I". , X, M, and R points are monitored as the vari-
ous single-Gaussian basis functions are removed.
The energies of the lower CB (below 20 eV) at I,
X, I, and R derived from the 124-function set and
from the 209-function set differ by no more than
0.3 eV. Band energies for four high-symmetry

TABLE I. SCF electronic energies of the KMgP3 crystal (with exchange parameter u=1,
P=O) in units of eV. The subscripts u and c represent VB and CB, respectively.

Energies Energies

I 1su

I 2s.
I lsu

I),
I&s
Xs„

Xs„
X3„
Xs„
XI,
X4,

—1.82
—0.15

0.0
9.60

12.69
14.29
16.15
18.62

—1.69
—1.65
—0.71
—0.33
—0.29
—0.12
12.27
12.37

X3,
Xs.
Xzc
X4,
X'jg

Xsc
M)„
M4„
M3„
M2„
Ms,
Ms„
Mg„
M),
M„
Ms,

13.36
14.45
14.66
15.98
17.98
19.33

—2.42
—1.44
—1.25
—0.81
—0.43
—0.36

0.31
12.71
13.73
14.54

Ms,
M4,
M3,
M),
M4

I
~as'

I
& iso

&isc
~ 12@

R),
I'

~as.
A)s,

14.79
15.77
16.52
16.72
18.49

—3,09
—0.99
—0.80

0.32
12.69
15.61
16.24
16.92
17.48
18.74
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points in the BZ are given in Table I. The crystal
charge density calculated from these extended-basis
VB wave functions (which allow for d-orbital ad-
mixture) differs very little from the results based
on the smaller set (85 functions) used earlier.
When the extended-basis charge density is decom-
posed as in Eqs. (9) and (10), the only appreciable
anisotropy component of p; and g; is again the
I =2 term of F . Comparing the x-ray structure
factors derived from the two basis sets, we find a
difference of only 0.09 for (100) and less than 0.04
for the others.

III. RESULTS

The VB wave functions are dominated by the

F2@ orbitals. Since there are three F atoms per
unit cell, one finds three sets of triply degenerate
states at the I' point. The bottom of the VB is at
R. The wave function for the R i state consists of
F 2@ orbitals perpendicular to each face of the
cube. The positive loops of all six orbitals associ-
ated with one cube all point toward its center
whereas those associated with the next cube point
away from its center. The strong overlap of the F
orbitals at the center of each cube lowers the ener-

gy of the Ri state. The density of states (DOS) of
the VB is calculated by using the linear, analytic
tetrahedron method' and shown in Fig. 3. The
leading peak occurs at an energy close to the I 25

and the upper I i5 states, and is a result of the flat
bands near that energy. The width of the VB is
3.3 eV.

B. X-ray structure factors

To calculate the x-ray structure factors, we

decompose the SCF crystal electron density into a

-3.0 -2.0 - l.0 0.0
EMERQ'I('(~V)

FIG. 3. Density of states of the valence bands of
KMgF3 calculated by using exchange parameters u = 1,

=O.

lattice superposition similar to Eq. (9), i.e.,
3

ps'"(.) = g g [p'„(-.—R.)
v i=1

S ~+p, (r —R„—t;)

s -++p„(r—R„—t ')] .

From the p (r) functions we determine the struc-
ture factors Ii (hkl) for the reciprocal-lattice vox:tor

characterized by (hkl). We apply the 8 factors for
temperature correction using the parameters given

by Chelkowski et al.,' and also correct for
anomalous dispersion. ' As shown in Table II, the
calculated structure factors differ significantly
from the experimental values of Chelkowski
et al. , ' especially for the [200] and [220]. Up to
this point we use only a= 1 for the exchange
parameter. Since a = —, is believed to give a better

description of the ground state, we have repeated
the SCF band calculation with a= —,. This leads

to a second set of calculated structure factors
which are included in Table II. A third set is gen-
erated by using the Hartree-Fock free-ion charge
densities. As seen in Table II the second and third
sets are very similar to each other but do not agree
well with the experimental values of Ref. 15. To
pursue this point we try to reproduce the calculat-
ed I', (hkl) of Ref. 15 by using their formula for
F,(hkl), their 8 factors, and the free-ion form fac-
tors from the International Table, ' but no disper-
sion correction. The resulting values differ sub-

stantially from those of Ref. 15. In fact if we
leave out the 8-factor correction, then we can quite
well duplicate the F,(hkl) values (calculated) of
Ref. 15.

