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%e set up and solve the Bethe approximation for a spin-glass with finite-range interactions.

%e obtain the finite-z analog of the Thouless-Anderson-Palmer equations and the free-energy

functional at all T. In the configuration-averaged theory the entropy S(T) and all other proper-

ties are well behaved on a Cayley tree. For real lattices S(0) =0, but the specific heat is nega-.

tive near T =0 for all but small values of z.

In recent years much attention has focused on a

model of a spin-glass with infinite-range interactions.
The simplest mean-field theory of Sherrington and
Kirkpatrick' (SK) contains one order parameter and

leads to unphysical results. Thus far the only satis-

factory approach appears to be one ip which an infin-

ite number of order parameters is introduced such as
that of Thouless, Anderson, and Palmer' (TAP) and

of Parisi' and others. Intimately connected with the
difficulties of the SK model is the fact that a spin-

glass appears to have many metastable states leading
to a highly complex free-energy surface. These meta-
stable states are presumably the origin of the well

known irreversibility and history dependent effects
in the spin-glasses.

The purpose of the present paper is to explore ex-
tensively the Bethe approximation to the finite-range
random (Ising) model on real (loose packed) lattices,
the exact solution of the model on a Cayley tree, and
their mutual relationship. A study of the finite-range
model will help form the basis for more elaborate
configuration averaged theories (analogous to those
of Parisi'), for treating localization effects6 and for
characterizing metastable states.

There have been several (incomplete) attempts' '0

to study the Bethe approximation for a spin-glass. In

the configuration-averaged theory, it was claimed '

that the entropy S is ill behaved at T =0. %c find
this is not the case, in general. Only after performing
a detailed analytic and numerical study did we find
the "diseases" of this theory: For sufficiently large z

the specific heat at low T is negative. Our other new
contributions afe to (1) demonstrate that tlte Cayley
tree represents one (of a very small number of)
model(s) which have a stable spin-glass phase. Im-

posing the boundary conditions discussed below
serves to make the Cayley tree more like a real lat-
tice. (2) To present an analog of the TAP equation
for the free energy F {m;}and moments m; at all T.

(3) To show that a well-behaved entropy does not re-

quire a cavity in the effective field distribution.
%C consider a Cayley tree of N atoms with random

bonds in which the center site is labeled by 0 and a
site on the nth generation by v„=—i1, i2, . . . ,i„where
thc scrlcs glvcs thc location of a sltc l'clatlvc to thc
center. The free energy on a tree with E generations
and coordination number z can be calculated recur-
sively in terms of the effective fields I.„„obtained
by taking partial traces over all spins that are descen-
dents of 0-„„.%C define H„„asthe site-dependent
external fields and J„„asthe random near-neighbor
exchange coupling

F = ks T ln 2 cosh PH—O+ X tanh ' (tanhPJ„, tanhL„,)
i1 1

K z z-1 z-1
+

z X g g X In[4cosh(PJ„„+L„„)cosh(PJ„„—L„„)}
n 1 i1-1 i2~1 i 1

L„„=PH„„+X tanh '( tanhPJ„„+~tanhL„„+~)
N+1

where i ~ l, . . . ,z, i&= l, . . . ,z —1 for 2 ~j ~ g, for q = I, . . . ,& —1. The analog of Eq (2) for It = jt is
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L„»= pH». The thermal averages of the spins m„„=dF/BH„, are

and

mo=tanh pHO+ X tanh '(tanhpJ„, tanhL„,)
i) ~1

m„„=(m„„~tanhpJ„„sechL„„+tanhL„„sech'pJ„„)(1—tanh'pJ„„tanhzL„„)'

(3)

(4)

For i~=1,. . . ,z, ij= 1,. . . ,z —1 with 2 ~j

no�nfor

n =1,. . . ,Jt. Eliminating the (L„„)from Eqs. (3) and (4)
yields

1 —gJ fy
m, =tanh pHI+ gtanh '

2 m; —gsmj
(5)

where g,j—= tanhpJij and

r j= [(1—g j) 4g j—(m; gjmj—) (mj —g jm) ]'

Here we have changed notation so that i, j denote sites in the lattice and JJ the exchange interaction between
them. The sum over j in Eq. (5) includes the z near neighbors in all generations except the Eth, in which case
only one neighbor is involved. The free energy can be expressed in terms of the (m;) either by integrating Eq.
(5) (which represents BF/Bm; =0) or by direct elimination of the L„,in (1). We obtain

F = ksT X([(1+m;)/2] ln[(l +m;)/2] + [(1—m;)/2]in[1 —m;)/2] )

1 gij fIJ f~ + 1 +g&
—2gIJm; mJ—ksT g m~tanh ' +i~j +

2
In

(j),2™~g(lmj), ,
2(1 gij)

—QH, m; . (6)

Equations (5) and (6) are exact on a Cayley tree. We may also apply them to a real lattice in which case they are
equivalent to a Bethe approximation. As such they represent the analog of the Thouless, Anderson, and Palmer
equation for finite z. In particular, in the limit z ~ the TAP results are recovered. It is important to note that
unlike in the TAP theory, the ground-state solutions of (5) are not given by molecular-field theory. '0

An exact expression for F, the exchange averaged free energy as a function of the average distribution of fields

G/j(h j) is obta'inable for a Cayley tree. We look for solutions to the self-consistent equation for G j(h j) of the
form Gij(h~j) —=g(h~j) where hj is the effective field at site i due to its descendents from the jth branch down.
This yields the following set of coupled equations:

g(h) =
&

dh'dJg* '(h' )P(J)8(h —p 'tanh '(tanhpJtanhph')) (7a)

and

+OO IN IN

g (h) =„5h —H —ghj g[g(hj)dhj], m =z or z —1
J 1 J~1

(7b)

The free energy is given in terms of these effective fields as

=(2b —1) J dh ln(2coshPh)g'(h) —JI b dh~dhzdJg' '(ht)g' '(hz)

XP(J) 1 n[2c soh( ph~+phz)e&j+2cosh(ph~ —ph2)e &j], (8)
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Bethe approximation, it seems to violate the normali-
zation conditions on the reduced density matrices.
This problem does not occur in the Cayley tree,
which is much less interconnected, so that the ap-
propriate field distributions factor, In addition, limits
on the validity' of the nonconfiguration-averaged
theory on a real lattice will be discussed in a future
publication.
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