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Low-temperature magnon thermal conductivity of ferromagnetic insulators with impurities
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The spin-wave thermal conductivity at low temperatures has been calculated for fer-

romagnetic insulators containing magnetic defects. The temperature range is such that
we neglect those magnon scattering processes which can redistribute the magnon distribu-

tion, such as the magnon-magnon interactions. The effect of the external magnetic field
has also been studied, and we observe that within the validity of the energy relation

E(k)= ak, the magnon conductivity has a T dependence.

I. INTRODUCTION

Heat conduction in the magnetic insulators can
be adequately described in terms of the energy
transport by the elementary excitations such as
phonons' and magnons. The phonon conductivity
can be elegantly calculated by Callaway's ap-
proach and its modifications. Erdos and Kaza-
kov and Nageav calculated the phonon conduc-
tivity at very low temperatures of the nonmetals,
where the phonon-phonon scattering processes can
be neglected by considering the boundary condi-
tions in terms of the phonon distribution functions
consistent with the experimental situations.
Kumar and Joshi successfully extended Kazakov
and Nageav's calculations within the relaxation-
time approximation to calculate the phonon con-
ductivity of doped Ge systems for the temperature
range 0.5 —4.2 K. The expressions of Kumar and
Joshi have been modified by Dubey and Nava
et al. to explain the phonon conductivity of the
different nonmetals. The spin-wave thermal con-
ductivity or the magnon conductivity has been pre-
viously calculated by Sato. Subsequently, Douthett
and Friedberg, ' Douglass, ' Luthi, ' and Callaway
et al. ' ' suggested different expressions to calcu-
late the magnon conductivity. It is observed that
in the specific-heat and the thermal conductivity
calculations at the liquid-helium temperature
range, the spin-wave contributions exceeds the pho-
non contribution. Callaway and Boyd' extended
their previous calculations to analyze the magnon
conductivity of the impure systems. They have
also studied the effects of the external magnetic
field on the magnon conductivity. Erdos' extend-
ed his previous calculations to calculate the spin-
wave thermal conductivity containing random im-
purity centers. Erdos observed that at very low

temperatures in certain cases, the mean-free path
due to the magnon-magnon scattering processes be-
comes very large at very low temperatures, and the
phonon conductivity is small as compared to the
magnon conductivity. For some systems, even
when the Curie temperature is small compared to
the Debye temperature, the magnon-magnon
scattering still remains important. Bhandari and
Verma' analyzed the thermal conductivity of yttri-
um ion garnet (YIG) by adding the phonon and the
magnon conductivities [Kr(T)=K~~(T)+ K~(T)].
They observed that the magnon-magnon interac-
tion and the spin-phonon interaction can be
neglected without much error at very low tempera-
tures. Understanding the importance of the mag-
non conductivity of the ferromagnetic insulators,
ferri-, antiferri-, and antiferromagnetic insulators,
we calculate the magnon conductivity by solving
the Boltzmann equation as previously done by Ka-
zakov and Nageav and Kumar and Joshi at very
low temperature.

II. THEORY

We assume that the thickness of the crystal
along the x axis direction is I. and the two ends
are in contact with the two thermostats of the
magnon black bodies at temperatures T(0) and
T(I.) such that T(0))T(L). The corresponding
magnon-distribution functions may be defined as

n (O, k, 8)= exp —1
E(k)

n+(T, k, (0)) (0&8&m/2)
0 (mf2&8(m),
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n (L,k, 8)= exp
E(k) —1

ks T(L)

0 (0&8(ir/2)
n (T,k, (L)) (ir/2&8(m). (2)

with the exchange integrals J', and J refers to the
host. As the defect scattering does not redistribute
the magnons, so the distribution relaxes to the iso-
tropic function n (x,k). Following Kazakov and

Nageav, and Kumar, ' we get

8 is the angle between the wave vector k and the
x axis. The spin-wave energy can be written as

E(k)=ak

1n++—
2

n(x, k, 8)= '

1
n +—

2

Uj&kj

L —x n —n+

Uj vkj cos8

(0(8 &u/2)

(7)

(ir/2 & 8 & ir ).

