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Critical properties of an altered Ising model
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A modified two-dimensional Ising model is studied. In this model the nearest-neighbor in-

teractions are changed along an infinite line imbedded in the lattice. We show that the effect of
this alteration can be represented by the action of a marginal operator on the critical Ising
model. This marginal operator is seen to change the decays of correlation in the lattices near
the altered line. We find that the magnetization index P is changed, while the index v remains
fixed. The expected crossover of the correlation functions to bulk behavior is also observed.
We calculate the critical index for the disorder variable and predict the following relation
between the index for the order and disorder variables: Q2x~++2x„ l.

I. INTRODUCTION

In a recent paper, Bariev' demonstrated that a sim-

ple modification to the Ising model resulted in critical
properties which were continuously dependent on a
parameter in the Hamiltonian. Bariev, and later
McCoy and Perk, 2 considered an Ising model where
the interactions along one line have been changed. It
was shown that the critical index g, measured along
this altered line, was a continuous function of the
new coupling, while v remained fixed at the Ising
value of 1.

Problems whose critical properties depend continu-
ously on a parameter in the Hamiltonian have been
extensively studied since Baxter solved the eight-
vertex model in 1972. The number of two-dimen-
sional models known to have continuous critical
behavior has since grown to include the Ashkin-
Teller, 4 Q-state Potts' model and the Gaussian model
with excitations. Each of these models appears to be
in the same universality class as the eight-vertex7
model, hence along the critical line the index q
remains fixed at the Ising value of 4 while the index

v varies smoothly. It is clear that the eight-vertex
models cannot be in the same universality class as
the Bariev model except at the Ising point.

Much of what is understood about the critical prop-
erties of the eight-vertex class of problems is built
upon the recognition of a marginal operator, the ad-
dition of which to the critical Hamiltonian serves to
generate motion along the critical line. It is in this
sense that the universality connection is made among
the members of this class; each model is seen to have
a marginal operator, the effect of which on the
asymptotic behavior is the same for each model.

The purpose of this paper is twofold. First we
show that the Bariev model can be formulated in
terms of a marginal operator. The exact expression
for the behavior of P, as calculated by Bariev, serves

as a check of this formulation. Second, we derive the
behavior of the two-spin correlation function as one
moves away from the line of altered interactions. In
this way we can examine the crossover to bulk Ising
behavior of the two-point function.

In Sec. II we identify the marginal operator and ex-
amine its effect, to the first order, on the magnetiza-
tion exponent P and the energy-density exponent v.

The change in v is given by calculating the change in
the energy-density exponent xg, which is seen to be
unchanged by the addition of the marginal operator.
The change in P is found by calculating the variation
in x, It will be seen that the marginal operator
alters the indices of operators which are odd under
the symmetry operation cr —cr, while leaving the
even operators unchanged. This is exactly the re-
verse of the effect of the eight-vertex marginal opera-
tor, the addition of which, to the critical Ising Hamil-
tonian, changes the even operators while leaving the
odd operators fixed.

The presence of the Bariev marginal operator
breaks the dual symmetry, hence the critical index
for the order parameter x is no longer equal to the
critical index for the disorder variable x„. In the last
part of Sec. II we derive the relation between x and

X~.

(2x )' +(2x )' =l

which holds along the entire critical line.
In Sec. III the behavior of the two-point correlation

functions are examined as one moves away from the
altered line. In the case where one of the end points
remains on the altered line there are three distinct
behaviors which in the thermodynamic limit can be
characterized by three critical indices. When both
points are on the altered line, the decay of the spin-

spin correlation is described by the critical index x
which varies as the altered interaction is changed.
When one point of the two-point function lies on the
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altered line and the other lies perpendicular to the
line, then a different behavior for x is seen. Final-

ly, when one point is moved infinitely far from the
altered line the magnetization critical index crosses
over to the bulk (x =

p
) behavior for the isotropic

Ising model.

