
PHYSICAL REVIEW B VOLUME 25, NUMBER 6 15 MARCH 1982

Hall effect in the dielectric regime of granular metal films

L. Friedman
General Telephone ck Electronics Laboratories, 40 Sylvan Road, Waltham, Massachusetts 02254

(Received 17 February 1981; revised manuscript received 9 November 1981}

The Hall effect is considered in the dielectric regime of granular metal films, where the
charge-transport mechanism is quantum-mechanical tunneling between isolated metallic
grains. The dominant temperature dependence of the Hall mobility is found to be

pn - exp[ (T/T—OH)' ], where TOH « To, the characteristic temperature in the exponent
of the electrical conductivity. The sign of the Hall effect is found to alternate with the
orbital-quantum number of the highest occupied level at the grain Fermi energy, giving
rise to cancellation effects which reduce the magnitude of p~ by a temperature-dependent
prefactor. These arise from finite temperature effects and the inherent spread in grain di-
ameters.

INTRODUCTION

The electrical transport properties of granular
metal films have been extensively investigated in
recent years and have been the subject of several
review articles. ' Above the percolation tlireshold
there is a continuous metallic path through the
specimen. However, below the percolation thres-
hold, the so-called dielectric regime, the electrical
transport mechanism is that ofquantum- mechani-
cal tunneling between isolated metallic particles in
which the carrier is thermally activated to a level
sufficient to overcome the grain charging energy.
The tunneling rates and electrical conductivity for
this case have been discussed and derived.

The Hall effect in the dielectric regime of granu-
lar metals is of particular interest because the con-
duction mechanism here is well defined as
charging-energy-limited transport between isolated
grains. In contrast, in the case of the Hall effect
in amorphous semiconductors ' or narrow band
materials, it is still uncertain whether transport is
due to extended or localized (small polaron) states,
whether or not the basic electronic states are atom-
iclike or more extended, etc. In the present com-
munication, we address the question of the Hall ef-
fect due to charging-energy-limited transport and
the applicability of already existing theories of the
Hall effect to this problem.

The existing theories of the Hall effect describe
higher-order phonon-assisted hopping or tunneling
processes between atomic or molecularlike states in
which the charge carrier is localized because of ei-
ther small polaron formation ' or Anderson locali-
zation. This has been the subject of general re-

views and, specifically, of reviews which focus on
the question of the sign ' of the Hall effect in
hopping conduction. In the microscopic theory,
tunneling occurs between single nondegenerate
ground-state atomic or molecular wave functions
centered on adjacent sites. In the case of metallic
grains, on the other hand, the electron occupies a
(quasi)continuum of closely spaced levels within

each grain and transport may be described by
quantum-mechanical (WKB) tunneling methods.
Thus, even though the grains are macroscopic, the
tunneling events are entirely quantum mechanical,
as in the microscopic theories. While lowest-order
tunneling events suffice to yield the electrical con-
ductivity, higher-order tunneling events involving
a minimum of three sites are needed to establish a
Hall effect. '

TEMPERATURE DEPENDENCE OF
THE HALL MOBILITY

On the basis of these assumptions and those
commonly made in computing the hopping con-
ductivity of these systems, we may deduce the tem-
perature dependence of the Hall effect as follows:
We consider a region of the granular metal con-
taining grains of about the same grain diameter d.
Since it is empirically observed from electron rni-

crographs that the composition averaged over
several surface diffusion lengths is uniform, ' it
follows that one may consider triangles of three
grains of diameter d and separation s within such
regions. It also follows that the ratio s/d is con-
stant within each region, and that sE, is constant,
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where E,=(e /d), the grain charging energy, is the
energy required to generate a pair of fully dissoci-
ated positively and negatively charged grains.

We separate the charge generation process from
the transport process by first taking a pair of nega-

tively and positively charged grains to be thermally
created, and then focusing on the motion of the ex-

cess electron (and hole) among the three grains in-

volved in the Hall effect. The excess electron may
then tunnel among the three grains at fixed energy.
The number density of such carriers is proportion-
al to the Boltzmann factor' exp( E, /2—kT).