For absolute calibration the experimental struc-
ture factors (relative) are fitted to the calculated
values with the 8 factors and a multiplicative nor-
malization constant as adjustable parameters.
Thus, we feel that the absolute experimental struc-
ture factors given in Ref. 15 should be reexamined.
To this end we "recalibrate" the experimental data
of Ref. 15 by fitting them to our three sets of cal-
culated structural factors mentioned earlier with
adjustable 8 factors and normalization constant.
Even allowing a wide range the 8 factors, we are
unable to get a fit with an average percentage
difference, the 8 factor defined in Ref. 15, below
12%. This is a very large discrepancy compared
to the corresponding R factors of 0.8% for I.iF, 's

1% for CaF2, ' and 0.9% for Si. As will be dis-
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TABLE II. Comparison of experimental x-ray structure factors with three sets of theoret-
ical values {with temperature and dispersion corrections) based on (i) SCF band calculating
with a=1, (ii) SCF band calculation with a= —,and {iii) a free-ion charge superposition.

Expt. Theoretical E(hkl)
Free-ion

100
110
111
200
210
211
220
221
300
310
222
321
400
411
300

—2.60
15.3
24.9
49.2

—3.2
12.2
24.7
0.0
0.0

11.9
22.4
10.0
19.1
8.7
8.7

—2.34
16.06
24.85
38.41

—2.40
12.76
28.72

—2.02
—2.02
10.69
23.08
9.24

19.36
8.12
8.13

—2.28
15.97
23.90
37.16

—2.24
12.70
27.69

—1.83
—1.83
10.61
22.31
9.17

18.79
8.04
8.07

—2.37
16.09
23.93
37.29

—2.29
12.72
27.74

—1.86
—1.86
10.64
22.28
9,19

18.73
8.08
8.08

cussed more fully in Sec. IV, we have recalculated
the band structure using three other versions of the
exchange-correlation potential, yet the resulting
theoretical structure factors do not align any better
with the data of Ref. 15. The divergence of many
of the experimental structure factors from the
theoretical values based on free-ion superposition
and on several sets of band structures suggests that
serious experimental difficulties exist and further
clarification is needed before making a meanful

corn paflson.

C. Conduction bands

The CB structure and DOS are shown in Figs. 2
and 4, respectively. The bottom of the CB is a I

&

state which is composed of s orbitals of all three
kinds of atoms. A few eV above the CB edge are
the I ~2 and I 2~ states which are predominantly
K 3d states with only little Mg 3d admixture. This
is in line with the atomic picture since in the free
atoms the 3d state of Mg+ is 8.7 eV above the
ground state whereas the 3d state of K is only 2.7
eV above 4s. ' There is no mixing with the s and

p orbitals of the F atoms on account of symmetry.
A large part of the bands connected to I )2 and I 25

is quite flat. We will refer to these bands as the
K3d bands. They predominate in the energy range
of 3—5.5 eV above the onset of the CB, and are

responsible for the two peaks labeled as C2 and C3
in the DOS (Fig. 4). This is similar to the case of
CaF2 in which the bottom of the CB is s-like with
the Ca 3d bands 2.3—3.5 eV above it and the DOS
of the Ca 3d bands overshadows those of the bands
immediately above and below them (s and p
type). Peak C4 in Fig. 4 is due to part of a band
which is rather undispersive. As will be seen in
Sec. IV, this peak disappears if we set the exchange
parameter a to 1.33. Thus, the formation of peak
C4 appears not to be related to fundamental pro-
perties of the crystal.