The kinetic equation, suitable for the situation
under study, can be written as

n (x,k, 0)ujcos0=—n (x,k, 8)—n (x,k)

where

n (x,k)= —, d8 sin0n(x, k, 0) .
0

Uj is the magnon velocity with the polarization j.
7 kj is the relaxation time of the magnon scattering
processes which are mainly elastic in nature. In
the present work, we neglect those processes which
redistribute the magnon distribution such as the
magnon-magnon scattering processes. Assuming
only defect scattering, the relaxation time can be
defined as

E(k) =aki =fico i,kj ~

we find that the magnon velocity comes out to be

ul(k)= k . (12)

The heat flux of the magnon gas in the x direction
can be expressed as

Q„(k)=Qfd'k n (x,k)E(k)uj„(k) .

The magnon velocity uj( k ) can be obtained as

BC01 ~

u, (k)=

—1 4
~kj =~m& Uj

2
V0Uj

2 S'
1 ——

S

The x component of the magnon velocity comes
out to be

20!
uj„(k)= k cos8 .

fi

Jr
+ 1+——2——

J J S

The heat flux for the magnon gas is obtained as

Q„(k ) =0fd k n (x,k)E (k ) k cos8 .

Here V0 is the atomic volume, S is the spin of the
atom which constitutes the magnetic defects with

spin S' and is coupled to the nearest neighbors Equation (14) can be further simplified as

(14)

Q„(k)=Q„'+Q„=Qf 4irk dk —,f d8 sin8 cos8(ak ) kn(x, k, 8)

4a m.O m'

f k dk f d8 sin8 cos8n (x,k, 8)+f d8 sin8 cos8n (x,k, 8)
0 0 m/2

Substituting the value of n (x,k, 8) from Eqs. (7) and (8) in Eq. (15), we get integrals of the form

m/2 1 x
I1 —— d8 sin8 cos8 n+ —— n+A k

0 2 Ujcos8

1 L —x 4I2 —— d8 sinO cos8 n +— n A k
m/2 2 Ujcos8

(16)
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Finally, we get
3

(2a) mQ 1 t. kaT(0}
ft 2 "0 a

m/2 1 L
t dt d0 sin0 cos0 n+ —— n+A~

0 2 2 cos0

ka T(0) t, (17a)

T 3

(2a)'~Q 1 f- 4T(L}
2~0 a

1 L
t dt I d8 sin9 cos8 n +— n

n'/2 2 Zcos0

ka T(L)
(17b)

simplify them further as
5

ka T(0)
a e' —1

——,LAm

'5 " t4dt
+ —,LA

a e' —1

Equations (17a) and (17b) can be integrated to
3

. (2a) ~Q kaT(0) f ~ t~dt

2~

(2a) mQ ka T(L)
2r,

Substituting

t
"dt

e' —1

and

Equation (25) is almost similar to the magnon
conductivity expression as obtained by Erdos.
Callaway's expression for the magnon conductivity
can be written as

T(0)+T(L)=2T,
T(0)—T(L}=b,T .

(20)

2~Qka(kaT)' " t'e'
K (T)=

(e'—1)
(26)

Assuming VT && T, we get
3

(2a) nQ 4T bT
2A a

At very low temperatures, one can take the limits
of the integration t~ as oo. The integration can be
shown as

X 1 ——,IA

'2
kaT 5 g4
a 3gq

(21)

e't dt 3y" t dt
(e' —1) P (e' —1)

(27}

2
kgT

x a
kaT

1 ——,LA~ a g

If we set

(2a) ~QkaL kaT
Kp(T) =3

a

we can write Eq. (23) in the form

E (T}=K (T) p1 —6LA~

2
kaT +4

The thermal conductivity can be defined as

Q„=K(T)VT,

where VT= (b, T)/L. We therefore obtain the
magnon conductivity as

(2a) m.QkaL
E~(T)=3

2%a

(22)

(23)

(24)

Thus we find that the magnon conductivity ex-
pressed by Eq. (25) is similar to that suggested by
Callaway when we neglect the expansions in the
spin-wave energy.