Neglecting for the moment the question of sign
(discussed in the next section), the three-site in-

terference probability is proportional to

eHA
exp( —3Xs),

where 2 =s v 3/4 is the area of the triangle
formed by the three grains, X= (2mglfP)'~ is the
tunneling constant with P the effective barrier
height, and s =const/E, . Thus the off-diagonal
conductivity (for a given s) is proportional to

o„y(s)- s exp( —3Xs E, /2kT) —.ea, v3

where o (s ) =oL, has already been calculated by
Abeles and co-workers' and is given by

o, ~exp[f(s )].
Combining (2), (3), (4), and (5), we find that

zy 2

I H expt[(-, )'"—l]f(s )]

(5)

1/2
e 2 1 C C

CC exp 0.2247 —2I 3 (2X)2 kT kT

Thus the Hall mobility pH, like the drift mobility

Pn, varies as exP[ (TpH/—T)' ], but with

TpH (Tp where Tp ——(4C/k), defined by Eq. (3),
is the characteristic slope of oL, (or pD). Specifi-
cally,

TpH =(0.2247) Tp 0.05Tp .

Thus, when plotted as a function of T '~, lnp~ is
predicted to be considerably less temperature
dependent than lno.~. There is an additional
temperature-dependent prefactor which arises in
connection with the sign of the Hall effect dis-
cussed in the following section.

As for the case of the usual diagonal conductivi-

ty o~ =oL, , we find the optimal value of s =smy

which maximizes

f„y(s)= —3Xs (C/2XskT)—,

where

f„y(s"y)= ( —,)' 'f(s ),
where

f (sm )= 2(C/kT)'i = (T—p/T)'i—

(2)

(3)

The Hall angle 0~ and Hall mobility are given

by
PHH Oxy(sm )

C Oxx(sm )
(4)

C=—gsE, .
This is easily found to be

Sm ( 3 ) Sm ~

where

sm =(2X) (C/kT)'

is the value of s which maximizes o~. It also fol-
lows that

SIGN OF THE HALL EFFECT
IN THE DIELECTRIC REGIME

The sign ' of the Hall effect is decided by: (a)
the number of sites n making a closed path, and (b)
the sign of the transfer integral J. In the present
case of randomly dispersed metallic grains, we
would expect the dominant contribution to the
Hall effect to arise from three-site closed paths,
n =3. As for item (b), the sign of J depends on
the relative signs (phases) of the electronic wave
functions in the region in which they overlap. The
thermally generated hole will also yield a Hall ef-
fect by the same mechanism presented here for the
electron; the hole will tunnel among three grains,
two of which are neutral. For the three-site
(n =3) case applicable to the present case, the sign
of the Hall effect for the hole will be the same as
that of the electron, which has yet to be deter-
mined. It then follows that the sign of the Hall ef-
fect in the dielectric regime should always be that
of the electron.

We first present an approximate evaluation of
the phase OJ of the intergrain transfer integral J.
Our approach is to evaluate 8~ over that portion of
configuration space which makes the dominant
contribution to J. We then give a more complete
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evaluation of the required overlap integral in which
the conclusion concerning the sign is corroborated.

Consider two spherical grains 1 and 2 centered
at the origin and at b, respectively, shown in Fig.
1. At these points let there be two parallel carte-
sian coordinate systems (xi,yi, zi }, (x2,yz, z2) and

associated spherical polar systems (»i, 8i, p~),
(»2, 82,$2) as shown. Let g(r) and P(r —b) be the
eigenfunctions of two spherical potential wells of
radius r =a and depth Vo centered at r =0 and
r=b.

Now it has been argued at some length in the
atomic case, that if the phases of the two wave

functions are the same over the part of configura-
tion space that make the dominant contribution to
the wave-function overlap S(r j=P~(r)g(r —b),
then J is negative (8z ——n } and the sign of the elec-

tronic Hall effect is negative. This is true for s-

like wave functions. On the other hand, if they are

opposite, J is positive (8z ——0), as for p-like or anti-

bonding orbitals, and the sign of the electronic
Hall effect is positive. This follows from the fact
that the one-electron potential —

~
Uo ~, which

enters into the definition of J, is intrinsically nega-

tive. Referring to Figs. 19 and 24 of Ref. 2, we

take the one-electron potential in the intergrain re-

gion to be —
~

Uo
~

with respect to vacuum; the
potential of the spherical well referred to above is
—Vo with respect to the intergrain potential.

