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We set up and solve the Bethe approximation for a spin-glass with finite-range interactions.
We obtain the finite-z analog of the Thouless-Anderson-Palmer equations and the free-energy
functional at all 7. In the configuration-averaged theory the entropy S(T) and all other proper-
ties are well behaved on a Cayley tree. For real lattices S(0) =0, but the specific heat is nega-

tive near T =0 for all but small values of z.

In recent years much attention has focused on a
model of a spin-glass with infinite-range interactions.
The simplest mean-field theory of Sherrington and
Kirkpatrick! (SK) contains one order parameter and
leads to unphysical results. Thus far the only satis-
factory approach appears to be one in which an infin-
ite number of order parameters is introduced such as
that of Thouless, Anderson, and Palmer? (TAP) and
of Parisi® and others.* Intimately connected with the
difficulties of the SK model is the fact that a spin-
glass appears to have many metastable states leading
to a highly complex free-energy surface. These meta-
stable states are presumably the origin of the well
known irreversibility and history dependent’ effects
in the spin-glasses.

The purpose of the present paper is to explore ex-
tensively the Bethe approximation to the finite-range
random (Ising) model on real (loose packed) lattices,
the exact solution of the model on a Cayley tree, and
their mutual relationship. A study of the finite-range
model will help form the basis for more elaborate
configuration averaged theories (analogous to those
of Parisi®), for treating localization effects® and for
characterizing metastable states.

There have been several (incomplete) attempts
to study the Bethe approximation for a spin-glass. In
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the configuration-averaged theory, it was claimed”-?
that the entropy S is ill behaved at T =0. We find
this is not the case, in general. Only after performing
a detailed analytic and numerical study did we find
the ‘‘diseases’’ of this theory: For sufficiently large z
the specific heat at low T is negative. Our other new
contributions are to (1) demonstrate that the Cayley
tree represents one (of a very small number of)
model(s) which have a stable spin-glass phase. Im-
posing the boundary conditions discussed below
serves to make the Cayley tree more like a real lat-
tice. (2) To present an analog of the TAP equation
for the free energy F {m;} and moments m; at all T.
(3) To show that a well-behaved entropy does not re-
quire a cavity in the effective field distribution.

We consider a Cayley tree of N atoms with random
bonds in which the center site is labeled by 0 and a
site on the nth generation by v, =iy, iy, ...,i, Where
the series gives the location of a site relative to the
center. The free energy on a tree with K generations
and coordination number z can be calculated recur-
sively in terms of the effective fields L,,, obtained
by taking partial traces over all spins that are descen-
dents of o,,. We define H,, as the site-dependent
external fields and J,, as the random near-neighbor
exchange coupling

z
=—kpT{in|2cosh|BHo+ 3, tanh™ (tanhBJ,, tanhL,,l)
-1

i

K z z—1 z—1
+33 Y 3 ... 3 Inl4cosh(BJ,, +L,,) cosh(BJpn—L,n)1} . a)
el ij=liy=1 =1
Here
z—1
L,,=BH,,+ 3 tanh7'(tanhBJ,ps1tanhLpei) )
’n+1
where i;j=1,...,z ij=1,...,z—1for2=<j=<n, for n=1,. .. ,K —1. The analog of Eq. (2) for n =K is
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L,x=BHg. The thermal averages of the spins m,,=9dF/dH,, are

z
mo=tanh|BHo+ 3, tanh“(tanhﬁ],,1 tanhL, ) Q3)
i =
and
M yy = (M p-i tanhBJ ,, sech’L ,, +tanhL,, sech’8J,,) (1 —tanh?8J,, tanh’L,,) " . 4)
For iy=1,. ..,z =1, ..,z—1with2<j<nfor n=1,. .. ,K. Eliminating the {L,,} from Egs. (3) and (4)
yields
1 -g,12- ru
=tanh|B8H;+ Stanh!|—|| ., (5)
m; =tanh|BH, jzan 2Cmr—ggmy)

where g; =tanhBJ; and

ro=1(1—gP?—ag;(m;—gym;) (m;—gym;) 1'% .

Here we have changed notation so that /, j denote sites in the lattice and J; the exchange interaction between
them. The sum over jin Eq. (5) includes the z near neighbors in all generations except the Kth, in which case
only one neighbor is involved. The free energy can be expressed in terms of the {m;} either by integrating Eq.
(5) (which represents F/9dm,;=0) or by direct elimination of the L,, in (1). We obtain

r,j+1 +guz-—2gum,mj
2(1—¢g})

1 —-gJ-—rU
2(m,—-gum,)

+imj+5In

—kgT 3,|m;itanh™
(i)

l‘ 2H,~m,~ . (6)
i

Equations (5) and (6) are exact on a Cayley tree. We may also apply them to a real lattice in which case they are
equivalent to a Bethe approximation. As such they represent the analog of the Thouless, Anderson, and Palmer?
equation for finite z. In particular, in the limit z—oo the TAP results are recovered. It is important to note that
unlike in the TAP theory, the ground-state solutions of (5) are not given by molecular-field theory.°