The calculated direct bandgap at I is 9.6 eV.
Takahashi and Onaka reported ultraviolet-
reflection measurements and an optical dielectric

lO I i l2 I3 l4 l5 le
EMERSON tey)

FIG. 4. Density of states of the conduction bands of
KMgF3 calculated by using exchange parameters a =1,
P=0.
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function (e2) but did not deduce a value for the
bandgap per se from their data. Refiection spectra
for KMgF3 have also been measured by Beaumont
et gl. , and their results are similar to those of
Ref. 23. The dielectric function e2 given by
Takahashi and Onaka shows a sharp peak at 11.9
eV, which is identified as an exciton transition. If
we take the rise of e2 following the exciton peak as
the onset of band-to-band transition, the I
bandgap is estimated to be 12.4 eV. However,
Takahashi and Onaka interpret some of the struc-

ture immediately after the 11.9-eV peak as being

excitons of n =2,3, . . . . This interpretation
would place the bandgap slightly above 12.4 eV.
In any case it is clear that our calculated band gap

. of 9.6 eV is too small.

D. Joint density of states

The joint density of states (JDOS) between the
VB and CB is given in Fig. 5. The structures in

the range of 13.3—15.1 eV can be traced to transi-

tions from the upper part of VB to the K 3d CB
states. This can be seen by referring to the DOS
peaks labeled as V~, V2 V3 V4 V5 and V6 fof
the VB in Fig. 3, and the peaks C~, Cz, C3, and

C4 for the CB in Fig. 4. The V~ ~C2, V~ —+C3,
and V2~C3 energy increments are, respectively,
13.4, 14.5, and 14.9 eV, corresponding closely to
the energies of peaks I, II, and III of the JDOS in

Fig. 5. The small structure of the JDOS at 14.2
eV may be attributed to V3 —+C2. Between 15.5
and 16.5 eV, the structures of the JDOS may be

associated with V4~C3 (15.6 eV), V5~C3 (16.0
eV), and V~ ~C4 (16.1 eV). For comparison we

present as a dashed curve in Fig. 5 the experimen-

i ~

10 11 12 13 14 15 16 17
ENERGY (ev )

FIG. 5. Solid curve is the joint density of states be-

tween the valence bands and conduction bands of
KMgF3 calculated by using exchange parameters a = 1,
P=O. The dashed curve is the measured dielectric func-
tion (imaginary part) reported in Ref. 15.

tal dielectric function of Takahashi and Onaka
(the leading exciton peak of e2 at 11.9 eV is not in-
cluded since there is no counterpart in the JDOS).
%e see a remarkable resemblance in the two
curves. Takahashi and Onaka assign the should-
er "a"of their data (shown as a dashed curve in
Fig. 5 of this paper) as a superposition of
n =2,3, . . . exciton bands extending continuously
to band-to-band transitions. Thus, at least part of
the observed structure of e2 at 13—14 eV may be
attributed to band-to-band transitions. If we were
to make the energy-band model of Figs. 2—4 and
the experimental data consistent with each other,
part of the 13—14 eV structure in e2 should be as-
signed to transitions from the top of the VB to the
lower part of the K 3d CB. The calculated band
gap, however, is considerably smaller than the ex-
perimental value as is evident in Fig. 5. Thus, it
appears that in our band diagram (Fig. 2), the K 3d
bands are in the correct energy range but the bot-
tom of the CB is too low. To make our band
structure compatible with the experimental data,
we would have to move the bottom of the CB (I ~)

upward so that it is only about 1 eV below the I ~2

state. This is, of course, only a speculation. An
important question is whether with an improved
calculation one can obtain a band structure which
gives a correct band gap and also accounts quanti-
tatively for the observed structures in the optical
data. This point will be studied in the following
section.