The eigenfunctions of the central spherical po-
tential wells are

4(». 8 P )=&(»;)Yi~(8;,P;) fori =1,2,

where

Yi (8L,PI, )=e Pi (cos8L)

are the spherical harmonics, with Pi (cos8r } an

associated Legendre polynomial and —l & m & l.
The physically admissable exterior (» & a) solutions

are spherical Hankel functions of the first kind

which asymptotically take the form indicated,

e —i(e/2)(1+2) I rIe

'2

Xg

FIG. 1. Coordinate geometry for two-grain system.

The corresponding single-particle energy eigen-
values for a given value of Voa are occupied
sequentially according to the orbital quantum num-

ber 1 up to the limiting Fermi energy of the grain
(I =li;) at T =0. In the absence of a magnetic
field, taking account of the (2l+ 1)-fold degenera-

cy for a given I allows 2(I» —1) electrons to be ac-
commodated. The presence of a magnetic field is
discussed briefly at the end of this section.

The approximate evaluation of the phase of S(r )

is based on the fact that in the dielectric regime in

the limit of distantly separated grains, the dom-
inant contribution to S(r ) is along the intergrain
axis b, i.e., at points (ri, r2) such that r i —r2 ——b,
or

~
ri

~
+

~
F2

~

=b. This follows from the rapid
exponential decay of R (») as (r i, r2) moves off the
axis. We first evaluate the phase of S(r ) on the
axis and then investigate its behavior off the axis.

Referring to Fig. 1, we note that for ri and r2
directed along b, that

82——m —H),

A=i»+Pi

i.e., r& and r2 are related by the inversion opera-
tion. It then follows that for this particular choice
of (r„r,),

Yi (8z 4z}=(—1}'Yi (8i 0i»
as is well known. Thus,

—Pr) —Pr2

S(ri, rz', »i+»2 b)=R (»i)Yi (8i,pi——)&(»2)Yi~(82,gz)=( —1) [Yi~(8i,gi)]
P»1 p»2

(9)
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We therefore see that S oscillates in sign and is po-
sitive or negative according to whether l is even or
odd.

We now investigate S(r ) off the intergrain axis
b. We consider the plane normal to b at the point
(r i, r2) and take small displacements p in this
plane in the P direction at constant 8 and in the 8
direction at constant P. Since p«r;, r;~r;
+pz/2r;. Very briefly, the essence of the argu-

ment is that since Pr( » 1, we may choose

h(tt; sin8; =(2/Pr;)'/ « 1

where

fk f——d re'" 'P(r) . (12)

e' " ' ' = g (21 +1)ij((kr)Pi(cos8), (13)

substituting (7) for f(r ) and using the orthonor-
mality of the spherical harmonics, we get

p z
——(21 + 1)i f dr r ji(kr)R((r)

Expanding e' " ' ' in spherical harmonics with k
taken as the polar axis,

58;=(2/Pr;)'~'« I —:f(«) . (14)
for each of the above two cases, respectively. It
then can be shown that: (a) the radial part of S(r )
is decreased by the factor e, and (b} the addi-
tional terms in I'( (8,$), which may yield a dif-
ferent phase ( —1)', can be made negligibly small.
Hence, we believe that the conclusion about the
phase along b, given by Eq. (9), applies with suffi-
cient accuracy to the integral of S(r) over all

space.
An alternative, more complete evaluation of S is

facilitated by recognizing that

S=f d r g~(r)g(r —b) (10)

is of the form of a convolution integral, and may
be evaluated by writing f(r ) as a three-dimensional
Fourier transform, giving

S=f d ke'" (11)

Substituting (14) back into (11), taking the polar
axis along b and performing the angular integra-

tions in k space, we are left with

S =4m(21+1) f dk k
i
fi(k) i

(15)
In evaluating f~(k} given by Eq. (14), we employ

the exterior radial solution

R((r)=hj "(iPr),

where

p =(2m/iri )( iE i +Uo) .

Since b )&a, the exterior solution will make the
dominant contribution to S. The radial integration
may be carried out, ' with the result

fi(k)=(kP) ' (P +k } '[(Pa)J(~((n)(ka)JI+(3n)(Pa) —(ka)Ji+(in)(ka)K(+((r2i(Pa)1

where

J((z) =(n/2z) Ji+(i&i~(z), h~' (z) =(m/2z) H(+(i/z)(z),

and Ki(z) =(xi/2)e' ~
+Hi "(iz) is a Hankel function of the first kind of imaginary argument.

