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Using a path-integral formulation for the partition function the two-impurity sym-

metric Anderson model in the local-moment regime is mapped onto a problem of a classi-

cal four-component "Coulomb" gas interacting with a logarithmic potential. This can be
viewed alternately as a problem of a general four-state spin system with inverse-square in-

teraction in one dimension. The scaling equations for this model are derived and their
implications for the properties of the Anderson model are pointed out. This mapping, al-

though approximate, provides an explicit and physically interesting realization of a class
of general n-state inverse-square spin systems in one dimension.

I. INTRODUCTION

The two-impurity symmetric Anderson model in
the local-moment regime' is of interest in connec-
tion with the properties of dilute magnetic alloys.
In this paper, we consider an approximate map of
this model to a classical statistical-mechanics prob-
lem with long-range interactions. We derive scal-
ing equations for this classical problem and discuss
their implications for the behavior of the Anderson
model. Analysis of this nature led to a variety of
interesting results in the corresponding single-
impurity problem. First, the equivalence between
the single-impurity Kondo problem and two in-

teracting one-dimensional classical models, namely
the two-component charge rods interacting via a
logarithmic interaction and the inverse-square Ising
model, was pointed out by Anderson and Yuval
and Hamann. Second, the scaling equations for
this classical problem led to a qualitatively correct
understanding of the single-impurity Kondo-
Anderson model, and third, from the same equa-

tions it was argued that the ferromagnetic inverse-

square Ising model in one dimension should have a
phase transition at a finite temperature. This
inverse-square Ising model is a particularly curious

one since it is known that for models with the in-

teraction falling off faster than I/r there is no

phase transition, while for those falling off slower

than inverse square there is. 1/r is the border-
line case for which Thouless has given strong
heuristic arguments for the existence of an unusual

phase transition at finite temperatures, as verified
later by Yuval and Anderson.

In this paper, we show that the two-magnetic-
impurity problem maps onto a four-component
"Coulomb gas" interacting via a logarithmic poten-
tial in one dimension. This can also be viewed as a
four-state inverse-square problem in one dimension.
Such general n-state models have interesting pro-
perties, as pointed out recently by Cardy. ' Our
work then shows that the two-impurity Anderson
model in the local-moment regime is an explicit
physical realization of an interesting statistical-
mechanics model, although an approximate one.
With the help of the scaling equations we obtain
some qualitative results pertaining to the two-
impurity Anderson model which should shed some
light on the properties of dilute magnetic alloys.

This paper is organized as follows: In the fol-
lowing section we formulate the problem in terms
of functional integrals. In Sec. III we discuss the
long-time approximation for the unperturbed im-
purity Green's functions. In Secs. IV and V we
show how the partition function can be expressed
in terms of a functional integral over c number
fields of the exponential of a certain quantum-
mechanical action. By choosing a certain class of
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II. THE PATH INTEGRAL

The Hamiltonian of interest is given by

(2.1)

0=2 k k k + fXf'f'o
k, n l, O'

ik R)+ g Ukc g j(~8 +H.C.
B,i,o

(22)

(2.3)

important paths in the functional integral we show
in Sec. VI that the problem reduces to a four-
component Coulomb-gas model. %e derive the
scaling equations for the model in Sec. VII and
discuss the results in Sec. VIII.

The subscript i labels the two impurities situated at
R~ and R2. The conduction-electron operators are
represented by c's and local f electrons by f's. The
two-impurity model was introduced by Alexander
and Anderson, ' but note that we have dropped the
direct hopping of the f electrons from site to site;
we have the case of rare-earth impurities in mind.
The extension to the case of f-f direct hopping is
simple but will not be discussed here. %e shall
further restrict ourselves to the case where

Ef= —Ul2, i.e., the symmetric case, and consider
the case where charge degrees of freedom can be
frozen out, i.e., the local levels will be assumed to
lie well below the Fermi level of the conduction
band. Note furthermore that there are no orbital
degeneracies in the model and o is the spin index.
Since we freeze the charge degrees of freedom, the
partition function, following Hamann, can im-
mediately be written down as a functional integral
over two c number variable g'~(r) and $2(r) as

z= +2 p
2exp — — g, g+ zg Z, ,

S=+ (2.4)

and

p J 2
Z, =exp —& dr J dg g g;, (r)G,';(r, r+;g)

i=1

(2.S)

