Distinct ln T-dependent resistance of $Ce_{1,2}Mo₆S₈$ under high pressure

M. K. Wu, V. Diatschenko, P. H. Hor, S. Z. Huang,* T. H. Lin, R. L. Meng,[†] D. L. Zhang,[†] and C. W. Chu Department of Physics and Energy Laboratory, University of Houston, Houston, Texas 77004 (Received 12 June 1981; revised manuscript received 20 November 1981)

> We have measured the resistivity and ac magnetic susceptibility of $Ce_{1,2}Mo_6S_8$ up to \sim 120 kbar down to 1.2 K. The antiferromagnetic state is first enhanced and then suppressed by pressure. Meanwhile the resistance becomes to increase logarithmically with decreasing temperature over a large temperature range. The results are discussed in terms of existing models.

Since the $4f$ level of the Ce atoms is close to the Fermi level, the interaction between the otherwise completely localized $4f$ electrons and the conduction electrons is strong. As a result, the Ce atoms can be found in a magnetic, a Kondo, or a nonmagnetic state, depending on the Ce-Ce interaction strength, which is variable by compressing or alloying. The study of the competitions between different magnetic interactions, especially in concentrated magnetic sys t_{trans}^{1-5} has been of great current interest. Unfortunately, the complexity of the phase diagrams and the large phonon contribution to the resistance of the compounds previously investigated make the interpretation difficult. $Ce_{1.2}Mo₆S₈$ (Ce-Mo-S) crystallize in a ternary Chevrel phase 6 in which the Mo clusters form a rhombohedral lattice with open channels to accommodate the Ce atoms in an orderly fashion. In contrast to expectations, Ce-Mo-S is not superconducting. Instead, it has been demonstrated⁷ that Ce-Mo-S orders antiferromagnetically at \sim 2 K and can be treated as a Kondo system. We therefore decided to examine the Ce-Mo-S Chevrel compound under high pressures. As pressure increases, the antiferromagnetic state of the compourid has been observed to be first enhanced and then suppressed, and the resistance to become a logarithmically increasing function of decreasing temperature over a wide temperature range. The results will be discussed and compared with predictions of existing models.

We have measured the ac electrical resistance R and the ac magnetic susceptibility χ on eight Ce-Mo-S samples under hydrostatic pressure up to 18 kbar and quasihydrostatic pressure up to 120 kbar between 1.2 and 300 K. The compacted samples were prepared by the sintering technique. 6 The x-ray diffraction pattern showed only a single Chevrel phase with lattice parameters $a = 9.12$ Å and $c = 11.47$ Å in excellent agreement with previously published results.⁶ The resolution of our x-ray analyses set a limit of $\langle 5\%$ for any second phases, should they exist. Within the resolution of $\pm 10\%$ for the energy dispersion analysis of x-ray, the compositions detected agreed with the nominal values of our samples. The standard four-lead technique was employed for

the *measurements and an inductance bridge* method for the X . Both were operated at 23.5 Hz. The hydrostatic environment up to \sim 18 kbar was provided by a modified high-pressure clamp⁸ with the 1:1 n-pentane isoamyl alcohol fluid mixture as the pressure medium. The pressure was determined by a superconducting Pb manometer at low temperature. Compacted sintered samples of dimensions
 $-3 \times 1 \times 1$ mm³ were used for hydrostatic pressure measurements. The quasihydrostatic pressures up to -120 kbar were generated by using the Bridgman anvil technique $⁸$ with solid steatite as the pressure medi-</sup> um. The applied load, at room temperature, to the anvil set was calibrated against a superconducting Pb manometer in a different run to avoid interference with the R of the samples. Because of the difference in packings from run to run, the quoted quasihydrostatic pressure in this study can be underestimated as much as 15% at 120 kbar. The samples used for these quasihydrostatic measurements were the pulverized sintered compacts of Ce-Mo-S. The sample under pressure was in a disk form with an estimated thickness of 0.01 mm. The resistivity of the samples at 4 K under 120 kbar is estimated to be in the $m\Omega$ cm range.

The temperature dependence of *at ambient pres*sure previously observed⁷ was reproduced in our Ce-Mo-S samples. As shown in Fig. 1, with decreasing temperature, R first decreases monotonically then rises below -15 K, but with a sharp drop at -2.5 K. The R minimum at 15 K and the sharp drop at \sim 2.5 K have been attributed⁷ to the Kondo (K) resonance scattering and an antiferromagnetic (AF) ordering, respectively. Under hydrostatic pressures, as shown in the same figure, the room-temperature R decreases rapidly and the low-temperature R rise grows, with only a slight change in the minimum R . At the same time, the temperature T_m for the R minimum is shifted upward, whereas the temperature T_p for the R peak is enhanced initially, but suppressed above ~ 10 kbar. The low-temperature X was simultaneously monitored as a function of temperature T at different P's. As displayed in the insert of Fig. 1, the small χ rise, signaling the onset of the AF ordering, increases