IV. Xa AND XaP
EXCHANGE POTENTIALS

Recent SCF energy-band studies indicate that
with the full Slater exchange potential (a =1) the
calculated band gaps for several strongly ionic
crystals, i.e., I-iF,"LiC1, CaO, ' CaF2, and

MgO, are 10—20% smaller than the experimen-
tal values. For KMgF3 the use of a= 1 also gives
too small a band gap (9.6 eV vs —12.4 from ex-
periment). We also did an SCF band calculation
with a= —, (Sec. III 8) and obtained a 7.2 eV gap.
This difficulty may be attributed to the fact that
the exchange approximation employed in this work
was derived for a free-electron gas, and may not be
suitable for ionic crystals with atomic-like charge
densities. Particularly the self-interaction term in
the Coulomb potential is not fully compensated by
the local exchange approximation. Considerable
efforts have been directed to treat the self-
interaction correction. These techniques have
been tested for atoms but application to band-
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structure calculations has not been published. As
an alternative to the self-interaction-correction ap-
proach, we explore in this work the use of other
forms of the exchange-correlation potential for an
improved description of the band gap and optical
properties. One important criterion for the choice
of exchange potential is that it can be incorporated
into our present computational scheme for SCF
energy-band structure without extensive modifica-
tion.

An obvious, simple way to alter the exchange
potential is to let a exceed unity. Upon choosing
a=1.33, our SCF-LCAO calculation gives a band

gap of 12.4 eV for KMgFs. Nevertheless, this pro-
cedure is not entirely satisfactory since a is gen-
erally assumed to be within the range of 1 and —,.

An interpolation formula for the exchange-
correlation potential due to Wigner,

V„,(r)= —[p(r)]'~' 0.984

0.944+ 8.77[p( r )]'~

j 1+12.57[p( r )]'
(12)

has been often used. One can regard this formula
as having an a which depends on p,' it is equivalent
a=0.67 for large p and to a=1.30 for small p
with a smooth transition between the two regions.
With this exchange-correlation potential, our SCF-
LCAO calculation gives a band gap of 7.1 eV
which is very close to the result of a= —, but too
small for the interpolation formula to be useful for
the study of CB states.

Herman, Van Dyke, and Ortenburger have sug-
gested an improved version of the statistical ex-
change approximation by including an inhomo-
geneity correction term,

(15) is close to Eq. (13) for PG (p)/a below 1, but
remains negative even at very large value of G(p).
Herman ' has suggested an alternative version of
Eq. (15},

V»~p ———[a+ptanh 6 (p) ] —(3p/~) ~ ~3 (16)

I 9.0

l 8.0

)7.0

In the part of the crystal where the charge density
is atomiclike, G (p) is large and positive so that
tanhG(p) is close to 1. In the interatomic region
G (p) turns highly negative with tanhG(p) ap-
proaching —1. Compared to the simple Xa ex-

change, this XaP exchange (for P ~ 0) deepens the
potential well near the atoms, and weakens it in
the space between atoms. Since the VB states are
atomiclike and the CB wave functions are more
diffuse, the XaP term in Eq. (16) has the desired
effect of lowering the VB and lifting the CB for
positive values of P. Analyses of the gradient term

by a more fundamental approach have appeared in
the literature. However, in our work we will
choose P empirically so as to improve the band gap
while keeping a within the conventional range.
Choosing a= 1 and P= —,, we obtain an SCF band

gap of 12.4 eV. If we use a smaller value of n,
then a larger P would be needed to keep the band

gap at 12.4 eV. Since the P term is presumably a
correction to the a term, it is not desirable to have

P much larger than —,. While rigorous theoretical

V»~p —— [a+PG(p)] , (—3p/m )'~, —

G(p)=p ' '[( , )(Vp/p) 2V'p—/p] . —
(13)

(14)

The new exchange potential introduces another
parameter P (not to be confused with the Gaussian
exponents P in Sec. II), hence is known as the XaP
method. At certain points in the crystal, PG(p}
may become so negative that it overpowers the a
term. To avoid this complication, an alternative
form

V» y= —a[1+tanh[PG(p)/a]J , (3p/m. )'~—

l6.0
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(15)

has been proposed. Since tanIUc approaches x
and —1, respectively, for x —+0 and x~ 0o, Eq.
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FIG. 6. Valence and conduction bands of KMgF3
calculated by using exchange parameters a =1.33, P=O.
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PIG. 7. Valence and conduction bands of KMgF3
calculated by using exchange parameters a=1, P= —.

justifications for our selection of the exchange
parameters are lacking, the XnP scheme does pro-
vide us with a band gap close to the experimental
value so that we can compare the Xag band struc-
ture vnth the Xo, calculations and vnth the optical
data.

