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Dislocations and the commensurate-incommensurate transition in two dimensions
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The stability of weakly incommensurate two-dimensional solid phases described by periodic
arrays of discommensurations has been investigated. It is shown that incommensurate phases
consisting of a small number of possible commensurate domains of either the striped or honey-
comb type are unstable with respect to the spontaneous creation of dislocations. Such phases
are consequently "liquids, "with exponential decay of correlations. The consequences of these
results on the phase diagram of overlayers and the relation with experiment is discussed.

I. INTRODUCTION

Rare-gas atoms and other molecules absorbed on
graphite exhibit g wide variety of commensurate and
incommensurate phases that are two dimensional in
nature. ' One of the questions of considerable
theoretical interest is the nature of the phase transi-
tion between commensurate and incommensurate
phases (C Itransition). -Perhaps the most extensive-
ly studied example is the C-I transition from the Kr
J3 x 438 30' commensurate phase. '3 This transition
has been considered to be a continuous transition in
that the difference between the commensurate
reciprocal-lattice vector and the incommensurate lat-

1
tice vector appears to go to zero as the —, power of
the chemical potential difference between the two
phases.

Recently, however, it was shown that the transition
may, in fact, be weakly first order and that the Bragg
reflections broaden in proportion to their distance
from the commensurate position. It appears, there-
fore, that there is considerable disorder in the incom-
mensurate phase.

The theoretical interest in this transition stems
from the fact that as the difference between the
reciprocal-lattice vectors of the substrate (6) and ab-
sorbate (H) become small, one expects the coupling
between the absorbate and the substrate to induce a
set of discommensurations or domain walls separating
large commensurate regions such that the distance
between domain walls is large compared to the width
of the ~alls. In this regime much of the physics is
independent of the microscopic interactions. As dis-
cussed by McMillan' and by Bak and Emery, the C-I

transition at zero temperature for a one-dimensional
array of such walls is expected to be second order be-
cause of the repulsive interaction between the
discommensurations. A two-dimensional incom-
mensurate system such as Kr on graphite could have
walls in three directions because of its hexagonal
structure. However, if intersections between the
walls are energetically unfavorable, one expects in-

stead a "striped" phase which has walls in only one
direction. Such one-dimensional walls would strongly
fluctuate about their equilibrium positions.
Pokrovski and Talapov and Luther showed that
these fluctuations contribute to the wall free energy
and cause an effective repulsive interaction between
walls that varies as 1/I3 where I is the average dis-

tance between walls. This repulsive interaction
between the walls makes the C-I transition to the
striped phase continuous.

Recently, Villain pointed out that a honeycomb ar-

ray of walls has a degeneracy in that one can expand
or contract the hexagons of the array without chang-

ing the total wall length or the number of nodes, as
shown in Fig. 1. Since the wall length and number of
nodes define the total energy of the system for well

separated walls, Villain argued that this additional de-

generacy leads to an entropy which when included in

the free energy stabilizes the honeycomb phase rela-

tive to the striped phase and, in addition, causes the
C-I transition to become first order.

The purpose of this paper is to examine the nature
of the weakly incommensurate phases. Since both
the striped phase and the honeycomb phase are in-
commensurate, they are two-dimensional solids
which exhibit algebraic long-range order. However,
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FIG. 1. "Breathing" freedom that contributes to entropy
of honeycomb phase.

result for the breakdown of the Luther-Pokrovsky-
Talapov theory due to dislocations, in the uniaxial
case for p ( JS, was found independently by Villain
and Bak. ' In another independent work, Chui'
predicted that a softening of the elastic constants
would cause a dislocation instability near the
commensurate-incommensurate transition, for both
the uniaxial and hexagonal cases. We disagree, how-
ever, with Chui's statement that the coefficient of the
logarithmic interaction between dislocations in the in-
commensurate solid will vanish as the domain-wall
separation goes to infinity. ' Rather, we find that the
coefficient remains finite, and stability depends on
the order of commensurability.

The importance of investigating the interplay
between dislocation formation and the commensur-
ate-incommensurate transition was emphasized by
Villain. "

the elastic constants associated with the wall fluctua-
tions need not be sufficient to stabilize these solids
against spontaneous creation of dislocations. If this
is the case, the C-I transition must either take a
commensurate solid to an "incommensurate liquid, "
or else the transition must be a "large" first-order
transition which bypasses entirely the region where
the domain walls are nonoverlapping. Using the
Kosterlitz-Thouless theory' " for dislocation melt-
ing, we show that the stability criteria is temperature
indeperident and that sufficiently near to low-order

commensurate phases such as the v 3 x J3R30'
phase of Kr on graphite, the incommensurate phase
is unstable to dislocations.

In Sec. II, we examine rectangular phases which
are incommensurate in one direction only. Using the
results of Schulz" and Pokrovsky and Talapov, ' it is
shown that if the number of different commensurate
domains is p, then the weakly incommensurate
striped phase can be stable only if p ~ JS. In Sec.
III, we examine the honeycomb array of walls. The
elastic constants of this phase are calculated from
considerations of changes of the entropy due to
strains and from numerical calculations of the dis-
placement correlation functions. Here, we find that
for adsorbate layers with N different possible com-
mensurate domains arranged in a honeycomb array,
the solid is stable only if N «7.5 +1.5.

In Sec. IV, we consider the question of a transition
from the hexagonal-honeycomb arrays to the striped
phase and discuss the effect of small rotations of the
overlayer lattice due to the instability of Novaco and
McTague. ' Finally, in the last section, we consider
the possible relation of our work to the experiments
on Kr absorbed on graphite and in addition, the
consequences of this work with respect to the general
phase diagram of overlayers.

The principal results of the present paper were re-
ported earlier in a short letter by the authors. '4 The

II. RECTANGULAR COMMENSURATE SOLIDS

V (0)
Yopac

(2.1)

For definiteness, we will first consider atoms ad-
sorbed on a rectangular substrate with lattice con-
stants a and c in the x and y directions, respectively.
At some temperature T, we will assume that there is
a range of chemical potential, g, for which the adsor-
bate forms a rectangular commensurate solid with lat-
tice constants pa and c, i.e., a p x 1 registered phase.
There are thus p possible positions of the adsorbate
lattice relative to the substrate; in the registered
phase only one of the p domains will be present.

As the chemical potential is raised, the surface
density of adsorbate atoms will increase. This may
initially occur via interstitials or second layer promo-
tion. We will, however, assume that above a critical
value of the chemical potential, $0, it becomes ener-
getically favorable for the adsorbate to form all p pos-
sible domains rather than just one. The resulting
structure will be an incommensurate "striped" phase
with the domains arranged sequentially in the x direc-
tion with the adsorbate atoms in each domain shifted,
(on average) by (np —1)a (n an integer) with respect
to those in the previous domain. This arrangement
has the effect of adding I/p of an extra row of atoms
in the y direction at each domain wall. The x lattice
constant of the adsorbate will hence be pa (I —a/i)
where l is the average distance between domain ~alls.