An exact expression for F, the exchange averaged free energy as a function of the average distribution of fields
Gy(hy), is obtainable for a Cayley tree. We look for solutions to the self-consistent equation for G;(h;) of the
form Gy(hy) =g (hy) where hy is the effective field at site i due to its descendents from the jth branch down.
This yields the following set of coupled equations:

g(h) = f_ : dh'dJ g*~'(h") P(J)8(h — B~ tanh ™' (tanh B/ tanhB4")) (7a)
and
g"(h) = f_:eslh -H- zh,] I1le(hpan)l, m=zorz—-1 . (7v)
J=1 J=1

The free energy is given in terms of these effective fields as

BE_o-1) [T anincoshpm)g*(m) — [ b dnydhadd g () g7 (i)

x P(J) In[2cosh(Bh,+Bha) e’ +2cosh(Bhy—Bh)e ] , (8)
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where b is the number of bonds per site. For a Cay-
ley tree (b =1) Eq. (8) is exact; for a regular lattice
(b =2z/2) this equation was previously derived® using
the Bethe approximation. For a real lattice thermo-
dynamic properties can be found by differentiating
Eq. (8) with respect to the appropriate variable. In
doing this it must be remembered that g*(4) and
g7"'(h) depend implicitly on the external field and
temperature. Use should also be made of the fact
that F is stationary with respect to g (h), subject to

the constraint that fg(h )dh =1. On the Cayley

tree, it is essential that expressions for the thermo-

dynamic variables be written in terms of the G;(hy)
]

S
ksN

unless P(J) is sufficiently singular to induce diver-
gences in the field distribution functions.!!

In Eq. (10) the terms in large parentheses are
evaluated at 7 =0. Note that in contrast to Eqs. (7)
for the magnetic properties, the entropy, energy, etc.,
depend on the value of b and hence assume different
values on a Bethe or real lattice. That S vanishes at
T =0 should be contrasted with the SK (z—o0)
result in which interchanging the order of taking lim-
its yields lim7—glim;—S (T) = (—1/27) Nkg. Thus at
z = oo the entropy is discontinuous at 7 =0. This
z = oo ‘‘disease’’ manifests itself at finite z as a nega-
tive slope in S leading to a negative specific heat for
large enough z and for real lattices only. This can be
seen from Eq. (10) by noting that S will eventually
become negative if b is large enough.

Equations (7) can be solved numerically by in-
tegrating out the & function in Eq. (7a) and by
Fourier transforming the convolution in Eq. (7b).
We found that we could obtain numerical solutions
for P(0) =0 at all T =7z and for P(0) 20 only at
T =0. We considered two models (i) P(J) =337
J2exp(=3/20%/T) /(¥2w]’) and (i) P(J)
=exp(— %12/72) /(\2wJ). In the former case the

specific heat C, (on a real lattice) first becomes nega-
tive for z=4, while in the latter z=5 leads to nega-
tive Cy. For model (i), a numerical plot of Svs T in
a real lattice (i) (solid lines) and for a Cayley tree
(dot-dashed lines) for various z is shown in Fig. 1.
The dashed line shows z =200 for a real lattice; the
SK value is indicated on the figure. Our analytical
and numerical results show that dS/dT approaches

— oo as z—o0. Note that the (exact) solution for the
Cayley tree yields a well-behaved entropy. Since S is
non-negative (for sufficiently small z on a real lattice)
and Egs. (7) can never admit a solution of the form
£%0) =0, contrary to a suggestion in the literature,” a
hole in g*(#) is not necessary in order for S to be

before making the ansatz that Gy(hy) =g(hy). The
ansatz that Gy(hy) is uniform implicitly imposes a

temperature-dependent boundary condition; the sur-
face spins are found to have a random external field
distributed according to g7~'(4). The magnetization
and Edwards-Anderson order parameter are given by

> |tanh?Bh| .
[,‘f,]=ﬁm{ta?lh£hlg(h)dh . ©)

The susceptibility is found to satisfy the Fischer rela-
tion: X=pB(1—g¢q) for symmetric distribution func-
tions P(J) =P(—J). We find that S vanishes linear-
ly with T in the form [for symmetric P(J))]:

= (/6 ksT(g70) =26 [ anlg= (12 [ P(D)+0 (1) (10)

M
positive.

We have found that the spin-glass phase on the
Cayley tree has a lower free energy than that of the
paramagnetic phase. This is not so for the real lat-
tice. For the spin-glass phase in the limit z—oo, both
the real lattice and the Cayley tree yield the SK
ground-state energy. A complete study of all ther-
modynamic functions on a Cayley tree suggests that a
well-behaved configuration-averaged theory can be
obtained for this case. The reason that the
configuration-averaged Bethe approximation leads to
slightly unphysical results on a real lattice derives in
part from a factorization assumption used in the
derivation of Egs. (7). Although this assumption is
in the same spirit as the nonconfiguraticn-averaged
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FIG. 1. Temperature dependence of the entropy S/Nkg
for the z values indicated for a Cayley tree (dot-dashed
curves) and a real lattice (solid curves). The inset is an ex-
panded scale plot of the very-low-temperature region.
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Bethe approximation, it seems to violate the normali-
zation conditions on the reduced density matrices.
This problem does not occur in the Cayley tree,
which is much less interconnected, so that the ap-
propriate field distributions factor. In addition, limits
on the validity? of the nonconfiguration-averaged
theory on a real lattice will be discussed in a future
publication.
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