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2
The O{n) model consisting of n-component spins S with the constraint S =A. in a mag-

netic field h is studied. It is shown that mathematically it is possible for the susceptibili-

ty to become negative for n & 1, which implies a violation of convexity properties for
n & 1. In a mean-field approximation, the susceptibility g„and the specific heat C„are
positive near the critical temperature T, for all n )0 in contradiction with the e expan-

sion, but they become negative at very low temperatures for n & 1. It is also shown that
the spontaneous magnetization is not a monotone function of temperature for n & 1. Our
calculation also supports the conclusion drawn by des Cloizeaux that the low-temperature

phase of the 0{0)model describes the semidilute regime of the polymer system as h ~0.

The O(n) model consisting of classical n

component spins S= IS'a', a=1, . . . , n} has

played a very important role in the modern statisti-

cal mechanics of phase transitions and critical phe-

nomena. While this model is defined in a natural

way for all positive integers n, it is of interest to
also consider what happens for other values of n.

In particular, as has been pointed out by de
Gennes' and des Cloizeaux, the limit as n~0
corresponds to self-avoiding walks, and is hence

of interest as a model of polymers.
However, this model seems to exhibit certain

thermodynamic peculiarities for n & 1. Balian and

Toulouse have shown that the heat capacity C„
for a one-dimensional chain becomes negative at

very low temperatures for n & 1. For the same

values of n, the longitudinal susceptibility X„cal-
culated in an e expansion (a=4—d) (Refs. 7 and 8)
becomes negative at temperatures T below the crit-
ical temperature T, in the limit as the magnetic
field vanishes. Negative values of these quantities
violate the standard convexity conditions of equili-

brium statistical mechanics, conditions' '" which

are surely fulfilled for any integer n & 1. In addi-

tion, Wheeler and Pfeuty' have argued that at
n =0 the convexity conditions must be violated

above T, if scaling is obeyed. On the other hand,
Moore and Wilson have argued on physical
grounds that X„must be positive and have pro-
duced an approximate calculation in which this is
indeed the case.

In this paper, we shall study the thermodynamic

properties of the O(n) model by studying a single

site in a magnetic field, a mean-field approxima-

tion to the many-site problem, and by examining

the ground-state energy as a function of n The.
first of these exhibits a negative X„(in large field

h) for any n & 1, contrary to Moore and Wilson.

The mean-f"ield calculation produces a positive X„
and C„near T= T, for all n as n ~0, in contrast
to the e expression, but both quantities become
negative at sufficiently low temperatures for
n & 1 (h ~0). In addition, the spontaneous mag-
netization m„ is not a monotone decreasing func-
tion of T for n & 1, and for s n =0, m„ is actually
zero at T =0. That this last result, which has not
previously been pointed out, is not simply an ar-
tifact of the mean-field approximation is supported
by a consideration of the ground-state energy.
While convexity does not imply that rn„must de-
crease with T, the inequalities of Griffiths' and
Ginibre' imply that this is the case for n = 1 and

2, and it is believed to be true for integer n & 3.
The presence of these anomalies suggests that the
O(n) model for n & 1 may be quite different from
n & 1. However, we have other arguments (to be
presented elsewhere) which suggest that certain
violations of convexity can also occur for n & 1

when n is not an integer.
Consider a single spin S= jS' ', u = 1, . . . , n I

in a magnetic field h along the a = 1 direction.
Throughout this paper, we will assume that the
length of the spin is constrained: S =A, . Then the
partition function involves only the angular in-
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tegration over dQ„and is given by (H =h /T, and
the Boltzmann constant ks ——1)

z„= Idn„e"""/f dn„

= I (n/2)
vs

2

I I \

A

(a) (b)

where I„(x) is the modified Bessel function of ord-
er v. The magnetization m„ is given by

m„=y„(H,X)=v u„„(v ZH)/I, „„, , (v ),H)

FIG. 2. The case A, =n. gp and Cp are negative below

T =T, /2.

The ground-state energy Es(A, ) of 4 „ is given

which also defines y„(H, A, ). For H « 1,
m„=H+0(H ) while for H » 1, we have

m„=vX (n ——I )/2H +0 (I/H~) .

It is evident from (2) that the susceptibility
X„=(n —1)/(2TH )+O(1/H ) and becomes
negative for n & 1(H » 1), while it remains posi-
tive for H « 1. The behavior of m„ is shown
schematically in Fig. 1 for n & 1 and 0& n & 1

separately: we note that m„, i.e., yn is not mono-
tonic for n &1.

The Hamiltonian of the system of E spins is
given by

~„=—JgS, S, —h+S,"',
(ij& s

where J& 0 and h is the external magnetic field in
the a =1 direction which breaks the 0 (n) symme-
try of the first term, and the length of each spin S;
is constrained: S;=k. We will be considering the
following two cases: (a) A, =n and (b) A, = l. The
analogy with the polymer system is obtained for
A, =n. At first it appears that the two cases are
very different in the n —+0 limit. However, we will

see below that they both belong to the same
universality class.