There is a repulsive interaction between the walls
which for low temperatures and l large has the value,
per unit length of wa11, ~

& (0)
slat= C e"

K

where Ct is a positive constant, V~(0) is the x cur-
vature of the substrate potential at its minimum, and
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with Yo the microscopic Young's modulus of the ad-
sorbate. At zero temperature, the domain walls
form a regular parallel array with I determined by
minimizing the free energy per unit area

is thus

(0 —( C2T'f= +
Ipc rl3

(2.6)

(2.2)

where ~„ is the energy per unit length of one wall,
and f is the chemical potential. At T =0, the density
of walls is hence 1/I ~ —ic In(g —e„pc) as f tends to
the critical value, e pc.

At any nonzero temperature, however, the walls
will no longer be straight —they will meander. For a
single wall this wi11 give rise to an entropic term
which must be included in the free energy of the wall

per unit length. At long wavelengths, the Hamiltoni-
an of a single wall has the form

I dxH„= dy e„+——
2 ~dy

(2.3)

where the wall position is given by x(y) and
I' = I'(T) is a stiffness coefficient for the wall which
will be determined by the microscopic interactions
and will be exponentially large at low temperatures,
I' ~exp(e /T) due to the activation energy of micro-
scopic kinks in the wall. Integrating over all the wall

positions will give rise to a contribution to the free
energy per unit length and to fluctuations in the x po-
sition of the wall

where the free energy per unit length of one wall has
been lumped into $0. For ( & (0, the free energy of
the walls, Eq. (2.6), has a minimum at the equilibri-
um value of I ~ (f —)0) 'I2 as g (0. Within this ap-
proximation of meandering infinitely long walls, the
striped C-I transition can thus be second order with
no jump in the lattice constant. The above estimates
can be made more precise via a mapping of the prob-
lem onto a system of fermions in one dimension, as
was done originally by Luther, Pokrovsky, and Tala-
pov 7, 8

We now consider the properties of a weakly incom-
mensurate striped phase in the limit of large I. From
the above discussion it is easy to see that the array of
meandering walls in the weakly incommensurate
phase will have a resistance to bending in the y direc-
tion due to the wall stiffness I and a resistance to
compression in the x direction due to the entropic
repulsion. (The chemical potential will fix the aver

age separation only. ) Suppose u, is the x displace-
ment of the ith wall from its equilibrium position.
For fluctuation wavelength much greater than I we

can replace the discrete index i by the continuum
variable x and define the displacement u(x,y). The
long-wavelength fluctuating part of the eall free en-
ergy per unit volume is

([x(yl) —x(y2) j') =
I" (2.4) F =-,' ~ d'r[E (6 u)'+Ay(Bru)']

where

(2.7)

The quantity T/I' thus acts like a "diffusion" con-
stant for the wall.

The fluctuations in the wall positions yield an ef-
fective entropic repulsion between the walls due to
wall "collisions. " If the walls were distinguishable
and could cross freely, then the total free energy of N
walls separated on average I would just be N times
the free energy of a single wall. However, every time
two walls cross there is an indistinguishable config-
uration in which the two walls collide at the crossing
points but do not cross. Therefore, there is a factor
of 2 overcounting of the number of wall configura-
tions according to whether or not they cross. It is
thus necessary to subtract ln2 from the entropy (ob-
tained if the walls were free) for each wall-wall col-
lision, This yields a positive contribution to the free
energy per unit area of the form

T2~fcollisions C 2 rl (2.5)

(where C2 is a constant).
This dominates the exponential repulsion between

walls (e;„,), at any nonzero temperature for I suffi-
ciently large. The free energy per unit area for I large

and

Ey = I /I (2.8)

(2.9)

are the elastic constants of the system of walls. We
have assumed here that the displacements vanish at
the boundaries of the sample, or that we have period-
ic boundary conditions, so there is no term propor-
tional to '7u.

The wall free energy Eq. (2.7) can be simply relat-
ed to the coarse-grained elastic free energy of the ad-

sorbate. In the striped incommensurate phase, the y
displacements, u~, of the atoms from their average
incommensurate positions wi11 be small and non-
divergent due to the registry in the y direction. The x
displacements, u = u„, wi11, on the other hand, fluctu-
ate as the walls meander. At long wavelengths u can
be simply related to the wall displacements:
—u = au/I, since u jumps by —a at each wall. We
hence conclude that

(2.10)
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where the adsorbate elastic constants are K„,~= E„„I2/a2, so that as I ~~, E„~l ' and E» ~ l.

A free energy of the form Eq. (2.10) is equivalent to
an anisotropic x -y model. Long-wavelength fluctua-
tions will yield power-law divergences in the structure
factor characteristic of a two-dimensional floating
solid. For q near the incommensurate Bragg points
6, or near 6+H (with H a substrate reciprocal-
lattice vector) S(q) will be anisotropic

S(q)—
IE„(q„—G„—H, ) +K»(q» —

G»
—H») I

(2.1 1)

where the exponent 2iG = G„'T(K„K») 'l2/22»

depends only on 6„. For the reciprocal-lattice vector,
Go, with the smallest x component, G„=27»/pa and
hence 2iG =»1 /p where A is a constant independent

0

of T, I, orl.
Schulz' has calculated the correlation function ex-

actly in the limit of large I by mapping the statistical
mechanics of the walls onto a one-dimensional fer-
mion problem. He finds that 2iG =2/p2, i.e., A =2.
This implies that

a2(K„K,) 'l2

T
(2.12)

in agreement (up to the previously undetermined
constant) with the rough estimate of E„above.

Kosterlitz and Thouless (KT) '0 have shown that
any system with a free energy of the form Eq. (2.10)
will be unstable to free "vortices" above a critical
temperature, TK~. In this case the role of the vor-
tices will be played by dislocations having Burgers
vector in the x direction with magnitude pa —i.e., the
minimal Burgers vector with b = b„. The KT criterion
for stability of the floating solid phase is

p2g2(K K )1/2 2

&1 (2.13)
8mT 8

We hence conclude that for p = 2 a sufficiently weak-
ly incommensurate striped phase will be unstable to
the presence of free dislocations and hence a fluid at
any finite temperature.

Microscopically, each dislocation (independent of
p) will be simply a rather distorted extra half row of
atoms in the y direction ending at a point. However,
it is instructive to also consider a dislocation in terms
of the superlattice of walls. Since each wall includes
1/p of an extra row of atoms, a dislocation must con-
sist of p half-walls ending at a point. Macroscopical-
ly, this is the smallest number of walls that can end
at a point and still preserve the labeling (1,2. . . p)
of the domains as shown in Fig. 2, for p =3. The KT
stability criterion Eq. (2.13) could have alternatively
been derived in terms of the wall free energy Eq.
(2.7) and wall elastic constants, K„,» by considering

A BIC AI B
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FIG. 2. Dislocation in a 3 && I rectangular incommensurate
phase domain wall configuration.

the instability to a p-wall dislocation in the wall lattice-
with Burgers vector 8 =pl. In terms of this picture it
is easy to see physically how p enters the stability cri-
terion: the free energy of a p-wall dislocation is pro-
portional to p .

