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Scaling function for the critical ultrasonic attenuation in perovskites
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A scaling function is calculated to the lowest order in n ' expansion for the critical ultrasonic

attenuation in perovskites. This yields good agreement ~ith the measurements of Fossheim and

Holt.

Ultrasonic investigation has long been a useful tool
for probing the critical dynamics of the structural
transitions of the perovskites. Since the establish-
ment of the importance of fluctuations in ultrasonic
experiments' in SrTi03 several experimental investi-
gations have been performed on the perovskites. Re-
cently thc attenuation in KMnF3 has been the subject
of a very detailed and careful experimental study by
Fossheim and Holt." The power law for the tem-
perature dependence in the hydrodynamic regime, as
well as the entire scaling function describing the pas-
sage from the hydrodynamic to the critical region was
accurately determined. The temperature dependence
of the attenuation in the low-frequency hydrodynam-
ic region has been studied theorctically by Schwabl'
and Murata. ' but a calculation of the scaling function
has not been attempted before. The purpose of this
Communciation is to provide scaling function to the
leading order in a n ' expansion. The shape agrees
very well with the results of Fossheim and Holt."

The Hamiltonian for the structural transition of the
perovskitcs has been studied by several authors, " It
is well established that the strain fields e„" couple qua-
dratically to the order parameter field $;. The in-

teraction term in the free energy is of the form ev. g„-
where Q„" can have the forms gP,', $;@,, and

P~
—gj with i A j. By a fluctuation dissipation

theorem, the sound attenuation can then be related
to the response functions X~, X2, and X3 correspond-
ing, respectively, to the correlation functions

(Xg X@,'), (g,@,@;4,), nd ((P,' —y,')(4,' —y,')).
One can then write the attenuation per wavelength,
O. k, as

nA. = QAi ImXt(o))

where A; are some constant coefficients. The
response functions have the form

x;(~) =r"'It(~/r) .

The critical exponent xi = o.o, the specific-heat ex-
ponent, while x2 = n+2(@2—1) and x3 = ao
+2($3 —1), where @2 and $3 are the anisotropy
crossover exponents. Near the Heisenberg fixed

Point, @2=$3 and consequently x2 ——x3. The f' ap-
pearing in Eq (2) is tlM ielaxatlon fate for order
parameter fluctuations. In this case of a noncon-
served order parameter, I = I"0~'with z =2, where
K = Kot" is thc inverse correlation length and t is the
reduced temperature. For these systems v = —,. In2

the low-frequency hydrodynamic regime where
co (( I' the functions fl, which are really functions of
i a&/I' because of the relaxational process involved,
can be expanded in powers of this variable and if the
first term is kept yield the answer obtained by Mura-
ta' in this range:

p;=x;+vz, yields pi=1.34 and p2= p3=1.87. For
certain propagation directions certain particular a&'s

arc allowed as has been shown by Murata. '
At this point we have to decide on the strength of

different contributing a; or equivalently the A; of Eq.
(1). Looking at the experimental results of Fossheim
and Holt ' wc find that in the region co « I, the
temperature dependence is t ". This allows us to
infer that, at least for KMnF3 in the directions inves-
tigated, a~ && a2 or a3 and hence Ai && A2 or A3.
Thus in this case, it is not the energy density correla-
tion function which determines the sound attenuation
as is the case for the fluids. 9 " For the fluid systems
it was convenient to calculate X~(cu) in an e expan-
sion. For this system, where X2 and X3 need to be
computed, we find the use of the n ' expansion were
useful.

Turning first to the statics, we note that for both

(P;$,$;Q, ) and (($&' Q,')($,' PJ'—)) the lea—ding
order graph in a n ' expansion consists of the single
bubble of Fig. 1. It is obvious that at D =3 the bub-
ble scales as K

' and hence

X2v
' =x3v ' =1+O(1/n)

The two-loop e expansion g~ves 0.8 for this number
and hence we find that the lowest-order 0 (1/n) ex-
pansion is a good approximation in this case. This is
in contrast to the specific-heat exponent 0.0, which
can be obtained to the leading order in n ' expansion
only by summing over all bubbles, and which turns



RAPID COMMUNICATIONS

O(nl1

FIG. 1. The lowest-order diagram in n expansion for X2

and X3.

out to be given by now
' =—1 + 0(1/n)Th, e ac-

cepted result for n =3 is no/v =—0.18, in strong
disagreement with the leading term in n ' expansion.
However, as argued above, we will not be interested
in this response function in the present work, but in-

stead with X2 and X3, which can be well approximated
by the leading term in the n ' expansion and which
in this case corresponds to the decoupling approxima-
tion. This also implies X2= X3 in the present scheme.

