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The magnetic susceptibility of the mixed quasi-one-dimensional system (CH3)4NMn„Cui „C13
has been measured down to 0.32 K for x ranging between 0 and 1. At 4.2 K the susceptibility

starts to increase with x up to x =0.1 and then decreases rapidly. The Neel temperature de-

creases from 1.24 K for x =0 to 0.35 K for x =0.22. We present theoretical calculations

developed for isotropic exchange interactions and we take into account the quantum and classi-

cal natures of the Cu + and Mn + spins, respectively. We show that to first order in x the prob-

lem of the disorder inside the chains can be reduced to the calculation of a transfer matrix.

This matrix is calculated at high temperature as a function of a parameter v which can be deter-

mined by a more rigorous calculation made in the case of diamagnetic impurities and at lower

temperatures. The experimental data at small values of x are well explained by this model.

I. INTRODUCTION

In the past few years, many experimental and
theoretical studies have been devoted to one-
dimensional (1D) magnetic systems. " A great
number of quasi-1D materials with various spin
numbers and ferro (F) or antiferromagnetic (AF) ex-
change interactions along the chains have been ob-
tained. One of the best realizations of a 1D material
is the insulating salt tetramethylammonium man-
ganese chloride (CH3) 4NMnC13 (TMMC), a linear

Heisenberg antiferromagnet with S = —,. The static

and dynamic properties of this compound, pure and
doped with magnetic and nonmagnetic impurities,
have been extensively studied by many research
teams and in particular in our laboratory. 3 In a
quasi-1D compound, the introduction of impurities
affects the growth of the correlation length along the
chains at low temperatures, thus leading to drastic ef-
fects on the magnetic susceptibility, 3D ordering tem-
perature, and dynamic properties. Theoretical calcula-
tions have been performed in the case of chains of
classical spins with classical or quantum impurities at
low concentrations; they describe satisfactorily the
experimental results (see Sec. V).

Until recently, however, no physical example of an
1S = —, linear ferromagnet was known. It has been

shown by Landee and Willett that tetramethylam-
monium copper trichloride (CH3)4NCuC13
(TMCuC), isomorphous of TMMC, is a good ap-
proximation of that case.4 We have extended their
measurements to lower temperatures and observed

the 3D ordering in TMCuC. '
In the present work, we have studied some static

magnetic properties of the 1D mixed compounds
(CH3)4NMn„Cui „C13. We have synthetized these
compounds in the whole concentration range and ob-
tained information on their crystalline structure. We
have measured their magnetic susceptibility and the
weel temperature of the compounds with low Mn
concentration. To our knowledge, at the beginning
of our study, no theoretical calculations had been
done on quantum chains of spins —, with classical im-

purities except in the rather peculiar case of Heisen-
berg chains with alternating spin quantum numbers. 6

In order to describe our experimental results we have
developed a theoretical model for the magnetic sus-
ceptibility at low temperature, when the number
n ( T) of correlated spins along the chains is of the or-
der of 1. Another approach has been chosen for
describing the variation of the 3D order temperature
T~ in TMCuC:Mn, when n ( T) ))1. This calcula-
tion gives, meanwhile, a complete justification to a
method largely used before for determining TN in
doped 1D compounds. Finally, we obtained prelimi-
nary results on the spin-flop field in the 3D ordered
state of some TMCuC:Mn compounds.

II. EXPERIMENTAL TECHNIQUES

A. Crystal growth and crystallography

The samples of (CH3)4NMn„Cui „C13 have been
grown by slowly evaporating at 50'C saturated solu-
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tions of (CH3)4NCl, CuC12 2H20, and MnC12 4H2O
in boiling hydrochloric acid. We obtained monocrys-
talline samples in the case of high Mn concentrations
(x ) 50 wt. %), and powders for the alloys with high
Cu concentrations. All the samples are more or less
hygroscopic and alter rapidly when left under atmos-
pheric conditions. The Mn and Cu concentrations
were determined by chemical analysis (Microanaiysis
Laboratory of CNRS, Vernaison). Percentage of
copper in the samples is higher than in the starting
solutions and depends considerably on the evapora-
tion temperature of the solution.

The crystal structure and cell parameters have been
determined by x-ray diffraction at room temperature
for several samples with Cu concentrations (x) lower
than 0.5, by means of rotating crystal, Weissenberg,
and powder diagrams. This study has been per-
formed at the Universite des Sciences et Techniques
of Sfax (Tunisia). It shows that the compounds with
moderate Cu concentrations belong at 300 K to the
space group P63/m, like pure TMMC. Cell parame-
ters were refined by a least-squares technique using
the values obtained precisely on the powder dia-

grams. The parameters a and e of the hexagonal cell
decrease regularly when the copper concentration in-

creases from 0 to 0.5: in pure TMMC, a =9.151 A
and c =6.494 A (Ref. 7); in (CH3)4NMn05CUO5C13,

a =9.075 and c =6.435 A. The other part of the
concentration diagram, leading to the P2~ space
group of TMCuC with helicoidal magnetic chains,
has not yet been explored. Detailed information on
the crystallographic properties of these 1D manga-
nese-copper alloys is to be published elsewhere.