So far we have assumed that the wall elastic con-
stants E„and E» entering Eq. (2.7) and the stability
criterion, are simply given by Eqs. (2.8) and (2.9).
This is not correct in general. Firstly, for any fixed I,
at sufficiently low temperatures (or small l at any
fixed temperature) the exponential wall repulsions
will dominate over the entropic repulsion. This
crossover will occur when T —e /~l. Below this
temperature, E„and E~ will both increase and the
system will solidify even for p =2. The width in
chemical potential, hf, of the fluid phase for p =2
will be exponentially narrow at low temperatures,
hg —exp( —e /T).

The second effect which will change K„and E„ is
the presence of dislocation pairs. Dislocations will
generally decrease the elastic constants at long
wavelengths. If there are free dislocations then the
elastic constants will be renormalized to zero, causing
the KT transition to a fluid state. However, if all the
dislocations are in bound pairs, then the renormal-
ized E„~ will be nonzero. For this to occur, the re-
normalized infinite wavelength elastic constants must
satisfy the KT stability criterion Eq. (2.13); if they do
not, the system will melt. The renormalizations due
to dislocation pairs may be sufficient to cause the
p = 3 weakly incommensurate solid to melt at inter-
mediate temperatures, resulting in a dip in the float-
ing solid-fluid melting curve as shown in Fig. 3(a).
However, at low temperatures the number of disloca-
tion pairs will be thermally activated and hence ex-
ponentially small. The renormalized elastic constants
will thus approach their "bare" values for large I; and
be larger than their bare values due to wall-wall in-
teractions (see above) for smaller l. Therefore, the
fluid phase should extend down to T = 0 only for
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FIG. 3. (a) Possible phase diagram for 3 & I rectangular
adsorbate. (b) Proposed phase diagram for 2 & l rectangular
adsorbate.

p ( J8, i.e., p =2, as in Fig. 3(b).
The line separating the p =2 commensurate solid

from the liquid phase, which extends down to T =0,
represents a broken-symmetry transition with the two
possible domains characteristic of the Ising model. It
is probable that this transition is second order, in
which case the transition should have the exponents
of the two-dimensional Ising model. Thus, as one
approaches the commensurate-liquid transition from
either side, one should observe a correlation length f
which diverges as I( —g, I, while the specific heat
and the compressibility (defined as the derivative of
the density of adatoms with respect to chemical po-
tential) should diverge as —lnI f —f, I.

If the dislocation core energy is large, so that the
density of dislocations is small, there should be a re-
gion inside the liquid phase, further from („where
the Luther-Pokrovsky-Talapov analysis gives the
dominant contribution to the thermodynamic quanti-
ties. In this region, the specific heat and compressi-
bility should vary as ($ —g, ) '~2. The structure factor
S ( q ) should have well-defined maxima, displaced
from the commensurate points by an amount
8 ce ((—(,)' '. The width of the peaks, or the in-

verse correlation length, is determined by the density
of dislocations, whose behavior has not been
analyzed in this regime.

At a higher value of the chemical potential f, there
will be a transition between the fluid and the incom-
mensurate, or floating solid. If this phase transition
is of the Kosterlitz-Thouless form, then the correla-
tion length will diverge as exp[const/(g~ —()'~ ], as
the transition is approached.

lattice vectors R~ = 2a ~+ a2 and R2= a2 —a ~, where
a ~

= ax and a 2
= a /2( —x + %3y ) are the primitive

lattice vectors of the substrate. The commensurate
phase has lattice constant IR tI = [R2I —= ao= &3a.
For such a lattice one out of three possible lattice
sites on the substrate are occupied in any ordered re-
gion and consequently there are 3 types of domains.
In the incommensurate phase we will assume that
these domains are arranged so that they are connect-
ed by a hexagonal honeycomb of discommensura-
tions (domain walls) which add 1/a' additional atoms
per unit length with a' related to ao by a number of
order unity that depends on the detailed structure of
the walls. Such a structure is illustrated in Fig. 4.
The free energy per unit area of the honeycomb in-
commensurate phase contains several terms. For the
regular honeycomb array, the free energy ignoring
wall-wall interactions is

fa = —,(fo f) +2fi2 I
3&31' a' (3.1)

where fi is the energy associated with each wall inter-
section and I is the length of one side of the hexagon.

In the limit of large separation of the walls (which
we will assume henceforth) Villain9 has pointed out
that the honeycomb array is degenerate in that one
can "breathe" any hexagon, or group of hexagons,
in or out without changing the total wall length or the
number of intersections. This is illustrated in Fig. 1.
The two configurations shown have the same number
of intersections and the same wall length (due to the

III. FREE ENERGY FOR HONEYCOMB ARRAY

In this section we consider the commensurate-
incommensurate transition for adsorbates on a hexag-
onal substrate such as graphite. Letting a be the lat-
tice constant of the graphite, we first consider a
J3 x 438 30' commensurate overlayer with primitive

FIG. 4. Possible domain-wall structure for honeycomb
discommensuration array.
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120' intersection angles), and hence the same free
energy. The number of possible "breathed" posi-
tions for a given hexagon is of order (I/a )s yielding
an entropic contribution to the free energy per hexa-
gon of the form —BT In~ I/a ~, where 8 is a numerical
constant, and a —a.

%e show below that 8 is in fact equal to one, and
that to order l ' the only contribution to the free en-
ergy not included in Eq. (3.1) arises from the entropy
of breathing of rigid walls. In order to make this
concept precise, let us assume that the allowed posi-
tions of the vertices are restricted to lie on the sites
of a triangular lattice with lattice constant a. Then
the entropy under consideration is simply the loga-
rithm of the number of ways the vertices can be
placed on the underlying lattice, and connected up
with straight line segments parallel to the 120' axes,
having the same topology as a regular honeycomb lat-
tice of side l.

A lower bound for the entropy associated with
breathing the honeycomb array is established as fol-
lows.'Let each hexagon be "breathed" once, i.e.,
made larger or smaller (as in the Monte Carlo simu-
lation discussed in Sec. III A), but only so that the
change in position of the vertices of a given hexagon
due to its breathing is less than I/4. It is clear that
this restriction will ensure that the hexagons do not
interfere with each others' breathing. Since there are
i/2a possible configurations for each hexagon subject
to this restriction, the entropy per hexagon is
In(i/2a), which is a lower bound of the desired form.

%e now establish an upper bound. Any breathed
configuration of the honeycomb is uniquely deter-
mined by specifying the vertical (y) coordinates of the
vertices in alternate vertical zigzag columns (i.e.,
those vertices shown as solid dots in Fig. 5) and the
horizontal position of just one dot in every column.
The second part of this specification requires only
JNH numbers for NH hexagons and is hence negligi-
ble in the thermodynamic limit and can be ignored.