Es()(, ) = E(Jqi—,/2+ v Ah), (3)

where q is the coordination number of the lattice.
This is the energy of the system at T =0. Let
e„(T,A, ), m„(T,A, ), and X„(T,A, ) denote the internal

energy, the magnetization, and the susceptibility
per particle, respectively. Setting h =0 we obtain
from Eq. (3)

T=0: e„=—Jqk, /2, m„=v A, ,X„=O (4)

where m„=m„(T,A, ) is the average magnetization

(see Figs. 2 and 3 for details for n ~0). It should
be remarked that the derivation of (4) is not based
on any approximations.

For A, =n, mo ——0 for n =0 at T =0. Therefore,
it is possible that (i) mo(T 0) remains zero every-
where with some singularity at T =T, and is
indeed the case in one dimension, or (ii) I?Io(T,O)

has a "humplike" behavior between T =0 and
T = T, as shown in Fig. 2(a). We will now show
that at least in the mean-field approximation,
m„(T,A, ) is not a monotone decreasing function of
T. For this, we rewrite 4 „ in the following way:

A „=—g S,'. SJ —QS;.(Jqrn„+h)
(ij) i

+ —,NJqmn

mo= a

Xo co

0& Il&1
m = I.0-- , T=

I
I

0 A

(o)

q
&o= z

0,
8 c~

(b)

T=
I
I
I

A

FIG. 1. The curves for m„or y, . The solid curve is
for n & 1 and the broken curve is for 0 & n & I.

FIG. 3. The case A. =1. mp and 6'p are monotonically

increasing functions and become infinite as T~T, = oo ',

Xp and Cp are always negative.
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per particle and S~ ——S;—m„. In the mean-field

approximation, we neglect the first term. Then the
free energy per particle co„(T,A, ) equal to lnZ„/N
in the limit N~ ao, where Z„ is the partition func-
tion, is given by

co„(T,A, )=- (o —H)
2J( q

+inI'(n/2)(~io/2)' "~'I„~, ,(v Aa), .

where 0.=Kqm„+H, K =J!T,and H=h/T.
Minimizing co„with respect to 0., we find that m„
is given by

and shows clearly that Cp(T, O) &0 for T & T, /2.
The behavior of Cp(T, O) is shown schematically by
the dashed curve in Fig. 2(b). It is easily seen that
for T) T& co=0, and Cp ——0. As T~O+,
Co(T,O)~ —1. However, it can be shown that for
any arbitrary n, C„(T=0,0)= —(1—n)/2. Thus,
Cp(T =0,0)= —1/2 and this explains the portion
AB of the curve in Fig. 2(b). It is easily seen that
X„and C„remain negative near T =0 for
0 g n & 1. However, as n ~1, these negative por-
tions disappear and X„and C„become positive for
all T. Near T =T„ they remain positive for all n.

Setting =1 and taking the h~0 limit in Eq.
(5), we find that mp(T, 1) must satisfy

m„(T,X)=(oH)/K' q—=y„(a,A. ) . (5)
mo=Io(Kqmo)/I —i(Kqmo) . (7)

For h =0, one is looking for the intersection of
y =a/Kq and y =y„(o., A, ). It is evident from Fig.
1 that (i) m„(T =O, A, ) =&1(,, and (ii) m„(T,A, ) is
not a monotone decreasing function of T for n & l.
In the following, we will be chielly interested in
the case n~0. Moreover, we will be considering
the limit A~0.

Setting A=n an, d taking h —+0 limit in Eq. (5),
we find that the spontaneous magnetization
mp ——mp(T, O) for n —+0 is given by

mo ——Kqmo/[1+(Kqmp) /2]

and has the following nonzero solution
(Tp T, =Jq):——

mo(T, O)=(1/To)+2T(T, T), T & T, .—

For T) T„mp(T, O) =0 [see Fig. 2(a)]. The sus-

ceptibility is given by

1/(T T, ), T) T, —
Xp(T, O) =

(1/2To)(2T —T, )/(T, —T), T & T,

[see the dashed curve in Fig. 2(a)]. The most im
portant observation is that Xp(T, O) &0 for
T & T, /2. For T) T, /2, Xp( T,O) )0. For
T~O+, we find that Xp(T +0+,0)= —1/2—Tp.
However, for T =0, we know from Eq. (4) that
Xp(T =0,0)=0 and this explains the portion OA in
Fig. 2(a). The energy per particle ep(T, O)

=Bcvo/M (ep is related to the usual energy per
particle ep via ep ———ep/J) is given by [see the
solid curve in Fig. 2(b)]

eo(T, O) =—(T/J)(1 —T/T, ) )0 (T & T, ) .