G;, ( r, r') = —{&,f;(r)f, (r') )0,
where the average ( )o is defined with respect to
Bp of Eq. (2.2), and we have dropped the ir-
relevant spin indices. Defining the Fourier series

by

g;, (r) =sg;(r) . (2.6)
tJ I

p

Here b, =mpo(ef ){V ) is the hybridization width

of the local levds. The Green's functions G,J obey
the coupled Dyson's equations given by

G J(r, r', g )=G J (r, r')
2

+gh g I dr"Gg~(r, r")g(,(r")
»=1

X Gfj(r",r',g) .

(2n+1)
Q)~ = 1T

and computing the equations of motion for the
Green's functions one finds

~F 2~2~
E 6)~ —6) —FO-

E 6)~ —6'2 —Eo

(3.3)

~i2
G~2(ico„)= .

E QP~ —62 —Eo
(3.5)

III. GREEN'S FUNCTIONS AND
THE LONG- TIME APPROXIMATION

The unperturbed impurity Green's functions are
defined by

For generality we have allowed for the possibility
of two different energies for the f levels at sites 1

and 2; Ef» ——e~, Ef2
——e2. G22 and G2 ~ are easily

obtained by interchanging 1 and 2 in the above
equations. The quantities Fo and E~ 2 are given by
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the following equations:

ll'k I'
p —g lN 5

(3.6)

with

F~ q
———4j~ i b—josgn(ro„) (3.8)

The evaluatloI1 of F~ p is shglltly more involved
and we have found it reasonable to use k disper-
sion of the conduction band, giving

I"o i d—s——gn(ro„) . (3.7)

/

1'k )' r-R„
l 6)

k

Fo is readily evaluated by taking Vk
——V and a

flat density of states of the wide conduction band

yleld1ng

S1nkPE 12
J&=

kPR12

coskPR 1 2
Jo kF~ 1, 2

(3.9)

(3.10)

Using a standard trick it is simple to write down
the expressions for G~ I(r) and G~lq(r):

0 1 5—52+ l 5'g
Go, , (r)= J dee "[f(e)—8(r)] ~ 2 ~ 2

2VPl (e e, +i h—ri)(e eq+i —bri) b2(j ~—+i'io)
(3.11}

0 ~(J i+~ ni o)
G&2(r)= . I dee "[f(e)—8(r)]

27Tl (e e~+i—br))(e e2+ibri) b—(j I+iso—)
(3.12)

with ri =sgn(Ime), and the contour encloses the real axis in the counterclockwise sense. f(e) is the Fermi
function and 8(r) is the step function. For the case et ——e2 ——Ef the expressions can be written as

r

Go ( }
1 I+~ de

~~[f( } 8(
~(1—Jo) b(1+Jo)

« Ff ~j I }'+—~'(1—jo)' (e Ef+bj ))'+—dP(1+jo)'

Rnd
(3.13}

G~q(r)= —, I e "[f(e)—8(r)] « Ef J)'+—~'(1—jo)' (e —&~+j &)'+&—'(1+jo-)'

(3.15)

G) p(r) =+(a —a+ ) —(b +b+ )5(r),o I'

1+jo
2~ J'I+(1+Jo)'

(3.17)

The standRrd long-t1IQe approximation for the
Green's functions now leads to the following ex-
pressions:

G))(r)= —(a ~a+) +(b b~)5(r), —0 I'

RI1d

1 Ji
b+ ——

2~ JI+(1+Jo)'
(3.18)

Substitution of the expressions f« the Green s

functions given by Eqs. (3.15) and (3.16) in Eq.
(2.7) now leads to coupled singular integral equa-
tions. The corresponding equation for the single
1IQpur1ty cRse '%as solved by HRIDRQQ exactly us-

ing Muskhelishvili's method. ' Unfortunately, the
method is not easily extended to the case of cou-

pled equations and we have Qot been able to apply
it to (2.7). However, in the next section we show

that an explicit solution is not required for our

purpose.