The temperature dependence of the magnon con-
ductivity is clearly T dependent as observed previ-
ously. Recent calculations have suggested that the
eAective temperature dependence of the magnon
conductivity can approximately be T . The author
feels that this appears because the validity of the
spin-wave approximation depends entirely upon the
linearization procedure. The spin-wave energy is
obtained after the solutions of the equations of
motion, using different decoupling schemes.
Therefore, when the spin deviation is assumed to
be smaller, the validity is qualitatively close to the
reality at low temperatures only where one can as-
sume a few excited magnons.

The presence of the magnetic defects reduces the
magnon conductivity from Ep(T) to K (T); the re-
lative change in the thermal conductivity due to
magnons scattering by defects can, therefore, be ob-



tained as:

K,(T)—K (T)
K Ko(T)

kii T
(28)

/2

reduces to

e(k)=E(k)+gps{H+ , n.M—) .

Equation (11) now modifies to

(29')

III. EFFECT OF THE MAGNETIC FIEI.D E~Tt =ak +gpqH =fm k
. ,

%1thin random phase approxiIIlation, fhe spin-
wave energy can be in general expressed as'

e(k) =E(k)+gi4sH(1+Pi, sin20k)'i, (2

where 0 is the external magnetic field, 0~ is the
angle between the wave vector k and the external
magnetic field, and Pk can be given by

6=4WsHiÃ(k)+gVsHl . (30)

If we ignore the dependence of the spin-wave ener-

gy on the direction on the propagation, Eq. (29)

0=H+ —,mM .

%e can obtain the value of k as

h =gyttH/kit T) .

Using Eq. (31), Eqs. (23) and (24) modify to

(31)

2
'2

Ko(T,h) =3 (2a) nQksL kttT f ~ (t h)tdt
2e u

K~(T,h) =KO(T, h) 1 ,LA——
0!

- (t h)'t dt —- (t h)t dt-
e' —1 & e' —l

{33)

Equation (32) can be further simplified as

Ko( T,h) =Ko(T) 1 —h

Doing some simple mathematics, Eq. (33}can also
be reduced to

K (T,h)=K (T)+K (T)[a,h+a h +a h +a h4],

(33')

l

Comparing Eq. (33') with those obtained by the
previous' ' workers, we find Eq. (33') is almost

similar to the expressions of McCollum eI, aI. ex-

cept for the fact that we limit our calculations to
first few terms. Otherwise we can obtain a series

dependence on the higher powers of h as suggested

by the exponentials in the results of McCollum
et al. Equation (33') gives the effect of the magnet-

ic field on the magnon conductivity in the presence

of defects.

Qi =—
/2 g2

J3$4 Si/4
/2 g2 g3

(34)

IV. DISCUSSION

The magnon conductivity used to be analyzed

most widely by Callaway's approach for the dif-

ferent magnetic substances. %alton et al. ' calcu-
lated the magnon conductivity by expressing
Callaway's results as

b= 6IA~
kgT

(3S)
~ t csch ( —,t)dt

K (T)=a T'J 1+b (T)t'

~ t (t —h)csch ( —,t)dt
K (T,h)=B'T2I, , (36)

1+b(T}(t—h)'
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K~(T)=B'T f dtt each ( —,t)

x [1—b (T)t'], (35')

&~(T,h) =B'T I dt t (t —h)csch2( —' t)

X[1—b(T)(t —h)']. (36')

where t =(fuu/Ett T) and b (t) =gT . For very low

temperatures, Eqs. (35) and (36) can be reduced to
Comparing Eqs. (25) and (27) we observe that the
reduced Eqs. (35') and (36') are almost similar.

In the present work, we find that in the presence
of the defect scattering alone, the magnon conduc-

tivity analysis is simple in its computation, "and
also the temperature dependences are effectively the
saHlc as obtained experimentally and by previous
workers. It 18 clearly obscrvcd that, thc reduction
in the magnon conductivity is pfoportional to T'
as previously calculated by Callwvay. '
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