FIG. 5. Construct to obtain upper bound of entropy of
hexagonal wall array and to show that the breathing free-
dom is dominant. Note that specifying the positions of the
solid dots plus the position of only one unshaded dot per
column specifies the array.

If all possibilities of the vertical positions of the solid
dots in each column are allo~ed, regardless of wheth-
er or not the positions correspond to an allowed
breathed configuration, but subject to the constraint
that the average separation be l, then the resulting
entropy (which is clearly an overestimate) can be
shown to be In(el/a) per hexagon (for I/a ~).
The desired result is thus proved by noting that
In(1/2a) & s & In(el/a), with s the breathing entropy
per hexagon.

In addition to the above terms one must consider
the effects of relaxing the rigid-wall constraints. In
the large l limit, it can be shown that this does not
give rise to extra terms in the free energy of order lnl
per hexagon. The entropy of meandering of a single
long wall is included in the free energy per unit pro-
jected length of the wall (i.e., the length projected
onto the appropriate 120' axis). Thus we need only
consider changes in this entropy. These may arise
from (a) changes in the total projected wall length,
(b) effective interaction between the walls due to col-
lisions, and (c) constraints imposed by the honey-
comb configuration. It is easy to see that even if the
walls are allowed to meander and the vertices to
move, the total "projected" length (which deter-
mines the number of extra atoms) of the wails
remains unchanged, and hence (a) can be ignored.
The effect of wall collisions (b) can also be neglected
at large l as the resulting change in free energy is ex-
pected to be of order I 3 per unit area (I/I per hexa-
gon) by analogy with the striped phase discussed in
the previous section. %e are thus left with only the
effects of the honeycomb constraints.

There is no loss of meandering entropy of the zig-
zag vertical walls (drawn as heavy lines in Fig. 5)
caused by specifying the vertical positions of the solid
vertices. This can be seen by considering the vertical
walls to be walls meandering freely (up to the effects
of other walls, see above), but with 120' changes in
average direction at the solid vertices. These sudden
changes in average direction will only affect the
heavy walls in their immediate vicinity and hence
cannot give rise to terms of order lnl, although this
effect will contribute to the wall crossing free energy,

I ~

The fluctuations of other walls we treat somewhat
differently. A wall of length l with one end fixed will
have fluctuations of order Jl in the position of the
other end. Fixing the second end will hence divide
the number of configurations of the wall by a factor
of order Jl —resulting in a loss in the entropy of
1/2 lnl. For a given position of a/I the vertices, each
of the 2N walls drawn dashed in the figure will thus
have a loss of entropy of 1/2 lnl giving an overall
contribution to the entropy of —W lnl. The N ver-
tices with open circles will, however, each fluctuate in
an area (Jl ) 2 for a given position of the solid ver-
tices. The contribution to the entropy from these
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vertex fluctuations will hence be + N lnl, exactly can-
celing the entropy loss of the light walls.

We have verified above that the only term of order
lnl per hexagon arises from the counting of breathing
configurations. Furthermore, the coefficient 8 —= 1

and a/e & a & 2a. Given this result, the total free
energy per unit area is

f 2 I I 1

3&3I' a', (fo f) +2ft Tin — +0—
13

i

(3.2)

For a given chemical potential, the equilibrium
value of the average hexagon side length, I, is ob-
tained by minimizing f(I) with respect to I. There
will be a C-I transition to the honeycomb phase at a
critical value of the chemical potential, f„ for which
the minimum free energy from Eq. (3.2) becomes
negative; i.e., lower than the free energy of the com-
mensurate phase. As pointed out by Villain, this
transition will be first order due to the effective at-
traction between the ~alls caused by the entropic
contribution to the free energy. From Eq. (3.2), the
critical chemical potential is

I

(.=to —
I

~
C

(3.3)

where I„ the value of I at the C-I transition, is given
by

(1 +2'/T)
l, =ae (3.4)

+y('7 x u)2 (3.5)

~here we have assumed that the system of substrate
plus adsorbate has mirror symmetry, and we assume
that the displacements vanish at the boundary of the
sample. The third term in (3.5), with elastic constant
y, arises from the lack of rotational symmetry due to

We will assume that ft is positive and several times
larger than T, whence I, )& a. This implies that the
walls are far apart at the transition —verifying our
ansatz that terms in the free energy of order I ' may
be ignored. If, on the other hand, ft were negative
or ft = T, the C Itransition -would be strongly first
order and little can be said in general. We will as-
sume that this is not the case.

%e now investigate the properties of the weakly in-
commensurate honeycomb phase with I large. At
long wavelengths (much larger than I), the elastic
free energy of the adsorbate may be written in terms
of the displacements u( r ) of the atoms from their
average incommensurate positions:

I

F= —,
'

J d r —( l}uj +9Jl/)t+$( V u)'

the substrate; the other terms depend on the usual
Lame coefficients, JM, and A.. As for the striped phase,
we may also write the free energy in terms of the
wall displacements, u ( r ) and wall elastic constants
p, , ), and y. It will have exactly the same form as
Eq. (3.5). The wall free energy will, in fact, have
this form quite generally —even if, in the absence of
mirror symmetry, the adsorbate free energy (in terms
of the atomic displacements) is more complicated than
Eq. (3.5) [i.e., there can be terms of form ('7 ~ u)
x ('7 x u) ]. All the results which are sensitive to
long wavelengths may be calculated using either the
adsorbate or the wall free energy, ho~ever; thus, for
the above reason it is simpler (and more general) to
work with the wall free energy.

For the simple highly symmetric type of walls
shown in Fig. 4, the atomic displacements are related
to the wall displacements by u = u(a/v3I). This will
not be true in general, however. The "bulk
modulus, "

p, +A., of the array of walls can be ob-
tained from the variation of the free energy Eq. (3.2)
with respect to the hexagon number density,
n =2/(3v3I'):

It+ I~ n' 8
$n

(3.6)

Note that this is not the inverse compressibility since
n is not generally proportional to the number of
atoms per unit area. From Eqs. (3.2) and (3.3), one
finds that at (= g,

(3.7)

As g increases, the product I'(It, + h. ) increases
monotonically, and for g = fo it is twice as large as at

The other elastic constants must be obtained by
considering the effects of shear strains on the domain
wall structure. First, we note that the breathing
motion of the hexagons does not destroy any uni-
form imposed strain of the domain walls since this
motion conserves the length of walls in all three
directions. Therefore, we need only consider the
possible strains of an array of regular hexagons. In
any uniform strain all hexagons must distort in the
same manner and therefore their opposite sides must
be of equal 1ength. The most general distortion is
thus a combination of a compression and two pure
shears. The two shears are illustrated in Fig. 6.
Since these strains do not involve a rotation, y must
be related to the energy to rotate the domain walls
themselves. We can thus conclude that y ~ I ' by
analogy with E~ in the striped phase. Since p. and A.

are ~1, y may be taken to be infinite in the limit of
large I.