The Xa exchange may be regarded as a special
case of the XaP method with P=O. The results
described in Sec. III correspond to n= 1, P=O„ab-
breviated as (aP:1,0). We present in Figs. 6 and 7
two additional SCF band structures, one obtained
by using a = 1.33, P=0 [denoted by (aP:1.33,0)],

1

and the other using a= 1, P= —, [denoted by
(aP:I, —,)]. These two sets of new energy bands

have a 12A CV band gap which is much larger
than the 9.6 eV of the {aP:1,0) case. For compar-
ing the three different band structures, the DOS
(VB and CB) and JDOS of the (aP:1.33,0) and
(aP:I, —,) results are shown in Figs. 8 and 9. The
general features of the VB are alike for ail three
cases. The VB width is 2.6 eV for (aP:1.33,0), 2.8
eV for (aP:I, —,), and 3.3 eV for (aP:1,0). These
values are appreciably smaller than 4.1 and 4.0 CV

from (aP:—,,0) and the interpolation formula,
respectively. In Table 111 the structure factors for
the five exchange models used in this study are
presented along with those obtained by frce-ion su-
perposition. Here, no temperature or dispersion
correction is apphcd. Thcsc structure factors arc
intended as a description of the crystal charge dcn-

FIG. 8. (a) Density of states of the valence bands, (b)
density of states of the conduction bands, and (c) joint
density of states between the valence bands and conduc-
tion bands calculated by using exchange paremeters
a=1.33, P=O. The dashed curve in (c) is the mea-
sured dielectric function (imaginary part) reported in
Ref. I5.

sity rather than for comparison with experiment.
The (aP:1.33,0) and (aP:I,—,) sets in Table III are
very dose to each other and exhibit a slightly
larger difference from the structure factors of
(aP:1,0). The agreement between the results of the
free-ion model and (aP:—,,0) is very good, and is
consistent with previous studies of ionic crystals:
I.ip and I.iCl. ' ' " In particular it is interesting to
note the linearity between the results of the three
Xa potentials. Thus, it may be difficult to pick
the best choice of n from the experimental struc-
ture factors because of the normalization pro-
cedure. Also the differences between the results of
{aP:—,,0) and the interpolation formula are surpris-

ingly small.
One finds larger variations in the CB with

respect to the exchange parameters. The energy
spacing between the I ~2 conduction state and the
onset of the CB varies appreciably: 3.1 eV for
(aP:1,0), 2.7 eV for (aP:1.33,0), and 2.2 eV for
(aP:I, 6). Foi' both the (uP:1.33,0) and (uP:I, —)
calculations, we find two prominent peaks (C2 and
C3) associated with the K3d states in the DOS of
the CB [Figs. 8(b) and 9(b)], but no structure
corresponding to peak C4 in Fig. 4. The (aP:—,,0)
form and the interpolation formula give an unreal-
istically lo%' band gap, thus thcsc t%'o exchange
models will not be considered for our discussion of
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optical properties.
In the energy range of 15—17 eV, the JDOS for

the two new band structures in Pigs. 8(c) and 9(c)
are dominated by transitions from the VB to the
K 3d bands. The energies of the JDOS peaks
match well with the energy increments between the
appropriate DOS peaks, i.e., V~ and V2 of the VB
[Figs. 8(a) and 9(a)] to C2 and C3 of the CB [Figs.
8(b) and 9(b)). However, the major structures of
the JDOS from both (uP:1.33,0) and (aP:I, —,) cal-
culations occur at higher energies than those of the
experimental dielectric function which is also in-
cluded in Figs. 8(c) and 9(c). Even if we attribute
the entire broad peak of e~ at 13—14 eV to exci-
tons and exclude it from band-to-band considera-
tion, the agreement between theory and experiment
is not entirely satisfactory on a quantitative scale.