To determine the dynamics associated with the
graph of Fig. 1, we note that at a given value of ~, a
fluctuation of wave number p relaxes according to the
relaxation rate y(p~) = I'0(p +~ ). The time-
dependent correlation function corresponding to the
bubble graph is then given by

Holt' have determined a value for the amplitude of
the relaxation rate that sets the scale by determining
the temperature at which deviation from hydro-
dynamic behavior sets in and requiring this to occur
at co/I'=1. I'= v ' in Fossheim and Holt notation.
%e decided to compare our frequency scale with that
of Fossheim and Holt by requiring that the frequency
IIp at which G ( Qp) = 0.5 be identical to the frequen-

cy 00 at which the experimental scaling function
reaches the value 0.5. This leads to Qo= Qo. Com-
parison of the rest of the scaling function is sho~n in

Fig. 2. The agreement is excellent.
We note that Eq. (9) predicts that G(II) —II 3~2

when 0 ))1. This implies that n, (ro), i.e., the crit-
ical point value of the attenuation as a function of
frequency, will increase as co' 2. This exponent is
inaccurate because of the approximations used in cal-
culating the scaling function. A more accurate value
will now be obtained by the dynamic scaling pro-
cedure shown in Refs. 9 and 11. The critical part of
the sound velocity in the hydrodynamic range is
shown to be given by an expression of the form

g3p
C(r~2) =

2 2 2 exp[ —2y(p, K)ttq] . (5)
4m ~ p2+K2 2 x

—x(
(10)

The corresponding frequency-dependent response
function is

x(~)= ' f, p, , , (6)
p +K IQl+2I0(—p +K )

Defining the reduced frequency II = co/I'0~' and
evaluating the elementary integral' in Eq. (6) gives

i ]/2

(x(o)) = 1+ —I
~Q 2

Thus the attenuation o., which is proportional to
a Imx '(cu), is given by

where x; are the indices introduced earlier and C» are
constants. In terms of the relaxation rate I = I ot'",
Eq. (10) can be written as

Now as we pass into the critical region where
cv && I", dynamic scaling requires the replacement of
I by ~; more correctly by —i ~ as a relaxation pro-
cess is involved. Thus the complex frequency-

&/4

OJ 1 0n=A ——1+]cQ 4
cos —tan )0

2 2

I I I I

Longitudinal k II [110]
KNnF3 (Somp(e K)

&/40G(A) =
2

I+ cos —tan ——I . (9))0
2 2

where A is some undetermined constant. The scaling
function G(Q) for o, has been defined by Fossheim
and Holt" so that it is normalized to unity in the hy-
drodynamic region. Choosing the same convention
we then find

0.5

0.3

0,1

/
0

(&t) '

y +~~—~
o 95 8Hz
e 155MHz

~3»5MHz
~470 8Hz
~ 305MHz

I I I

To compare with the experimental data of
Fossheim and Holt, we note that the scale has to be
fixed. Unlike the case of fluids ~here the scale is
uniquely fixed from the measurement of some other
property, here there is a freedom. Fossheim and
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FIG. 2, Comparison of the theoretical scaling function
(solid curve) with the data of Fossheirn and Holt (Refs. 2
and 3).



3406 RAPID COMMUNICATIONS

dependent velocity at T, is given by

z(/2v

AU( ) X
—io) (12)

0

Here a is a number of order unity that can be deter-
mined from the scaling function given in Eq. (9) and
is found to be 6.4. The real and imaginary parts of
Eq. (12) now give the dispersion and attenuation per
wavelength at T = T,. It is then easy to see that

1-Z,./2V
0., ~co ' . For the experiment of Fossheim and
Holt" where x; =0.5, 0., ~ co instead of the ~ '
obtained on the basis of the large-D limit of Eq. (9).
It should be noted that once the cl is known from the
hydrodynamic data and I 0 is fixed, the dispersion and

the magnitude of the attenuation at the critical point
are fixed unambiguously. This can be checked by fu-
ture experiments.

Note added in proof. After this work was submitted
for publication it was pointed out by F. Schwabl and
H. Ivo that they have attempted to obtain a scaling
function by the ~ expansion. This has appeared in

Ferroelectrics 35, 215 (1981).
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