II. CORRELATIONS ALONG THE
ALTERED LINE

A. Marginal operator

1 1x (~) =——arccostanh2K
2 m

(2.2)

where K =J/(ks T). It has been suggested by Fish-

er that the operator
&tdr

/g(r), the line integral of
the energy density, is a marginal operator at ~ =0.
%e will show that this operator is a marginal operator
for all ~, and calculate, to first order in ~, x (~) and

x„(x).
To see how the marginal operator acts to change

the critical index, consider the spin-spin correlation
function

(cr(0) a'(r) )„p= $ apa, e X e P . (2.3)
(-} (~}

If a term xM is added to the Ising Hamiltonian the
two-spin function becomes

( ~,) =g . .." ~ ' g. """ . (2.4)
(a}

Equation (2.4) can be rewritten in terms of pure Is-
ing correlations

( egM)
(apar) M

( „~) (2.Sa)

or

(opa, )~= (opo, )pf[~M] (2.Sb)

In this section we will examine how the Bariev
model can be described in terms of a marginal opera-
tor acting on a critical Ising Hamiltonian. Consider
an Ising model with nearest-neighbor interactions
where the interactions along one particular line as-
sume the value of E'. This Hamiltonian can be
written as a sum over nearest-neighbor interactions

X=K $ a a i+x X' a' a, , K=K' K, (2.1)—
{~')

where the prime on the sum indicates that the points
lie along a line.

Bariev, and later McCoy and Perk, showed that the
critical properties of this model are dependent on the
strength of the altered line ~, and found the magneti-
zation critical index x (x =Pe) as a function of ~

The critical point is characterized by algebraic decay
of correlations, therefore

(gapa, )M —,f[~M]1
(2.6)

The factor f [KM] can thus provide a modification of
the algebraic decay as well as a change in the scaling
function of the correlation function.

The function f can be expanded in a power series
for small K, the expansion to first order being given
by

f[&M) =exp ~
' —(M)

(apa, M)
&par

(2.7)

If the argument of the exponential contains a term
proportional to lnr, then the critical index x will be
changed.

The marginal operator can be written as the in-
tegral over a density, i.e.,

M = &"d~ r gg( r ) (2.g)

where p is the dimensionality of the marginal interac-
tion. The argument of the exponential in Eq. (2.7)
will then have a term

J d& r (OII( r ) a pa, ) (2.9)

B. Effect of the marginal operator

In Sec. II A we saw that the line integral of the en-
ergy density of the two-dimensional Ising model was
a candidate for a marginal operator. We saw that a
detailed knowledge of the correlation between the
marginal operator and other operators was necessary
to calculate the behavior of the critical indices in the
presence of a marginal perturbation. In our case, we
need to know the correlation between the energy-
density operator and other operators in the Ising
model. There exists a body of exact results due to
Kadanoff for the Ising correlations in the special
case where all operators lie along one line. If we re-
strict our consideration to the effect of the marginal
operator only along the altered line, then the expres-
sion for the Ising correlations will be sufficient to cal-
culate, to any order, the change in critical indices. In
this section we will show that the energy-density

In this context, the condition under which Eq. (2.9)
will be proportional to ( a pa, ) lnr is then gR ( r) —r

In the case of the Bariev model, the marginal
operator is a line integral of the energy-density opera-
tor, thus p =1, with the marginal density equal to the
energy density along the altered line. The energy-
density operator in the Ising model is known to scale
as I/r, hence this operator satisfies the requirement
for the marginal operator, M(r) —I/r~.
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operator effects a change in the critical index of
operators which are "odd" with respect to the sym-
metry operation cr —cr. %e will also show that crit-
ical indices of even operators, such as energy density,
remain unchanged in the presence of the marginal
operators. Thus the application of the above margin-
al operators changes the critical index r( (q =2x )
while the index i([v = I/(2-xg) ] remains fixed.

Before we calculate the effect of the marginal
operator, we will review the form which the Ising
correlations assume when all points lie along a line.
Kadanoff and Ceva have shown that the operators
which are used to formulate the two-dimensional
(2D) Ising model form an operator algebra. The
operators within this algebra obey certain short-
distance product laws much akin to normal angular-
momentum operators. For example, the product of
two operators 0 and 0(( labeled by a and |3 yields a
third operator O~,

(2.10)

the correlation between the energy-density operator
and any other product of operators in the Ising
model. %e know that the product of two nearby
fluctuating variables a, arid o,+q can be expressed as
an expansion in terms of the other operators in the
model. For example the expansion of the product of
two-spin variables is given by

a, cr, +s=cg +bg $(r) +.. . , (2.15)

where 8 (r) represents the Ising energy-density
operator o,a, +i —(o.,cr, +i), and band c are known
constants. The correlation of products of operators
which involve energy-density operators can thus be
found by allowing two magnetization operators in Eq.
(2.12) to approach one another, thus generating an
energy-density operator. In this way we see that the
correlation between (c( (r) and any product of opera-
tors X= g(", 0„(r,) is

where
(XS( ))= X

X
yl I R

b, i (r(-R) (2.16)

y=a+( —1)'P .