». THE QUANTUM-MECHANICAL ACTION

We must now express 6,';(r, r+;g ) explicitly in

terms of the c number fields g;(r). Since we have
not found it possible to solve the coupled Dyson's

equations, even within the long-time approxima-
tion, we sha11 foHow an indirect route. The argu-
ment runs as follows. Assume first that the fields

g, and gz are constant in time r Equation (2.7)
can then be so1ved trivially and let the so1utions be
de~oted by G,J."(r,I';g„gz). When the fields are
varying in time, we write for equal times

6,,(r, r+;[g„g,])=6,',"(r,r+;gi(r), gz(r))

+GJ'(r, ~+;[g1,gz]),
(4.1)

where the first part is the "adiabatic part" obtained

from the static solution by simply replacing gl, gz

by gl(r), gz(r), and the second term is a "non-

local" part, a functional of the time-dependent

fields. Equation (4.1) simply de+ines 6;z'. G,J'

must contain the derivatives of the fields gl(r) and

gz(r) since it must vanish for constant fields.

After performing the coupling constant integration,

one must be able to arrange the partition function

111 tllc fornl

P
Xexp — f" V )~ 2 +T

(4.2)

where V(gl, gz) arises from 6;; and is a function of
two field variables gi(I.) and gz(r). On the other
hand, T[gl, g'2], a functional of field variables aris-
ing from 6;";, vanishes when the fields are constant
in time. The symbols V and T are suggestive of
potential and kinetic energies for this quantum-
mechanical action.

The analysis in this section has been exact and
we have not yet invoked any approximations.
Furthermore, since it is trivial to evaluate G,J,
V(gl, gz) can be written down exactly. This is not
the case for T[(I,(z]. In the next section we dis-
cuss a well-motivated approximation for T[gi,gz].

V. EVALUATION OP V{)'I,gz) AND T[gl, gz]

As mentioned in the last section it is easy to ob-

tain an exact expression for V(gl, gz}. This is given

by the following expression:

V(gl gz) (01+42)+ I( dg t 41[~(gk F2) R gal g(2)]

(5.1)

F(x,y)= ——Im J dc — y +'
(e xb, +i b, )(e—ye+i b, ) —b.z(j I +jo)—2

(5.2)

In order to understand the qualitative properties of

V(gi, (z) lt ls cxtrcIIlcly rcvcallIlg to expand

V(4l gz) in powers of gl and gz, keeping only up
to the quartic terms. This yields

V(ki k)=~+(k+4)'+~ (EI k)'-—
+&+(k+4)'+&-(gl —kz)'+ COLIC

4+(z
t1' (5.4)

forms for these coefficients. It is convenient to in-

troduce the following variables in Eq. (5.3). They
are

(5.3)

where the coefficients A+, 8+ and C are functions

jo, j~, 6, and U. Although unwieldy looking ob-

jects, it is perfectly straighforward to write these

cocfflcicIlts do%11 cxpllcltly. Fol' a qllalltatlvc dis-

cussion it is not necessary to have the explicit

V(nl I)z}=I Ini+vizii+ I zriz
2 4 2

+@2'f2+I ) 2' )%f2,

(5.5)

(5.6}
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I )
——2A

I 2
——2A

p)=48++ 4C p

(5.7)

(5.8)

(5.9)

resepectively. These expressions are valid for
kf8 » 1; similar expressions can be found in the
general case. As R~ oo, the four minima become
degenerate and co111clde with the solution fof a sm-

gle impurity. The four minima are also degenerate
at the special points where j ~

——jo, or

1

P2 ——48 + 4C, (5.10)

(5.11)

2kpR =m(n+ —, ) .