25 3377

FIG. 1. The T dependence of R and χ of Ce-Mo-S under hydrostatic pressures.

in magnitude and shifts toward higher P up to \sim 13 kbar. The reverse is true above \sim 13 kbar. The above observations are completely reversible on the removal of P . Figure 2 shows the R results normalized to their 300-K values as a function of T under quasihydrostatic pressures. The similar T dependence of curve 1 at 1 bar (obtained with the hydrostatic pressure clamp) and curve 2 at \sim 1.5 kbar (the minimum P required to establish good electrical contacts of the leads to the sample between the Bridgman anvils) indicates that Ce-Mo-S is not sensitive to the different P conditions in the two high-pressure techniques employed for the present study. As shown in Fig. 2, T_m continues to increase and the low-temperature R rise evolves into a distinct $\ln T$ dependent R over an ever-increasing T range as P increases. Meanwhile, the slope of the R -ln T plot increases. For example, at \sim 120 kbar, R increases linearly with decreasing $\ln T$ from 200 down to 4 K, resulting in an \sim 18-fold increase of R. Curve 4 in Fig. 2, taken after curve 9 on the partial removal of P , demonstrates the reversibility of the P effect on R by use of the Bridgman anvils. Unfortunately, the exact P is difficult to determine during the P reduction cycle with our experimental arrangement. The R , at 300 K under P , reveals only a smooth monotonic decrease and a small minimum at ~ 65 kbar when the R minimum in Fig. 1 is shifted to above 300 K.

As mentioned earlier, the R drop and the χ rise in Ce-Mo-S represent a transition to an AF state, 7 con-

FIG. 2. The T dependence of R under quasihydrostatic pressures except curve 1 which was for a compacted sintered sample determined at atmospheric pressure. Curve 4 was obtained during a P-reduction run.

sistent with the specific-heat and dc magnetic susceptibility measurements at 1 bar. T_p and T_0 defined in Fig. 1 are therefore a direct measure of the Néel temperature T_N of Ce-Mo-S. As shown in Fig. 3, both T_p and T_0 are initially enhanced and then suppressed by P , forming the phase boundary between a paramagnetic and an antiferromagnetic state. In other words, the AF interaction is a nonmonotonically varying function of P with a peak at \sim 10 kbar.

It is known that K scattering due to noninteracting magnetic impurity gives⁹ rise to a resistance ∞ *JN* ln*T*, with J being the negative exchange interaction parameter and N the density of states at the Fermi level. The combined effect of this Kondo and the phonon scattering results in an R minimum. The R minimum has therefore been attributed to the K scattering and T_m taken as a qualitative measure of the Kondo temperature T_K . Since T_K is always lower than T_m , the dashed curve in Fig. 3 represents schematically the T_K -P relation. Both T_K and T_m are increasing functions of P up to \sim 120 kbar. Since T_K is $\alpha \exp(1/JN)$, a positive $\partial |JN|/\partial P$ is inferred. The same conclusion can also be drawn from the everincreasing slope of the $R \cdot \ln T$ plot with P in Fig. 2. This is because $\partial R / \partial \ln T$ is α JN due to K scattering.⁹ The positive P effect on $|JN|$ can be understood by considering the J which¹⁰ is $\alpha |V_{kf}|^2/|E_f - E_F|$, with V_{kt} representing the mixing between the conduction and the 4f electrons, E_f the 4f level and E_F the Fer-

FIG. 3. The P dependence of T_m , T_p , and T_0 . Symbols \bullet , Δ , and \times represented runs under hydrostatic pressures and the rest under quasihydrostatic pressures. The dashed curve was drawn schematically to represent the T_K -P relation.

mi level. A positive $\partial |JN|/\partial P$ is then realized either through the increasing mixing between the conduction and 4f electrons due to 4f-band broadening, or through the upward lift of E_f toward E_F by P. Since T_N is $\alpha J^2 N$ for an Ruderman-Kittel-Kasuya-Yosida antiferromagnet like Ce-Mo-S, such a positive $\partial |JN|/\partial P$ up to \sim 120 kbar would also imply a positive $\partial T_N/\partial P$ or $\partial T_0/\partial P$ up to \sim 120 kbar, in disagreement with our observation. This suggests the possible existence of a competition between various magnetic interactions.