In substituting (16) back into (15), noting that 1» 1, we neglect the distinction between 1, (1+—,), and

(1+—, ) as indices in the Bessel functions of large argument. " After some algebraic manipulation, we find

that (15) can be written

a ~ 1 4PkS=4n(21+1) K((Pa) f dk sin(kb)J((ka) 2
1—

0 (0+k)' (P'+k')' (17)

The integral is not easily carried out, but an upper
bound on S can be found by replacing the slowly
varying algebraic factor in the square bracket by
I/P, noting that b '«a '&P. The integral is
then readily performed, ' with the result

S& 4n(21+1) K((Pa)
(Pb)P'

1 $2
X —cos(lm )Qi

7T 2a2
(18)
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where Qi(z) is a Legendre function of the second
kind. The factor cos(le. ) = ( —1)' explicitly
displays the alternation in sign previously obtained

by looking only at points along the intergrain axis.
Our result makes it difficult to arrive at any de-

finite conclusion about the sign of the Hall effect
in the dielectric regime. Consider metallic grains
of diameter d and grain volume G =(n./6)d . For
a typical conduction-electron density of 6)(10
cm and Fermi energy EF——5 eV, we calculate
g(Ep)=1.8X10 eV 'cm and an energy-level

spacing 5=[Gg(E~)] '=0.014 eV ( —160 K) for
d =20 A. and 5=1.4&& 10 eV (0.16 K) for
d =200 k For ks T & 5 in each case, we would

have to conclude that the sign of the Hall effect
would be negative or positive according to whether

the limiting orbital I =IF at p corresponds to I
even or odd, respectively, assuming a definite value

of d. On the other hand, for k&T p 5, tunneling of
the already thermally activated electron and hole

will occur between the grain one-electron levels

within an energy spread of ks T about p. This
tunneling is at fixed energy and for the electron, is

proportional to the probability that the initial grain

is occupied and the intermediate and final grains

are unoccupied:

f(e)[1—f(e)][1—f(e)]=e' —, sech

6' —p
kBT

For the hole, we obtain

[1 f(e)]f(e)f(e—) =e '~
, sech'(e/2) . —(20)

Since the values of I involved~are large (l~ ) 10),
we have again assumed that the magnitude of the

overlap is sensibly constant' for the fraction of
levels of interest (of order ks T/p, ). Also, as al-

ready pointed out, the electron and hole contribu-

tions have the same sign for n =3. Thus, the
above two contributions may be added, giving
—, sech (el2), which turns out to be the two-grain

population factor, f(e)[1—f(e)]. In view of the

alternating signs of adjacent levels, the overall tem-

perature dependence of pH garnets the additional

factor

—,'( —,—sech25+sech 25— . )=—h(5),

where

(22)

The smaller range would be expected to apply ex-

cept at the lowest temperatures and largest grain
sizes implying that the prefactor acquires the addi-

tional temperature-dependent factor —„(5)
=—„(5/2ks T) .

In the preceding argument, we have calculated
the cancellation effects which arise as a result of
the thermal occupation of levels of alternating sign
in the energy range kB T about p, assuming a de-

finite value of the grain diameter d. However, it is
known' that as a result of the competition be-

tween the changing energy and intergrain overlap,
there is an inherent spread in grain diameters hd
corresponding to the spread in grain separations lb
about the optimal s =s at temperature T [cf.just
before Eq. (2)]. Thus, even if ks T &5 so that only

a single quantum level is involved in the transport,
one must ask whether the above spread in diame-

ters nevertheless washes out the Hall effect. Ac-
cording to the argument presented immediately

below, it is shown that in most cases of physical
interest this does not occur, i.e., that the condition

AT & 5 is sufficient to preclude cancellation ef-

fects.
The spread in grain separations lb is obtained

by expanding

f(s )= —2Xs C/2Xsks T—
in a Taylor series to second order about s giving
a Gaussian width

. 1/4

81/2y

Then using the empirical rule' that s/d =const,
we immediately deduce that

1/4
kBT

C
(23)

The number of energy levels in the range kBT
about p is

kBT 3R = =(ks T)p(Ep) d3 . —
5 6

(24)

The change ~ corresponding to a change hd is

5=5(Ep)/2k' T .