The shear modulus, p, , may be computed numeri-
cally by calculating the difference in breathing entro-
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(a)

/ X /

(b)

FK1. 7. An illustration of a dislocation in a u 3 x %3R 30'
honeycomb structure.

that

P, +1 =(5+1)T/9I ~4rrT/9I2 (3.9)
(p. +i.)

, 2p, +X

FIG. 6. Two pure shears that (together with a uniform
compression) comprise the most general distortion of an ar-
ray of identical hexagons.

py between a sheared and an isotropic array of hexa-
gons. We have performed a Monte Carlo simulation
of the honeycomb array and computed the entropy
via an adaptation of a method used for hard spheres. "
This calculation is described in the next section. We
find that p, = (0.5 +0.1)T/I . We note the peculiar
result that p, & p, + A. , which implies that the system
has a negative Poisson ratio —if the solid is squeezed
along one axis, it shrinks in all directions. This oc-
curs because the entropy of long thin hexagons is so
much less than that of regular ones. The system
resists shear in order to keep the hexagons as regular
as possible.

Nelson and Halperin" have shown that any two-
dimensional solid with an elastic free energy of the
form Eq. (3.5) (in terms of the wall elastic constants)
will be unstable to the presence of free dislocations
with Burgers vector b if

P+It
(3.g)

2@+X p+y,
The minimum allowed Burgers vector of the array
walls which maintains the ABC domain labeling is
b = 3l corresponding to a dislocation in the adsorbate
lattice with minimal Burgers vector, ac (see Fig. 7).
Therefore, the lattice is unstable if the bracketed
quantity is less than 4rrT/9lt. Plugging in j = ~ and
the calculated values of p, and )t at g

= (, one finds

and hence the weakly incommensurate honeycomb
phase is unstable to dislocations and is necessarily a
fluid at all temperatures.

These results may be generalized to honeycomb in-
commensurate phases sufficiently near to other low-
order commensurate phases, in a similar manner as
with p x 1 rectangular overlayers. With a the lattice
constant of the graphite, we consider hexagonal com-
mensurate overlayers with primitive lattice vectors
R, =nat+ma2 and R2= —mat+(n —m)a2 where
a t

= ax and a 2
= a ( —1/2x + &3/2y ) are the primitive

lattice vectors of the substrate. For such a lattice one
out of N = n'+ m' —nm possible lattice sites on the
substrate are occupied in any commensurate region
and consequently there are N different domains or
possible positions of the adsorbate array. The lattice
constant ac of the commensurate phase (which
equals the minimum microscopic Burgers vector) is

FIG. 8. Part of a "typical" configuration of hexagonal
walls, obtained by repeatedly "breathing" a regular array.
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aJN, and, assuming that the wall energies are such
that all N domains are present, the mimimum
Burgers vector of the hexagonal array is I43N. Thus
when (p(p, +2)/(2!2+X) +p] ~4rrT/3NI (with p,
and X the same as above), the incommensurate solid
becomes stable. This occurs for overlayers for which
N ~7.5 +1.5. The accuracy of our calculation leave
some uncertainty for N =7 or 9.

A. Numerical calculation of the
elastic constants

The coefficient p, must be calculated by numerical-
ly evaluating the free energy derivatives of a sheared
array, of the type shown in Fig. 7. In order to find
these derivatives, one needs an expression for the
coefficient of the logarithmic entropy expression in
Eq. (3.2) that can be evaluated numerically. We
adapt a method used for hard spheres. ' We shall first
describe a numerical procedure for calculating dS/di.

Since the energy is constant for all configurations,
it can be chosen to be zero, and one can write the
partition function Z = e~. Therefore, dS/d!
=d(lnZ)/dl = Z 'dZ/dl. (We assume here that I is
very large compared to the mesh-constant a. ) The
partition function Z is just the number of allowed
configurations of the system. The derivative dZ/dl
can be evaluated numerically by considering Z to be a
function of 1 —h, an "available" length. Here,
h (( I is the size of a "hard core" at the vertices.
One can then count the number of configurations
lost when the size of the core is increased. Since

Q = —0pp xx p Q~= @~=0 (3.13)

The definition of the Lame coefficients then implies
hF = e2P, /2. For an array with a fixed number of
hexagons, since the total length of wall remains con-
stant, the only change in the total free energy is due
to changes in the entropy of the configuration, which
is calculated below. However, since the free energy
must be calculated to O(a'), it is necessary to note
that in this order the area of each hexagon is re-
duced, so the change in the free energy per unit area
[to O(e')] is

5(F/4) = — SA + (3.14)

number of nodes. This last step assumes that the
probabilities of the walls having lengths less than h

are independent for small h; although it is not alto-
gether obvious that this assumption holds, the close
agreement between numerical calculation and the an-
alytic result as h 0 indicates that the procedure is
valid. It is easy to see that in the limit, h/I 0, the
quantity 8(h/I) equals the coefficient 8 defined in
Sec. III.

The shear modulus, p, , is calculated by finding the
entropy of an array generated from the lattice pic-
tured in Fig. 6(a). The regular lattice is distorted
slightly by making the sides paraliel to x ("horizon-
tal" sides) length l(1+e) and the other sides length
I(1 —a/2). The resulting array has to first order in e

the same area and the same energy as a regular array
of the same number of regular hexagons with side l.

The strains in this array are

dZ dZ i. Z(l, h) —Z(I, O)
dl dh I -o h

g X(I)
dS d(lnZ) l. 1

1
~~ o(1)= lim —1—

dl dl I-oh X 1
e 6 O(l)

(3.10)

BS 1 82ShF= —T «+—«2
2

(3.15)

However, at the I-C transition F =0 and the first
term of this expression may be ignored. Therefore,
one need only consider changes in the entropy;

lim B(h/I)I QS 2

A BI 3!J3
where

a(I /I) =-—
h N„

(3.11)

(3.12)

where N, is the number of overlaps and N„ is the

where Q(I) is the set of allowed configurations with
h =0, and X =0 for those configurations with any
side length less than h and is 1 otherwise.

The quantity in brackets in (3.10) is just the proba-
bility that there is at least one side of length less than
h in the original ensemble, or that there is an "over-
lap" between the vertices. Since the number of
nodes is equal to the area A divided by (3J3I'/4), we
have

BS 1 9SAF= —T «I
Bled 2 QI2

2(B BS 1 9S
2 8«CI I& 2 $12

(3.16)

As derived above,

I

I es(!,I) „. 4 I NI

A Bl I-o 3f312 I'r N„

where NI is the number of sides with length &h.
There are half as many horizontal sides as vertical

Defining I~ ——I(1+e) and I2= I(1 —e/2), one obtains



358 COPPERSMITH, FISHER, HALPERIN, LEE, AND BRINKMAN 25

sides, so by symmetry

'aS 1 eS'
811 2 812

(3.17)

Therefore, as expected, only the e' term contributes
to the free energy, and

BS 1 8S
811 2 812

The second term is again zero by symmetry, so

hF = lim ——~lT — ——
l l(1+,)

1 9S 1 8S.-o 2 81, 2 812
~ I2 l2(1 —e/2}

and

(-N„Na)—4 Tl l 1

3%312 a hN

(3.19)

(3.20)

where N„ is the number of vertical sides (h and Nl,
the number of horizontal sides &h.