To examine the competition between different magnetic interactions, let us consider the model proposed by Doniach¹¹ for a concentrated magnetic system called Kondo lattice. According to this model, a transition from an AF to a K state will result when J exceeds a critical value. Calculations made on a one-dimensional analog with one localized spin per cell at 0 K support the proposition, although mathematical difficulty prevents similar calculations from being performed on a three-dimensional system. A qualitative argument for the proposition was also made¹¹ by comparing the binding energies of the two states. Since they are $\propto \exp(1/JN)$ and $\propto J^2N$ for the K and AF states, respectively, when $|JN|$ is small, the AF state dominates, while large, the K state prevails. This is in agreement with the phase diagram shown in Fig. 3. The suppression of the AF state by P may therefore be attributed to the interference between the AF and K states, instead to the $4f$ band broadening. Such a band broadening and the ensuing delocalization of the $4f$ moment would have prohibited us from observing the continuous increase in the K scattering after the complete suppression of AF state. Preliminary results on pseudoternary compounds of Ce-La-Mo-S, where J is varied, seem to be consistent with such a model. It should be noted that a similar competition but between a spin-glass and a K state has been previously proposed¹² and observed.¹³

In the above discussion, the $\ln T$ dependence of R has been associated with the K scattering. The unusually rapid suppression of the superconducting transition temperature of the Chevrel ternary La-Mo-S by Ce-Mo-S strongly suggest' that Ce-Mo-S can be treated as a Kondo system. The attribution of the low-temperature R rise at 1 bar to K scattering is hence all the more natural. Since the $\ln T$ dependence of R at high P is a continuous outgrowth of such a low-temperature *rise, its association with* the K scattering appears reasonable. It should be pointed out that the R considered here is the total resistance of Ce-Mo-S without the subtraction of the background contribution, as ordinarily done for a K system. This may be justifiable in view of the large suppression of R by P above T_m . However, the large T range over which the $\ln T$ dependence is valid, the large R increase with decreasing T , and the lack of indication of an *saturation at low temperature are* in strong contrast to expectations^{9,14} of a K system. In addition, the model on Kondo lattice is yet to be proved theoretically for a three-dimensional system. Therefore, the possibility of an undetermined type of magnetic excitations responsible for the $\ln T$ dependence cannot be ruled out at the present time. The large resistivity of Ce-Mo-S, approximately a few $m\Omega$ cm, at 4 K and 120 kbar is large for magnetic scattering in a metal. Effects on R , the possible creation of a gap¹⁵ as |J| increases, and the localization of defect¹⁶ in Ce-Mo-S under P should also be examined. To investigate some of these possibilities, transport measurements under high pressure in the presence of strong magnetic fields are under way on the Ce-Mo-S and alloyed compounds.

The work at Houston is supported in part by NSF under Grant No. DMR 79-08486 and the Energy Laboratory of the University of Houston. Discussion with P. H. Schmidt, L. DeLong, R. Guertin, W. Y. Lai, B. Maple, and R. Shelton are greatly appreciated.

- 'Present address: IBM Research Laboratory, San Jose, Calif.
- [†]On leave from the Physics Institute, Chinese Academy of Sciences, Beijing, China.
- 1 For a review, see Valence Instabilities and Related Narrow Band Phenomena, edited by R. D. Park (Plenum, New York, 1977); and J. Phys. (Paris) 40, C5 (1979).
- ²A. Eiling and J. S. Schilling, Phys. Rev. Lett. 46, 364 (1981), and references therein.
- 3K. A. Gschneider, Jr., P. Burgardt, S. Legvold, J. O. Moorman, T. A. Vyrostek, and C. Stassio, J. Phys. F 6, L49 (1976); T. G. Ramesh and V. Shubha, *ibid.* 10, 1821 (1980).
- 4M. Nicolas-Francillon, A. Percheron, J. A, Achard, 0, Gorochov, B. Cornut, D. Jerome, and B. Coqblin, Solid State Commun. 11, 1525 (1975),
- 5A, S. Edelstein, C. J, Tranchita, O. D. McMasters, and K. A. Gschneider, Jr., Solid State Commun. 15, 81 (1976). 6 For a review, see \varnothing . Fischer, Appl. Phys. 16, 1 (1978).
- ⁷M. B. Maple, L. E. DeLong, W. A. Fertig, D. C. Johnston,
- R. W. McCallum, and R. N. Shelton, in Valence Instabilities and Related Narrow Band Phenomena, edited by R. D. Park (Plenum, New York, 1977), p. 17; R. W. McCallum, Ph.D. thesis (University of California, San Diego, 1977) (unpublished).
- SC. %.Chu, A. P. Rusakov, S. Huang, S. Early, T. H. Geballe, and C, Y. Huang, Phys. Rev. B 18, 2116 (1978).
- ⁹J. Kondo, Prog. Theor. Phys. 32, 37 (1964); Solid State Phys. 23, 183 (1969).
- ¹⁰J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
- ¹¹S. Doniach, Physica (Utrecht) $91B$, 231 (1977); R. Jullien, P. Pfeuty, J. N. Fields, and S. Doniach, J. Phys. (Paris) 40, C5-293 (1979).
- '2U. Larsen, J. Appl. Phys. 49, 1610 (1978).
- ¹³J. S. Schilling, Adv. Phys. 28, 657 (1979).
- ¹⁴D. R. Hamman, Phys. Rev. 158, 570 (1967).
- ¹⁵R. Jullien and P. Pfeuty, J. Phys. F 11, 353 (1981).
- ¹⁶P. W. Anderson, Phys. Rev. 124, 41 (1961).