It is found that, to a good approximation, h (5) can
be written
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found. Setting AR =1 as the condition that the
level at p changes by one, we easily find that

r

dd
d i 3kgT

'

Then taking the ratio of Eq. (23) to Eq. (25),
1 /4

kg T AT
W25 C(hd /d) I

(25)

Now except for exceptional cases (corresponding to
metal fraction x-0.5), (ksT/C) &1. Thus, if
kiI T (5, the right-hand side of Eq. (26) will gen-

erally be less than unity, and the inherent spread in

grain diameters mill be less than that required to
change the levd at p by one. In this case, the con-
dltioIl kII T(5 will bc sufflcicIlt to prccllldc cancel-
lation of the Hall effect, as claimed. However, the
ratio (k&T/C) must be carefully checked for each
case of interest.

In the case of the Hall effect, there is of course
an applied magnetic field 8 which we take along
the z (zi or zI) axis (cf. Fig. 1). However, it is well

known that to terms linear in B, the eigenfunctions
given by Eq. (7) remain eigenfunctions of the B+0
Schrodinger equation, ' the sole effect of the mag-
netic field being to remove the m degeneracy and
to shift all levels by the Zeeman energy

(equi/—2m, c)Bm, —I (m &/. Hence, the previous
calculation of the intergrain transfer integral
1c111811lsvalid to f list ol'dcr In B. Howcvc1, 011c

could envisage a situation where the Zeeman split-

ting becomes comparable with the grain energy-
level spacing 5. It would then follow that the level

l =/z which coincides with the Fermi level could
shift from one / value to an adjacent one, implying
a magnetic-field-induced alternation in the sign of
the Hall effect. This possibihty has not been stud-

ied.

SUMMARY AND CONCLUSION

In summary, the three-site interference mechan-
ism responsible for the Hall effect due to hopping
or tunneling transitions between atomic or molecu-
larlike states has been generalized to the case of
tunneling between macroscopic metallic grains ac-
cording to the charging-energy-limited model. The
Hall mobility is found to have the same tempera-
ture dependence as the low-field conductivity,
p&-exp( —T '~ ), but with a much smaller slope
To~ 0.05TO. Concerning the sign of the Hall ef-
fect, we find that the sign of the intergrain transfer

integral alternates with the orbital quantum num-
ber I in the vicinity of the grain Fermi energy, im-

plying a similar alternation in the sign of the
three-site Hall effect. The occupation of odd and
even / values due to thermal effects or to the
spread in grain sizes leads to cancellation effects,
and makes the observation of the Hall effect prob-
lematic except at the lowest temperatures and for
ideal specimens.

This is to be contrasted with the situation in the
amorphous semiconductors * where only a single
lowest orbital partakes in the transport. For the
chalcogenide glasses, J is negative, n =3, and the
sign of the Hall effect for holes is negative. In the
case of electron transport between the antibonding
orbitals of tetrahedrally coordinated amorphous
semiconductors (c.g., Q-S1), J is positive alld tile
sign of the Hall effect is positive. Of course, the
charge-transport mechanism in the amorphous
semiconductors is not charging-energy limited, but
rather is either diffusive transport at the mobility

edge or small polaron hopping '; nevertheless, the
sign of the Hall eff x:t has a common explanation.

The only experimental results for granular metal
films in or approaching the dielectric regime are
those of Sichel and Gittleman on Au-Si02 and W-

A1203 cermets. ' All measurements were done at
fixed temperature (room temperature). In the
former material, R~ could only be measured in the
metallic regime, and was found always to be nega-
tive in sign, no sign change being apparent as the
percolation threshold to the dielectric regime was
closely approached. For the %'-A1203 system, R&
could be measured in the dielectric regime. It is
positive in sign for pure % metal and metal-rich
regimes, vanishes at the percolation threshold, and
becomes negative in sign in the dielectric regime.
These findings suggest only a negatively signed
Hall effect in the dielectric regime. However, from
our previous considerations, we can offer no expla-
nation at the present time. More experimental
work remains to be done, in particular the meas-
urement of the temperature dependence of pH
would be of considerable interest, as would be
further measurements of the sign of the Hall effect
to see if these conform to the predictions of the
present paper.
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