The arrays used for the calculations were generated
from arrays of identical hexagons similar to the ones
pictured in Figs. 1 and 6(a). It was found that using
coordinate axes oriented at 120' angles (parallel) to

. two of the three wall directions) made the calcula-
tions simpler. The system was symmetrically placed
with the axes, i.e., its overall shape was that of a
parallelogram with included angles of 60' and 120'
and its sides perpendicular to the axes. Periodic
boundary conditions were imposed between the paral-
lel sides of the array.

The Monte Carlo calculation was implemented by
repeatedly choosing a hexagon at random, and chang-
ing its size according to the following procedure. The
six vertices of the chosen hexagon are moved in or
out along the six 120' directions by equal distances
~s (, where we take s )0 to denote expansion and
s & 0 to represent contraction of the hexagon. In or-
der to choose s, we first determine the maximum
possible expansion (s,„~0) and the maximum pos-
sible contraction (s;„~0) of the chosen hexagon,
consistent with the constraint that the honeycomb to-
pology be preserved. The expansion distance s is
then chosen to be a random number, uniformly dis-
tributed between s;„and sm, „. In principle s should
be an integral multiple of the underlying mesh con-
stant a; however we have taken the continuum limit,
a/l ~0.

It is easy to check that this described procedure sa-
tisfies detailed balance —i.e., if a and p are two al-
lowed configurations of the vertices, the probability
of making a transition from a to p is the same as the
probability of making a transition from p to a.

O.S—

I

0.02 0.04

hlk

i

0.06
l

0.08
I

0.10

FIG. 9. Numerical calculation of 8 = I/h (S(0 —S(l —h) ),
where 5 is the entropy per hexagon and l is the average
side length of a hexagon. As expected, as h/I 0, 8 1.

Furthermore, any configuration of the system can be
reached from any other, in a finite number of steps.
It follows that in the limit of a large number of
Monte Carlo steps, we approach an equilibrium distri-
bution, in which the probability of finding any al-
lo~ed configuration is the same as any other. Part of
a "typical" configuration is shown in Fig. 8.

The calculation of the entropy was done by repeat-
edly "breathing" the array and counting the number
of side lengths less than a given value. The results
were then averaged. The quantity 8(h/I) was then
determined from Eq. (3.12). Equilibrium was tested
by the convergence of the Lame coefficient calcula-
tions.

A typical run involved a 70 x 70 array. After
147000 "breathing" motions (30 per hexagon), the
entropy per hexagon was calculated. After an addi-
tional 30 motions, it was again calculated, until 166
values were obtained. These data were averaged and
the resulting values of 8 plotted in Fig. 9. It is found
that 8 varies about 10% between h =0 and h = I/10,
which indicates that there is some correlation
between side lengths. However, the limit as h 0
gives the correct value 8 =1.00 +0.01, in good
agreement with the analytic result.

The calculations of the Lame coefficient p, was
done by "breathing" a sheared array like that pic-
tured in Fig. 6(a). After every 100 breathing
motions per hexagon the right-hand side of Eq.
(3.14) was calculated for various h and used to calcu-
late p, . After 350 averages of both a 30 x 30 and a
40 x 40 array, the data shown in Fig. 10 were ob-
tained.

For the range of h/I used, the numerically calculat-
ed 8 stays within 5'/0 of the value 1, so the error in-
duced by considering the side lengths as totally in-
dependent is much less than the scatter of the data.
The slow convergence of the results for p, is expected
because Eq. (3.20) is the difference of two compara-
tively large numbers and hence exhibits large random
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0.6—
depends strongly on f —$0,

0,5—

0.2—

0.1—

o 30x30ARRAY
o 40x40 ARRAY

350 AVERAGES

There will thus be a first-order transition from the
honeycomb to the striped phase at a value of the
chemical potential given by

(HS 50

On the scale of chemical potential set by $0 —(,
-2fi jT—Te ', )Hs —(0 is exponentially small; i.e., the

honeycomb-striped transition will occur extremely
near $0. The wall separation in the striped phase at
the transition will be

I 2/3 ( T/l ) 1/3

I

-0.10
I

-0.05
I

0.0
I

0.05 0.10

FIG. 10. Numerical calculation of P, using Eq. (3.14).
measures the shear of the array, and p, is determined by the
free energy change for a given shear.

P, = —,(0.5 +0.1)T
I2

(3.2l)

As expected, p, is more or less independent of
s, h/I, and the array size, for reasonable choices of
the parameters.

A check on these results was attempted using the
correlation function calculation outlined in the Ap-
pendix. This last calculation converged very slowly;
however, an upper bound of 2P, + 2 ~0.7T/I' was

obtained, which is consistent with the above results.

fluctuations. The running time of the program there-
fore becomes a major limitation. From these data,
we have concluded that

which is much smaller than in the honeycomb phase
at (Hs, IH = I,/Je. The jump in particle density will

thus be considerably larger at the honeycomb-striped
transition than at the commensurate-honeycomb-
incommensurate transition.

We note that the presence of free dislocations in
the honeycomb phase will lower its free energy
somewhat and may perhaps make the honeycomb C-I
transition second order. However, since the number
of dislocations will be thermally activated, the above
analysis will be valid at low temperatures if the dislo-
cation core energy is sufficiently large. (In this limit
the honeycomb C-I transition will still be first order ).
In particular, for p = N = 3, there will be a transition
at gHs

——
go from an isotropic fluid to an anisotropic

(striped) solid.
As the chemical potential is increased from )Hs, the

striped phase will become more and more anisotropic
as I decreases. At some critical value of I (compar-
able to the width of an isolated domain wall), the ad-
sorbate will generally revert back to an isotropic hex-
agonal solid. This will almost certainly occur unless
the substrate-adsorbate potential is very large, so that
the domain walls are very narrow.

IU. HONEYCOMB TO STRIPED TRANSITION

For g, & ( & $0, the honeycomb phase will be the
lowest free energy phase. When f ) (0, however, we
must directly compare the energies of the honeycomb
and the striped phases. For f —

$0 & )(,—(0~, I will

be of order I„and the honeycomb free energy will be
a weak function of f —(0

5e 50 ~fgl&fH-
Ic

(We will ignore all microscopic lengths; I will be mea-
sured in units of these. }

The striped phase free energy, on the other hand

A. Rotated phases

Up to this point, we have assumed that the domain
walls are parallel to the crystalline axes of the sub-
strate (which for the following discussion we will take
to be hexagonal). In fact, this will not always be the
case. We will discuss below the effects, near the C-I
transition, of instabilities which cause the walls to ro-
tate.