In the regions

(5.15)

The structure of the energy surface is now clear.
For I »I"2 ~ 0, V vali have a single muumum at

ri& ——g2
——0. If I, or I 2 is less than zero, g& ——riz

=0 will be a saddle point and two symmetrical
minima will develop in one direction. If both I )

and I 2 are less than zero the origin is a maximum

and there are four minima as follows:

(1) Ferromagnetic minima:

rlt =+(—I i/2pi)'".
(2) Antiferromagnetic minima:

q, =o, q, =+(—r, /21, )'~'.F

(5.12a)

(5.12b)

These four minima correspond to the local-
moment regime and occur for U& mb. For an ac-
curate determination of the minima, one must of
course use the exact expression for V(g&, $2) given

by Eqs. (5.1) and (5.2). The condition for the for-
mation of ferromagnetic minima is

—Vi —jo)»
U

(5.13a)

and for antiferromagnetic minima,

hm —-Vi —jo)».3 (5.13b)

3[1 hm. /U (j )
—jo—)]-

VF ———
1 —6Vi —jo)

(5.14a)

[1 bn. /U 1/3(j f —jo)—]—
1 —(6/5)(g f —J,')

(5.14b)

The values of the potential energy at these minima
are

+—2nn(2k'pA ( +—(2n+ 1)
2 2

the ferromagnetic minima are lower, for

(5.16)

+—(2n+ 1)m (2kFR ~ +—2(n +1Hr,
(5.17)

the antiferromagnetic solutions are favored. Of
course, such an oscillatory behavior is what one ex-
pects in this problem due to the sharpness of the
Fermi surface.

Alexander and Anderson' have studied the two-
impurity model in the Hartree-Fock approxima-
tion. However, they include in the model direct
exchange and restrict the discussion to the case
where the indirect exchange can be neglected.
They also find ferro- and antiferromagnetic mini-
ma, depending on the parameters of the Hamiltoni-
an but due to a quite different physical mechan-
ism, the sign of the exchange being determined
mainly by the position of the local level relative to
the Fermi level. In our case within the static ap-
proximation the ferro- and antiferromagnetic solu-
tions alternate as a function of the distance be-
tween impurities.

Although V(g~, gz) can be calculated quite pre-
cisely, we approximate T[g„g2] by a weak-field
limit. For fields that do not vary too rapidly, we
expect G~ to be still the dominant contribution to
the Green's function. The remaining "nonlocal"
term which depends on the values of the fields at
different times, we expand to lowest order in the
fields using the long-time approxintation discussed
earlier. After doing the coupling constant integra-
tion we obtain

+ — I d. f d'ln~. '~, +(a, +a )' ~ ~, , 4i 4'i dk dk
4

(a+ —a ) P P, , de dk dk dt's
dr d~'ln~r ~'~ d, +

d0 0 d T d'7 d'T d'P
(5.18)
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Note that this approximation has not destroyed the
nonlocality of the kernel expressed by the
ln

~

r r—'
~

factor. This important factor, or more

accurately ln[P/csin[@(r —r')/P]] at finite tem-

peratures, reflects the sharpness of the Fermi sur-

face and slow relaxation of the conduction elec-

trons to a time-dependent perturbation. Further-
more, the presence of the derivatives of the fields

in the integrand allows for the existence of hop-

ping paths which tunnel between various minima.
Such an approximation for the single-impurity
case can be verified to change only formally the
numerical factors which cannot be obtained by this
procedure. This approximation does not, however,

change the fact that the single-impurity problem

maps on to the inverse-square Ising model. We
now turn to a discussion of the dominant paths in

the functional integral.

FIG. 1. Schematic diagram of potential-energy mini-

ma and different types of hops. 1 and 2 denote a single

spin flip of impurity 1 and 2, respectively, I' denotes fer-
romagnetic hops, and AI' antiferromagnetic hops.

VI. DOMINANT PATHS

Our next task is to compute the functional in-

tegral (4.2) with the potential and kinetic energy

given in (5.1) and (5.13), respectively. It is clearly

not possible to compute this functional integral

exactly. To obtain an approximation to (4.2), one

can choose by examination a class of "important

paths, " that is, field configurations, that make im-

portant contributions to the functional integral. A
reasonable first approximation consists in choosing
a single straight path, (i.e., independent of time)

that minimizes the potential-energy term. For this
kind of path the kinetic-energy term vanishes and

one obtains the Hartree-Fock results. A better ap-

proximation consists in taking paths that stay most
of the time in one of the energy minima and "hop"

over short time intervals to other energy minima.