At T =0, eo agrees with the result ep(T =0,0) =0.
The specific heat Cp(T, O) is

C (T,O)=(1 2T/T, ), T&T, —

Equation (7) always has a nonzero solution for all
values of T, i.e., there is a phase transition at infin-
ite temperature Tp ao. The cu——rve for mp(T, 1)
starts at unity at T =0 and rises steadily until it
approaches infinity as T~T, = ao [see the solid
curve, Fig. 3(a)]. The susceptibility near T =0 is

Xp( T 1 ) = —T/[2Tp(2To+ T)] whereas as T~ ao,

Xp( T 1 ) = —1 /2Tp, and is shown schematically by
the dashed curve in Fig. 3(a).

The behavior of this model with 1,=1 can easily
be understood in terms of the model with A=n by.
observing that the two systems are identical under
the following mappings: S(1)=S(n)/v n,
K(1)=nK(n), and H(1)=VnH(n), where the ar-
guments n or 1 refer to the two cases (a) A=n or,
(b) A, = l. Thus, the two cases belong to the same
universality class. We note that
m„(T(1),1)=m„(T(n), n )/v n which ensures that
m„(T =0, 1)=1 [see Eq. (4)]. We also observe that
the temperature scales of the two systems are relat-
ed via T(1)=T(n)/n The critic. al temperatures of
the two systems are therefore related through
T, (1)= T,(n)/n. It should be evident that a van-
ishingly small neighborhood around T(n) =0 is
mapped onto the whole T(l) axis [except a vanish-

ingly small neighborhood around T(1)= ao] and
the rest of the T(n) axis is mapped onto the above
vanishingly small neighborhood around T(1)= ao

as n~0. It is easily shown that
X„(T (1),1)=X„(T (n ),n ). This implies that the
portion OA in Fig. 2(a) has been mapped onto the
portion OA in Fig. 3(a) covering the "whole" tem-
perature range [except a vanishingly small neigh-
borhood around T(1)= ao]:

Xo( T~0+ 0)=Xo( T~ ao 1 ) = —1 /2T o

The rest of the curve in Fig. 2(a) has been mapped
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on at infinity in Fig. 3(a).
One can also show that

C„(T(1),1)=C„(T(n),n). Thus, the specific heat
also becomes negative for n =0, similar to case (a).
The functions Eo(T, 1) and Co(T, 1) are shown by
the solid and the dashed curves in Fig. 3(b). At
T =0, eo(T =0, 1)=q/2 and agrees with the result
that eo(T =0,1)= —Jq/2 [see (4)J (remember that

eo———eo/J) and Co(T =0,1)=—1/2. As
T~T~ = (x), 6~ Oo RQd Co~—1. Thus, thc por-
tion AB of Fig. 2(b) has been mapped onto the

whole portloil AB iii Fig. 3(b).
Before we end, we wish to consider the relevance

of our mean-field calculation for the polymer sys-

tcET1. As h ~0 thc polymer dcnsEty

Pi =Eeo(T,O) =1—T/T, and the polymer chain

density $~~0 for T & T, . Therefore, in the
mean-field approximation used here, we find that
the semidilute regime characterized by Pi « 1 and

P&~0 is described by a small-temperature regime

defined by T =T, (1—Pi) as h~0. In this respect,

our RnalysEs seems to provEdc R support fol thc
conclusion drawn by dcs Cloizeaux that the low-

temperature phase of the 0(0) model provides a
description of the semidilute regime in the limit

h ~0. This is very important since the analogy be-

tween the polymer system and the 0 (0) model has

been established only at high temperatures where

the series expansion makes sense.
Let us briefly summarize our important results

for n & 1, We have shown that the spontaneous

magnetization is not a monotone function of T.
For A, =n =0, m„ is identically zero at T =0. This

observation is independent of the mean-field ap-
plox1matEGQ. If one bclicvcs that Pin 18 nonzero
just below T, and is a continuous function of T,
then there must be a range of T near T =0, where

ill„18 EnclcasEng wEth T for Pf =0. ThUs, w„ is not
R Inonotone functEon of T for n =0. The mean-

fieid calculation shows this to be the case for all

n g 1. It will be reported elsewhere that the spin-
wavc RnalysES prcdEcts that Pl„ ls RQ Encrcas1ng
function of I for n & 1 and a decreasing function of
I for n y 1 near T=O. This confirms the mean-

flcld result glvcn above. Also 7~ Rnd C~ can
indeed become negative. However, near T =T„
they both are positive, in contrast to the e expan-
sion. It is conceivable that the mean-field approxi-
mation is not physically meaningfu. But then

again, Et Es concclvRblc thRt thc E cxpansEGQ can
not be trusted for n & 1. The arguments of
%heeler Rnd Pfcuty arc vR11d Ef thc critical ex-

ponent yp 1. In the mean field, y= 1; therefore,
their proof docs not work. However, if the real
system does have positive Xo and Co near T, as the
mean field implies, one might have to abandon

scaling for n =0.¹readded in proof. Recently, Wheeler and
Pfeuty' have also independently noted thc non-

monotoniclty of tel„ foI' n ~0.
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