Novaco and McTague' have calculated the total
energy at T =0 as a function of the relative angle of
the adsorbate and substrate crystalline axes in the
limit that the substrate potential is weak. They find
that if the microscopic Lame coefficient A.o of the ad-
sorbate is positive (which it will be for almost all real
substances), the energy is minimum for a nonzero
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value of the angle. Villain' and Pokrovskii' have
shown that in the domain wall limit (i.e., near to the
C-I transition at a fixed magnitude of the substrate
potential) the minimum energy is realized if the walls

are tilted at a finite angle Hp. While the criteria in
terms of microscopic parameters may generally be
different in this limit, the result is the same: a rela-
tive rotation of the adsorbate and substrate axes by
an angle which tends to zero as I ' for I ~. This
picture, which has been verified experimentally, must
be modified in the presence of thermal fluctuations.

We first consider a single wall which we will as-
sume to be rotated away from a substrate axis by an
angle Hp, which we can take to be & 30 . At any
nonzero temperature the wall will not be straight but
will have two kinds of fluctuations. First, as for walls
with Hp =0, there will be small glitches in the wall po-
sition which wi11 give rise to slow meandering about
the average direction, Hp. Secondly, however, there
may be sudden changes in the wall direction, from Hp

to —
Hp, which will cost some microscopic energy fs.

Bends from Hp to Hp +60', which might be expected
to be important will, on the other hand, cost an ener-

gy proportional to the length of the bent section and
hence will not play a role, except to contribute to the
slow meandering. At low temperatures, the distance,
between bends from Hp to —

Hp (or vice versa) will be
-f~/T

y~ ~ e . A single long wall will, due to these
bends, always on average have no rotation away from
H =0. However, the meandering will be dominated
by the large excursions between bends. The "dif-
fusion constant" of the wall will hence diverge as

f~/TT 0, T/I ~e s . The striped phase near to the
second order C-I transition will not be rotated, since
at any fixed T, sufficiently close to the transition I
will be much larger than y~ and the discussion in Sec.
II wi11 apply. %hen I decreases to be of order y~,
there will be a transition to a rotated striped phase in
which all walls are inclined with a mean angle = Hp.

Even though the adsorbate long wavelength free
energy of this rotated striped phase need not be of
the form Eq. (2.10), the wall free energy will still be
of the form Eq. (2.7) as long as i » a. The instabil-

ity analysis of the striped phase can hence be carried
over trivially to the rotated case in the limit y~ && I.

Near the rotational transition, the elastic constants
will not be simply related to each other and the de-
tails of the analysis do not apply.

For the honeycomb case, the situation is somewhat
different. The relevant length scale is now that of

2f~/T
the first-order C-I transition, I, ~e . If I, &&yg
(i.e., 2f~ && fs), the honeycomb phase will not be
rotated near the transition and the analysis in Sec. III
will apply. If a « I, « y~ on the other hand, the
honeycomb will be rotated by Hp with respect to the
substrate. Again, while the adsorbate long-
wavelength free energy will be complicated, the wall

free energy will have the same form as for the nonro-
tated phase, and the arguments in Sec. III wi11 apply.

In the intermediate case, I, —y~, the situation will

be more complicated. We note only here that, in

contrast to the striped phase, there cannot be a non-

rotated to rotated phase transition (as a function of
chemical potential) within the honeycomb phase in a

regime of the phase diagram in which the calculations

in this paper apply. This is due to the narrow range

of I. for which the honeycomb phase is stable (see
above). We cannot, of course, rule out a rotational

phase transition far from the C-I transition where the
details of the wall-wall interactions are important.
Rotational instabilities and the effects of thermal

fluctuations upon them will be discussed in detail in a

future paper.

V. DISCUSSION OF EXPERIMENTS ON

KRYPTON ON GRAPHITE

Various low-energy electron diffraction (LEED)'
and x-ray scattering ' studies of krypton physisorbed
on grafoil have shown that as a function of chemical
potential and temperature, krypton monolayers ex-
hibit several phases including a J3 x E3 commensu-
rate solid, an isotropic incommensurate solid phase,
and a fluid phase. The "natural" lattice spacing of
the krypton (i.e., the close-packed lattice spacing at
T =0 on a smooth substrate), is 7% less than J3
times the distance between graphite adsorption sites,
making krypton on graphite a natural system for
studying the C Itransition fro-m a v3 x W3 hexagonal
registered phase.

Very recently, Moncton et al. ' have studied the C-I
transition via very high-resolution x-ray scattering, at
temperatures T = 80 K, considerably lower than the—110-K melting temperature of the incommensurate
solid obtained from adsorption isotherms. They ob-
serve a second-order (or weakly first-order) transition
from a commensurate solid with a correlation length

0
of —2500 A to a fluid phase with a rather long corre-
lation length of order hundreds of angstroms. The
fluid phase is observed. to be incommensurate in the
sense that the peak in S(q) moves smoothly away
from the commensurate position (G,) to higher
values of q = 6, + e. The correlation length (inverse
width) initially decreases roughly in proportion to the
peak shift; however, as the incommensurability in-
creases, the peak sharpens up again —presumably
S(q) has acquired the form appropriate to a two-
dimensional floating solid. It is natural to interpret
the existence of a narrow fluid phase down to at least
80 K as support for the results of this paper. Howev-
er, as will be discussed below, the connection
between the theory and the experimental results of
Moncton et al. is at best suggestive.
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The modulation in the krypton-graphite potential,
as a function of position in the xy plane, is believed
to be about 40 K, which should be compared with the
150-K minimum in the attractive interaction
between the krypton atoms. This relatively weak
substrate potential and the hard core repulsions
between the krypton atoms suggest that the domain
walls in the weakly incommensurate phase will be
reasonably broad —a fact which complicates consider-
ably the possible interpretation of the experiments in
terms of the concepts discussed in this paper.

In addition to the peak in S(q) at G, + e, Moncton
et al. ' observe a considerably smaller peak at G, —e/2
caused by modulation of the krypton by the graphite.
At zero temperature, in the limit that the distances
between the walls are much larger than the wall

width, the peak at G, —e/2 would be expected to
have twice the intensity (in a powder average) of the
peak at G, + e. If, on the other hand, the modulation
of the krypton by the graphite is weak, the peak at
G, —e/2 would be smaller than that at G, + e. In the
absence of any calculations in either limit for S(q) at
finite temperatures, it is not possible to decide
whether the measured relative intensity of the two
peaks is more consistent with a domain wall or a
weakly modulated structure. In either case, the de-
tails of our calculation probably do not apply in the
region of the phase diagram studied thus far with

high resolution. It seems plausible, however, that in
a narrow range of chemical potential at sufficiently
low temperatures the domain wall description may be
valid. The reason for the observed depression of the
melting temperature may then be directly related to
the softening of the weakly incommensurate krypton
lattice caused by fluctuations of the positions of the
higher density regions of the system, analogous to
the "breathing modes" which we have studied here
in the limit of well separated domain walls.