Such hopping paths were considered by Hamann in

his study of the single-impurity problem. The
partition function can then be parametrized in

terms of these hopping paths, occurring at instants

t; and lasting over a time interval ~. The parame-

ter ~ plays the role of a high-energy cutoff, and

from balancing potential and kinetic energy, it can

be shown that w-1/U, as in the single-impurity

case. There are four different types of hops to be

considered: (1) only impurity-one hops, (2) only

impurity-two hops, (3) both impurities flip spin in

the same direction (ferromagnetic hops), (4) both

impurities exchange spins (antiferromagnetic hops)

(see Fig. 1).

The kinetic energy takes the form

2 i(i k]= g
2

[(&j));(&g) ), + (&g2);(&(2)J]

t;+7 t,.+v'+gf'

deaf'

'2
dg& dg& dg& d(2
df' d 7'

+
'2

dg~ d(2 dg2 d(~
O'T d7 dv, +

where (b,g~); is the change of the ath impurity field at hop i. The first term in T describes logarithmic in-

teractions between the four types of hops (or "charges" ) described previously. The second term gives the

chemical potential for the different charges, and it can be evaluated by assuming a linear time dependence

for the field during the time of the hop. The partition function takes the form



25 APPROXIMATE MAPPING OF THE TWO-IMPURITY SYMMETRIC. . . 3279

~fg f ] 2 + dt]

n =0 n=ni+n2+np+n~F f gJ

(6.2)

K1,F K2F +(J+J12) &

K1,AF K2,AF +(J J12) ~

KF F =+2(J+J,2),

KAFAF +2(J J12) t

EF,~F =0 ~

The fugacities in (6.2) are given by
3

lny& ——lny2= —
4 J,

3
lnyF ————,(J+J,2),

3
lnyAF = ——(J—J12},

(6.4)

(6.5)

This is the partition function for a classical four-
component "Coulomb gas" in one dimension with

logarithmic interactions. Alternatively, it can be
rewritten by partial integrations to describe a four-
state spin system with 1/r interactions. ' The
term (hV); plays the role of a symmetry-breaking
field and gives the difference in the potential ener-

gy before and after hop i. This term is zero when-

ever the four minima are degenerate. Otherwise, it
only appears when one impurity alone flips its spin
and thus tends to favor correlated hops between
the two lower-energy minima.

In terms of the original parameters of the Ham-
iltonian, b, V is given by the difference VF and VAF

in Eqs. (5.14). The parameters in the Hamiltonian
can be written in terms of the quantities

a++aJ=4 go ~

(6.3)
a+ —aJ„=4 gp

7T

where (+gp, +gp) are the positions of the energy
minima. (We are assuming degenerate minima
here; deviations from this give unimportant correc-
tions for these parameters. ) In (6.2), a; denotes the
charge at site i (1, 2, F, or AF ) and the interaction
between charges E; J is given by

E( )
——Epp ——+J,

Ei2 ——+Ji2,

and the energy splitting hV= Vz —VzF can be ob-
tained by substituting (5.12) into (5.6) in the
small-field limit, or more generally by solving nu-

merically for the minima of (5.1).
As discussed earlier, the weak-field expansion

for the kinetic energy is not expected to modify the
qualitative features of the problem. Thus, we ex-
pect only the numerical values of the coefficients
to be changed for general values of the fields. To
be more precise, in the single-impurity case it is
easy to show that by doing the replacement

gp~ arctangp in the interaction term and gp~ In'
in the chemical potential term, the weak-field ex-
pansion reproduces exactly Hamann's result ob-
tained for general values of the fields. We expect
similar correspondences to hold in the present case.