The set of operators which describe the Ising model
can be identified. For example, the order and disor-
der variables have the identifications

Oi/q( r ) = o ( r ), 0 i/i( r ) = y, ( r ) . (2 11)

The correlation of a product of these operators can
be-calculated for the case when all operators lie on a
common line with r; to the right of r;+~. This average
is given by

(2.12)

21~
where g(c = (—1) and I'(c is the value of p( for the
operator Xjust before the energy-density operator.

A similar line of logic gives the correlation between
two energy-density operators and X to be

(XS(ri) ) (Xb (ri) )
(X)

+ (X) (g(ri) 8(rq)) . (2.17)

To calculate the change in the magnetization index
x we need to calculate the integral over the altered
line of energy-spin-spin correlation, i,e., from Eq.
(2.9) we have

with p; = (—1) ' ', where the "quantum number" 1

is defined recursively as

2I']
I'o =0, I";+i = I'(+ (-1) 'y;+i (2.13)

We note that Eqs. (4.9) and (4.10) in Ref. 9 are
incorrect as they stand; the corrected formulas are
given by Eqs. (2.12) and (2.13).

For example, using Eqs. (2.12) and (2.13), the
spin-spin correlation function (a = Di/q) will be
given by

(01/2(r 1)01/2(r2) ) = c I r 121 (2.14)

which is the exact known result.
In addition to calculating the correlation between

magnetization operators, Kadanoff and Ceva were
abIe, via the operator product expansion, to calculate

(o,,cr,,) I„o-~ dxi($(xi)o(xi)o(xi))

(2.18)

where x~, x2, and x3 all lie on the same line, say

y =0. Using the above form of the correlation func-
tions given by Eq. (2.16), the integrand in Eq. (2.18)
is given by

(2.19)

The integral Eq. (2.18) will carry us into difficulties,
because the integrand becomes singular as x3 x~,x2.
This problem can be avoided by the use of a cutoff.
At the critical point we are dealing with diverging
length scales, hence we expect the critical behavior to
be unaffected by such a short™range cutoff. %'ith this
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cutoff, the integrai (2.18) becomes straightforward

&a(a2)
8

BK 0

or

X&-0 ( X2 —0 l' d+ + ' (a ia2)~ -Oo & &i+ 0 4 x2+0 2~ Xi3+23
2

(2.20a)

2(a'oa'. ) = —In(r jQ) &aoa p& '(2 20b)
BK

We see that the integral of the energy density-spin-
spin correlation function is proportional to lnr.
From Eq. (2.5) the variation in x as» is changed is

xo
QK

x (») =———»+0(» ),1 1 2

8

(2.21)

(g g e ((M)

o

(2.22)

Because I'~, r2, and I'' all lie along a line, -the numera-
tor of Eq. (2.22) can be reduced via Eq. (2.17) to

(g /AM) (g ex(M)

18 2&
= ' .M 2' + &g.lg, 2)o (2.23a)

which agrees with McCoy and Perk's result to first
order in ~.

To calculate the change in v, the change in the
energy-density critical index must be calculated. It is
possible to show that xg remains unchanged to all or-
ders in ~ via a symmetry argument. The critical in-

dex x(r(») is defined in terms of the two-point func-
tion &$(r() b(r2) }„.. An argument identical to that
which led to Eq. (2.5a) implies that &8, $, )„can be

written in terms of isotropic (» =0) Ising correlations

power. The second term does scale in the proper
manner, with a critical exponent xs(» =0), hence
xg(») =x(r(0), to all orders in». This property is re-
quired of a marginal operator, whose critical index
must remain unchanged along the entire critical line.