It should be mentioned here that several alternate
explanations have been proposed for the observed
broadening of the Bragg peak near the commensur-
ate-incommensurate transition. For example, it has
been noted that at T =0 (or in mean-field theory)
there exist at least metastable "chaotic" states near
the commensurate-incommensurate transition in
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APPENDIX

The calculation of the elastic constants for the
honeycomb phase can be checked by calculating the
correlation function in the long-wavelength limit.
After defining the Fourier transform of the displace-
ment field,

u(q) = Xe
' 'u(K, )

W
(AI)

The correlation function is

which domain walls occur with a pseudorandom spac-
ing, which mould cause translational correlations to
fall off exponentially with distance, even though the
adsorbate lattice is free of dislocations. " It is not
clear, however, that such states will correspond to a
state of minimum energy at T =0, or that such
chaotic states would be stable at temperatures dif-
ferent from zero. Furthermore, if a chaotic state
could otherwise exist at T & 0, it should appear to
have a vanishing macroscopic elastic constant. It fol-
lows that such a state should be unstable to the for-
mation of free dislocations, in two dimensions, and
therefore would actually be a liquid.

Villain' has pointed out that the dilute domain-
wall structure is easily distorted by defects in the sub-
strate surface, and that the energy gained by such
distortions may in practice have an important effect
on the commensurate-incommensurate transition.
Substrate defects could also be responsible for the
broadening of the Bragg peaks. These possibilities
can best be explored by further experiments on a
variety of surfaces.

(u(q)u(-Q)) -=
J e '"'"""u(q)u(—q) gd'u(Q)

Q

~fe-@Hi «V~l g d~u ( Q)
(A2)

In this expression P=I/T and His the elastic free energy Eq. (3.5) written in terms of the u(q).

H= X )quj+qzu, )'+X—[q u(q)]'+y(q && u)' = X (2p+k)q uf(q)+(p, +y)q ug(Q) . (A3)
2P Q

' 2 2P Q
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Here ug(q) and uq(Q) are the components of u(q)
parallel and perpendicular to q. Inserting this expres-
sion into Eq. (A2) we find

0.2—
ENTROPY
CALCULATION

pT
(uh(q)ug( —q)) =

pT
(ui(q) ud- q) ) =

(p, +y)q'
(A4)

p0 0

0 p

0 P
0

~ 20 X 20; 600 AVERAGES

0 50X 50; 600 AVERAGES

P 70X70. 200 AVERAGES

Since y is infinite in the approximation of stiff walls
we expect q'(uq(q) uq( —q) ) to go to zero as q be-
comes small. On the other hand q'(u~~(q) ug( —q) )
should give (2p, + It) as q becomes small. The calcu-
lation of the correlation functions ( u g( q) u g( —q) )
and (uq(q) uq( —q) ) was performed for a micro-
scopic adsorbate array with the wall structure pictured
in Fig. 4. The u (R&) are defined to be the displace-
ments between the positions of the atoms in the ac-
tual array (with walls) and their location in a perfect
incommensurate array, i.e., one with the same net
density but on a perfectly smooth substrate. The R;
is thus the position of the ith atom in a perfect in-
commensurate array and R~ = R~ + u (R~) is the actu-
al position of atom i.

After choosing the origin to have the same position
in the walled incommensurate and perfect incom-
mensurate phases, it is straightforward to calculate
u(R, ) for a given R~ in the walled array. [The
choice of origin is unimportant because the interest-
ing quantity is u(q). The actual algorithm subtracts
the value of u (R~) at the centers of a regular array
to simplify the formulas, but the choice in the text is
conceptually simpler. ] First, the number of walls
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FIG. 11. Plot of longitudinal correlation function.
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between the origin and Ri is found and a displace-
ment of ao/&3 perpendicular to each of these walls is
added to yield the position of atom i. The vector Ri
is then this result scaled by the factor ao/ao, and
u (R() =R; —R;. Here ao = ao/( 1 + ao/3 I) is the in-
commensurate lattice constant.

The Fourier transform u(q) can now be calculat-
ed; the sum in Eq. (Al) simplifies for small q. We
write

u(q) = $ e " Xe ' " [u(Rg)+u(R;) —u(Rg)]
hexagons ifh

where Rh is the position in the perfect incommensurate phase of the atom at the center of the distorted hexagon h'.

RgXl= XR;
i6h i Eh

Since R, —Rh is of order /, the exponential may be expanded in the long-wavelength limit (q/ ((1), to yield

u(q) = $e" "/[1+/q (R; —Rg)+O(q')][u(Rg)+[u(R;) —u(Rg)]] .
ieh

Since

u(R() —u(Rh) ~R, —Rg, and X(R,—R„)=0
iCh

we have

u(q) = Xe " X[u(Rg)+O(q/)] = Xe
' "u(Rg) ", +O(q/),

igg

where Ah is the area of hexagon h. Thus, it is only
necessary to find the area of each hexagon and the
location of its center to calculate u (q) for small q.

The averages (ug(q)ug( —q)) and
(uq(q) uq (—q) ) were calculated for many config-

I

urations, with various values of q on the I line, i.e.,
in the direction of the zone corner, Q =4sr/3 J3/.
The results of several runs are plotted in Fig. 10.
For example, the correlation function for 4900 hexa-
gons was calculated every 147000 "breathing"
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FIG. 12. Transverse correlational function. Note the ex-

tremely small values indicative of y = ~.

motions (30 per hexagon) up to a total of 29440000
motions (200 averages) to yield the squares in Fig.
11. The convergence at small wavelengths is very
slow. The lack of equilibrium of the long-wavelength
modes causes the first few data points to be
anomalously low (though as the running time is in-
creased this effect becomes less marked). In iddi-
tion, the long-wavelength approximation seems to
break down at q values of about Q/4. It is hence
very difficult to extract a reliable value of p.. Howev-
er, it seems quite clear that the correlation function
yields a shear modulus much lower than that bound
necessary for stability to dislocation formation. The
values calculated in the text of P, = (0.5 +0.1)T/I'
and p, + lt = T/6 431' correspond to q'(u~~(q) us( —q) )
= p T/(2y, + X) =0.21 +0.3, which as shown in Fig.
11, is reasonably consistent with the results of this
calculation.

The transverse correlation function (uq( q) uq(q) )
was also calculated. Since it is proportional to
T/(p, + y), and y =. ~, one expects that q'~ uq(q) )~

should go to zero at small q. Note that, as expected,
the correlation function does not diverge as q 0,
The results of the calculations are shown in Fig. 12.
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