yll. SCALING E(}UATIONS

We are now faced with the problem of comput-

ing the partition function of a four-component

Coulomb-gas model in a symmetry-breaking field,

Eq. (6.2). We have studied the problem using the

scaling approach introduced by Anderson, Yuval,

and Hamann in their study of the single-impurity

problem. Instead of computing the integrals in the

partition function all at once, we do it in steps. In

the first step we integrate out only "close pairs, "
that is, charges that are within a range between ~
and ~+d~. The partition function that results de-

scribes a new problem with cutoff r'=r+dr and,

as we will see, no new interactions appear in the

partition function; only the original parameters get
"renormalized". This allows one to ~rite scaling

equations for the various parameters in the model

and by studying these equations to obtain insight

into its phase structure. Such scaling equations
were recently independently derived by Cardy' for
a more general model. As is well known, the
single-component model with logarithmic interac-
tions shows a phase transition from a regime where

the charges are bound in close pairs (low tempera-

tures) to a plasma phase where the charges are free

(high temepratures). Similar but richer behavior
occurs in multicomponent Coulomb-gas models.
The scaling technique we have used can only be
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rigorously justified in the the "dilute gas limit, "
i.e., when all the y's in (6.2) are small so that the
Coulomb gas is a rarefied one. For our problem.

I

Z=" 1l ) ll
p llF PlgF

3'1 V2 VF 3'AF
ll =0 ll=ll]+ll2+&p+llgF

this regime occurs in the limit U/6 && 1.
To lowest order in dr, the partition function can

be rewritten as (for 6V=0)

gp Ct„

7
exp g K ln

J
l (J

I

X I++V Vbg I,,„, I,
a, b I

Xexp g K~ ln + gK~ In + K,bin
l l

(7.l)

There are now two cases to be considered: If the

charges a and b are different, it is easy to see that
for t; —t'y& ~ we can approximate the t;-
dependent part in the exponential by

I [2J(2V —+VF+VAF)
2 2 d'

+2J1 2(VF
7

J12 [2J12(23 +3 F +yAF )

+2J(VF 3 AF )l
2 2 d7

(7.5)

=(K~.,~+K,b)ln

Using the relations (6.4), it is easy to see that

+a. a++a b +a c ~

(7.2)

(7.3)

One has also to take into account the modifcations
in the parameters due to changing ~ to ~+d~ in-

side the logarithms in (7.1). It is easy to verify

that this modifies the chemical potentials as

d7-
y+y(y +y )

2d7
O'F ~O'F +&5 (7.4)

where c is the effective hop that results from com-
bining the hops a and b. This term then contri-
butes to a renormalization of the chemical poten-
tial for the c charges. The chemical potentials are
modified as

J d~
O+O 1 ——

2 1-

VF+VF(l J Jl 2)
d7

(7 6)

VAF- VAF+VAF(l J+J1»—d7

Finally, we have to consider how the symmetry-

breaking field Av renormalizes. This occurs simi-

larly as in the single-impurity problem and yields,
for ~5&&1,

3'WF ~ fZF +&P 8@2+/ (7.7)

If the charges a and b are the same (with oppo-
site sign), this term does not give any contribution

to the renormalization of the parameters and one

has to go to the next order in rl(t; t'). Expand-—
ing the exponential it is easy to show, following

the procedure of Anderson et al. , that one obtains

a renormalization of the interaction parameters as

follows: ~12(VF VAF) ~

2 2 (7.8a)

Putting all these contributions together we obtain
the recursion relations for the parameters in our
problem:

= —2J(23 +3'F+3'AF)
dJ

din~
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dJ1 = —2J(2Z +XF+y~~)

2J—(V~~ X~F—)
r

dy J
+&(&F+Z~~)

(7.8b)

(7.8c)

dyF

dlnz =yF ( I —J—J, 2 )+y

dye
=Par(1 —J+ J~2)+y

d(rb, V)
dlnz

= (1—8y')(rh V),

(7.8d)

(7.8e)

(7.8f)

where we emphasize again, that these equations are
only valid in the dilute-gas limit, i.e., y, yF,
y&F « 1. In the next section we discuss the phase
diagram resulting from these recursion relations.

VIII. PHASE STRUCTURE OF THE MODEL

X=1—J/2,

~F 1 J J12

~AF 1 J+J12 &

(8.1)

and consider first the point where the symmetry-
breaking field A V=0. We have the following pos-
sible phases for the model.