FIG. 9. (a) Density of states of the valence bands, (b)
density of states of the conduction bands, and (c) joint
density of states between the valence bands and conduc-
tion bands calculated by using exchange parameters
a= 1, P= 6. The dashed curve in (c) is the measured

dielectric function (imaginary part) reported in Ref. 15.

V. DISCUSSION AND SUMMARY

%e have calculated SCF energy-band structures
for the KMgF3 crystal under the Hartree-Fock-
Slater scheme. To ensure good accuracy for the
VB and the lower CB, we employ a basis set of

TABLE III. Theoretical x-ray structure factors (vnthout temperature and dispersion corrections) calculated by using
five different versions of exchange approximation: interpolation formula, a= —,, a= 1, a=1.33, and (aP:I,—). Included

are also the values obtained by free-ion charge superposition.

Interp.
Theoretical E(hkl)

a=i a=1.33 (aP:I, —) Free-ion

100
110
111
200
210
211
220
221
300
310
311
222
320
321
400
322
410
330
411

—1.88
15.92
24.38
38.05

—1.67
13.21
29.34

—1.07
—1.07
11.53
13,56
24.50

—0.42
10.42
21.41
0.14
0,17
9.62
9.58

—1.86
15,94
24.32
37.98

—1.65
13.22
29.28

—1.05
—1.05
11.54
13.52
24.45

—0.40
10.43
21.38
0.16
0.18
9.62
9.58

—1.92
16.01
25.31
39,27

—1.84
13.29
30.39

—1.29
—1.29
11.64
14.08
25.32

—0.66
10.52
22.04

—0.09
—0.10

9.69
9.67

—1.95
16.11
26.40
40.65

—2.00
13.45
31.67

—1.53
—1.53
11.78
14.77
26.36

—0.94
10.66
22.87

—0.39
—0.39

9.83
9.82

—2.07
16.00
26.09
40.23

—2.01
13.37
31.20

—1.49
—1.49
11.74
14.42
25.91

—0.84
10.65
22.50

—0.25
—0.26

9.83
9.82

—1.95
16.05
24.36
38.11

—1.72
13.24
29.34

—1.09
—1.09
11.56
13.45
24.43

—0.42
10.44
21.31
0.16
0.16
9.63
9.63
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124 functions consisting of Bloch sums of atomic
orbitals and of single Gaussians. The VB wave
functions are composed predominantly of F2@ or-
bitals. The bottom of the CB is an s-like I I level.
Slightly above it is a group of states which may be
characterized as K 3d bands with high DOS.
Transitions from the VB to the K 3d bands are re-

sponsible for the optical dielectric function in the
energy range involved.

The calculated JDOS using a=1 for the ex-

change parameter agrees with the experimental
dielectric functions in the range of 13—16 eV, but
the calculated band gap is too low. For highly
ionic crystals the SCF band gap using a=1 is gen-
erally smaller than the experimental value. In this
paper we study five different versions of the local
exchange approximation: the Xa potential with

2
three different values of a(1, —,, 1.33), the interpo-

2
lation formula, and the XaP potential. The a = —,

version and the interpolation formula yield even
smaller band gap than does a =1. By setting 0, to
1.33 or by using the Xug method with P chosen
empirically, we obtain an SCF band gap consistent
with the optical experiment. However, the JDOS
derived from these two new band models deviate
appreciably from the experimental e2, and agree-

ment is seen only on a qualitative level. On the
other hand the VB is less sensitive to the choice of
a and P, except for a minor narrowing of the VB
width as compared to the (aP:1,0) calculation,
which in turn, gives a smaller VB width than does

2
(a@:—,,0).

The problem of underestimation of band gap for
highly ionic crystals by Hartree-Fock-Slater calcu-
lation is a fundamental one. In this paper we seek
improvement through the Xa (with a & 1) and
XuP procedures with only a limited degree of suc-
cess. Nevertheless, these methods may be used, in
the absence of a more appropriate exchange poten-
tial, to provide a band structure with a reasonable
description of the VB and a band gap close to the
experimental value. An improvement of the ex-
change approximation based on a more fundamen-
tal approach such as the self-interaction correction
is needed.
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