C. Disorder variables

In the operator formulation of the Ising model the
disorder variable p, is an essential element of the
operator algebra. This disorder variable is the dual of
the order variable a, hence &p, ) =0 in the ordered
phase and & p, ) =1 at infinite temperatures. In the
normal Ising model the dual transformation is an ex-
act symmetry of the model, hence at the critical point
p, and o have the same properties, i.e., their critical
exponents are identical.

An interesting feature of the Bariev model is
that the exact dual symmetry is broken, thus the crit-
ical index x, as measured along the altered line, will

not be equal to x„. To see this, consider the two-
spin correlation function (aoa.„)„expressed in terms
of pure Ising correlations

&aoa, ).

where 8q and 8 „are the energy-density operators in
the horizontal and vertical directions. Defining the
energy density as the sum of the horizontal and verti-
cal operators 8 (r) = [ho(r) + b„(r) ] the action of the
dual transformation is

a(r) p(r), b(r) -b(r) (2.26)

With these relations and the above definition of the
energy density, the KW transformation acting on the
two-spin function yields

,rr, exP K P(r)dr) (exP Ke g(r)r(r()

(2.24)
At the point » =0, the Kramers-Wannier (KW)
dual transformation acts on the Ising operators in the
following manner:

(2.25)

or

(2.23b)

p, 0p, ,exp —K J $ I df
&POII r) ex= (~

exp —~ 8 rdr
(2.27)

In the case of the unaltered Ising model the aver-
age of the energy-density ($„)ovanishes. This is not
the case for ~ &0. However a detailed knowledge of
&S„)„is not necessary to show that the critical index
xs(») is independent of ». We are interested in the
part of Eq. (2.23b) which scales as i r( —r2i to some
power. The first term on the right-hand side of Eq.
(2.23b) is the product of a function of ri and a func-
tion of r2 and thus cannot scale as

vari

—r2i to a

At the critical point of the pure Ising model the
correlation of a product of disorder variables is equal
to the correlation of the product of order variables,
hence

aoa, exp —» 8(r)dr
~i 0

&~o~.).=
exp —» J" $(r)dr

0

(2.28)
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Therefore x~(~) =x ( —~) for all ~. The knowledge
of x (~) [Eq. (2.2)l and the above symmetry rela-
tion are sufficient to determine the form of x„(~).

It is interesting to note that the form of x (~) and
x~(~) imply that the indices are related by

&2x + J2x„=l (2.29)

for all values of K. This relation has been verified by
a different argument in a recent paper of Kadanoff. '

III. CORRELATION OFF THE
ALTERED LINE

In Sec. II we explored the effect of adding a linear
marginal operator to the critical Ising model. The
calculation was carried out for the special case where
both points of the two-point function were imbedded
in the line of altered couplings. The effect of the
marginal operator was calculated to the first order in
an expansion about the critical Ising model and has
seen to agree with the work of McCoy and Perk. In
this section we will calculate the effect on the two-
point function of moving one or both of the points
off the altered lines. These calculations will show
three regions of quantitatively different behavior.
When the distance between the altered line and one
point of the two-point function (denoted by y) is
much less than the separation between the two points
(r), then one sees a smooth angular dependence in

the correlation function. As r ~ but y remains
finite, the angular dependence degenerates into two
behaviors. If r is parallel to the altered line 1, the
decay of the spin-spin correlation function is charac-
terized by an exponent xil, which is equal to the ex-
ponent of McCoy and Perk. When r lies perpendic-
ular to 1, the two-point function is characterized by

xi which is equal to (—,)xi', to first order in ~. Final-

ly for l
r

l
~y there is a crossover to the bulk critical

1
exponent x = —,.