(a) )L, ~0. According to the recursion relations,
the fugacity y will grow under iterations and we
will obtain an increasing number of single-spin
flips. Physically, this corresponds to a situation
where the impurity spins are individually Kondo-
quenched by the conduction electrons. Note that
even if AF, A„~ &0, the, second term in (7.8) will

cause yz and yq~ to grow and one will obtain an
increasing number of ferro and antiferromagnetic
flips too. Depending on whether A,F g k&F or
A.&F & Az the two-impurity spins will have short-
range ferromagnetic or antiferromagnetic correla-

It is clear that a fixed point for the recursion re-

lations (7.8) is given by y =yF ——yqF ——0. This
corresponds to the impurities being decoupled from
the conduction band and occurs in the U= (x) lim-

it. For large but finite U, the fugacities will be ini-

tially small but different from zero. Let us define

the following parameters, which appear in the re-

cursion relations for the fugacities,

7z = I ~re (8.2)

where wz is the value of ~ for which the parame-
ters on the problem have scaled to the strong cou-

pling regime. Tz is the Kondo temperature and

corresponds to the binding energy of the Kondo
singlet state. We can also define a time ~~& as the
value of ~ for which AV has become strong, which
from (7.8f) is given approximately by

wgy-1/4V . (8 3)

If s~ & r~z, the situation will continue as
described in (a) above. In other words, if the bind-

ing energy of the Kondo singlet state is larger than
the RKKY interaction, the Kondo quenching
predominates. In the case Tz & hV, the
symmetry-breaking field dominates and there is a

tions. But for long times, the impurities will

behave as single Kondo impurities. In particular,
this situation arises in the limit R ~ ao, where we
obtain the single-impurity recursion relations of
Anderson et al. by puttting J12——0 and

yz ——y&F
——y in (7.8). This is a consistency check

on our recursion relations.
(b) AzF y 0, A, &0, A,~ &0. Here, the single-spin

flips and the ferromagnetic flips are bound in close
pairs and disappear from the problem under scal-

ing (y, yF ~ 0) while the number of antiferromag-
netic fiips grows. Physically, it is a situation
where the two-impurity spins are antiferrornagneti-
cally correlated via the conduction electrons and
form a singlet state.

(c) A,F & 0, A, &0, A.F &0. Here yz grows while

yq~, y go to zero; the impurity spins are ferromag-
netically correlated in a triplet state (forming an
effective-spin one impurity) and collectively
quenched by the conduction electrons.

We will not discuss the case k, A,~,kqF &0 since
it is not likely to appear in the case of an Ander-
son model. A similar situation arises in the case of
the single-impurity Anderson model, which is al-

ways mapped onto the antiferromagnetic side of
the Kondo phase diagram.

In the cases where the potential-energy minima
are nondegenerate, i.e., A V+0, the preceding
analysis has to be modified. Equation (7.8f) shows

that (rhV) is a reteuant perturbation always, i.e., it
grows under scaling. The term AV corresponds to
the usual RKKY interaction. ' We can understand

qualitatively what happens from the following con-

siderations: Assume we are in regime (a) described

above, ' we can define a Kondo temperature, as in
the single-impurity problem, as
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crossover to a regime where only two of the four
minima (either ferro- or antiferromagnetic) are
present, which will correspond to highly correlated
processes. However, this regime cannot be
described by our low-order equations (7.8). Note
also that one can expect the Kondo temperature
(8.2) to have an oscillatory R dependence due to
the R dependence of the parameters in (6.3) [see
Eqs. (3.17), (3.9), and (3.10).]

In summary, we have shown that the problem of
a two-impurity symmetric Anderson model in the
local-moment regime can be approximately
mapped onto a one-dimensional four-component
Coulomb-gas model. By studying the scaling equa-
tions of this classical statistical-mechanics prob-
lem, one can obtain information about the phase
diagram of the Coulomb-gas model and the
corresponding behavior of the two-impurity Ander-

son model. Although far from providing any
quantitative answers, we believe our analysis pro-
vides a good qualitative picture of the behavior of
a two-magnetic impurity system. In addition, we
have provided a physically relevant realization of a
multicomponent one-dimensional spin system with
inverse-square interaction.
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