The starting point for this section will be the ex-
pression for the spin-spin energy-density correlation
function calculated by Bander and Richardson. " This
correlation function is not limited by the requirement
that all three points lie along a line, thus we can in-

vestigate the effect of the marginal operator on an
operator not lying on the altered line. From Ref. 11
we have an expression of the three-point function in
terms of the two-point functions

first-order change produced by the marginal operator

d r I E( r ). Writing Eq. (3.1) in terms of com-
ponents, for example r iq=(xt —x&,y&

—yq), the
right-hand side of Eq. (2.18) becomes

„,K(k), (3.3a)

k12 —1k=-
k1

ki—= A +vA —1

~12 +y12 +y132 2 2

2lyl21 ly131

(3.3b)

(3.3c)

(3.3d)

where K(k) is the complete elliptic integral of the
first kind. With the altered line lying at y1=0 the ex-
pression for A reduces to

A =1+— (3.4)
2 y2y3

Equation (3.3) governs the change in the spin-spin
function for the spins located anywhere except direct-
ly on the line of altered interactions. This expression
should then assume the known limit as the two
points lie infinitismally close to the altered line, as
well as exhibit the crossover to the bulk behavior as
the two points move inf1nitely far from the line.

Consider the limit rg3/y~yq ~, i.e., one or both
points lie near the altered line with respect to the
separation between the points. In this case Eqs.
(3.3b), (3.3c), and (3.3d) become

1

y2y3k=l—
~23

2 (3.5a)

I'232k1= 2A =
y2y3

(3.5b)

&
d r i l (E( r i)a( r q)a( r 3))

goo
I r z~l

dX1
((xA+y6)(xA +yA) )'"

(3.2)
where y1 —y2 &0, y1 —y3 +0.

This integral is recognized as a standard form of
the elliptical integral of the first kind [see Integralta-
pel Bestimute Integrale 223.21 (Ref. 12)]. Equation
(3.2) then becomes

(8(ri)a(rq)a(rq)) =

x (a.( r q)o( r p)) . (3.1)

1 23

2 y2y,

We can make use of the form of K(k)

(3.5c)

As in Sec. II we need to calculate the integral of
(g (r i) o (rq) o (rq) ) over the line 1 to find the

K(k) = —ln —,K(k') —Xc„k ", k = (1 —k )
k'

v 1

(3.6)
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to write an expansion for Eq. (3.3a) in this case
y~y~/r j~ 0. Defining ~ =y, y3/r j3 we see from
Eqs. (3.6) and (3.5) that k'= e. To lowest order in s,
Eq. (3.6) becomes

y3 = 0 + r 23 sin8, (3.11)

tered line. The question of interest is, how does the
critical index cross over from x(~) s to x(~)q. Set

2 4It 1 ——= E—(e)ln ——e c~+
2 m

(3.7a) ~here 8 is the angle between 1 and r 23. The argu-
ment of the log term in Eq. (3.8) becomes

with the small ~ expansion of E being given by r23 I 23
2 2

ygy3 0 ( 0 + rg3 sing)
(3.12)

(3.7b)

With these expressions Eq. (3.2) takes the form

The two limits considered in Eqs. (3.9) and (3.10)
can then be recovered with 8 =—0 and ~/2, respec-
tively

l d 1 (8 ( r ~) a( r q) o ( r 3) )

y2y3 1 y2y3
2 in4

~
1+—

z (a(r&) a(«3) )
2m r23 4 f23

(3.8)

r23 Q
1 — sin8+0 r23

r23

y2y3 r23 r 23sin8

g2 Q

1T
8 ~

2
(3.13a)

, e=o . (3.13b)

Equation (3.8) is our basic formula for determining
the behavior of that critical index x . If we allow the
two end points to approach the altered line

(yq =y3= 0 &( rq3 the asymptotic form of Eq. (3.8)
becomes

I r»l
I d 1 (8( r ~)a( r q)a( r 3)) =—ln (aoa„)aJ 0 !

(3.9)

which agrees with Eq. (2.20b), and implies that the
decay of the correlation is characterized by a critical
index x =

8
—(I/n)~+1

Given Eq. (3.8) we can also consider the case
where one end point remains fixed on the line and
the other is moved away from the line. For example,
if r qq is perpendicular to 1 then yq3 =

I
r q3I and Eq.

(3.8) becomes

The higher-order terms in the expansion in Eq.
(3.13) represent nonuniversal changes in the scaling
function and do not effect the critical indices.

The expected crossover to the bulk behavior can
also be seen from Eq. (3.3). In the limit yq and/or

y3 » I r q3I Eqs. (3.3c) and (3.3d) become

r23ki=1+
2y3

k=2 r23

(3.14a)

(3.14b)
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