8. Magnetic measurements

They deduced the susceptibility from the low-field
values of the magnetization. On the other hand, we
measured the ac susceptibility of TMCuC in zero dc
applied field between 0.35 and 4.2 K.' Between 2
and 4.2 K, our values of X are higher than those of
Landee and Willett. We thus measured the suscepti-
bility of the sample between 4.2 and 77 K. Our
values are always higher than those of the other two
authors (Fig. 1). Several reasons can be found for
this discrepancy: (a) the susceptibility of 1D com-
pounds is very sensitive to the application of a dc
magnetic field. (b) Three types of impurities can be
found in TMCuC: isolated Cu ions, minute in-
clusions of the starting solution, or traces of
[(CH3)4N]2CuCl4, all of which give a specific contri-
bution to X lower than that of TMCuC (we measured
the susceptibility of pure [(CH3)4N]2CuC14, which is
only 0,36 x 10 3 cga emu/g at 4.2 K}. For these two
reasons, the present measurements are certainly
more reliable than the pioneer ones.

For temperatures lower than 20 K, our measure-
ments are well described by the series expansion
given by Baker et al. '0 for the 1D Heisenberg FM
with S = z, when taking Jc„c„=(45+1) K. This

value is naturally higher than that (29 K) given by

Landee and Willett. This is not surprising since our
low-temperature data are at least 25% higher than
those of these authors. It is not possible to describe
the whole X( T) curve between 2 and 77 K with a
unique jvalue. This is due either to the lack of a
sufficient number of terms in the series expansion, to
a possible variation of Jwith T or, more probably, to
the existence of some anisotropy terms in the Hamil-
tonian describing TMCuC.

Starting from the intrachain exchange value of
45 K and from the TN value (1.24 K) we had previ-

We measured the ac magnetic susceptibilities of
our samples by means of a mutual inductance bridge
operating at low frequency (70 Hz) and in low ap-

plied ac field (about 5 Oe). In the temperature
ranges 0.32—1.2 and 1.2—4.2 K, the sample was im-

mersed in pumped liquid 3He or 4He. Between 4.2
and 77 K, the sample is put in a glass cryostat, with
1-torr gaseous 'He ensuring a weak thermal link with
the main 4He bath. Temperature is stabilized elec-
tronically. In all cases, temperature is measured by
carbon resistors calibrated against He or He vapor
pressure and, in the 4.2—77-K range, with respect to
the susceptibility of a chromium-potassium alum. At
low temperature, dc magnetic fields up to 1300 Qe
could be applied to the samples.
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III. SUSCEPTIBILITY: EXPERIMENTAL RESULTS

A. Pure TMCuC

Landee and Willett measured the magnetization of
a pow'dered TMCuC sample between 2 and 300 K.

FIG. 1. Variation of XTvs Tin pure TMCuC. k: this

work; O: Landee and %i11ett (1979). The fu11 lines are only

guides to the eye; at 1ow temperature {T & 22 K), our mea-
surements are we11 described by a series expansion (Baker
et al. , 1964) with J =45 K.



STATIC MAGNETIC PROPERTIES OF (CH3)oNMn„Cut „CI3, A QUANTUM. . .

't.58
I

T(K)
25 4 63 8

2.5 .5

Q)3

2.5

0.5
6 8

0
10 10 30 50 70

T(K)

FIG. 3. Variat&on of X vs T m TMCuC:Mn. The man-

ganese concentrations are, respectively, 0: 0.02; : 0.08;
~: 0,22; k: 0.55.
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FIG. 2. Variation of 1ogX vs logTat lo~ temperature in

TMCuC. The susceptibility diverges as 1/T" with
n =1.525 +0.005.

ously measured in this salt we can recalculate the
value of the interchain interaction J'. We find
[g'J'/xJ[ =0.9 x 10 ', or lr'J'I =SI mK («nd &' are
the numbers of nearest neighbors along the chains
and in the plane perpendicular to the chains).
TMCuC is thus a good 1D Heisenberg FM.

The variations of log~OX vs log~oT are well described
at low temperature by a straight line. At low T,
Xa: a/T", with n =1.520 +0.005 (Fig. 2). This value
of n is lower than in the expansion of Baker et al. ,

'0

(1.67) and than that determined by Bonner and Fish-
er" (1.S).

not modify drastically the susceptibility of the copper
chain (we suppose here that the Mn-Cu exchange in-
teraction is ferromagnetic like in TMMC-Cu) but
give a paramagnetic contribution greater than that of

. the substituted Cu'+ ions. %hen x increases, pairs of
Mn'+ ions form along the chain, The exchange in-

teraction JM„M„being AF, the paramagnetic contri-
bution of the pair is null: moreover, the Mn pair
makes the two copper chain fragments antiparallel,
thus reducing the susceptibility. For x =1, we obtain
the low susceptibility value of the antiferromagnetic
chains in TMMC.

For all the samples, the susceptibility varies at low
temperature like a/T", the exponent n depending on
the Mn concentration x,

S. Mixed compounds (CH3)qNMn„Cu~ „C13

We measured the susceptibilities of such powdered

compounds, for x~0.7 and 1.2 & T &77 K. In all
these samples, the magnetic susceptibility increases
when decreasing temperature, as in ferromagnetic
TMCuC (Fig. 3). A graph of X vs x at 4.2 K shows
that when the concentration in manganese ions in-
creases, the susceptibility exhibits a maximum value
at about 10' and then decreases rapidly (Fig. 4).
Notice that the value obtained by Richards" on
TMMC: Cu 22 mol'/o fits well with the present
results. A theoretical calculation of X(x) at low x is
reported in Sec. V, but we can give here some simple
physical arguments explaining this behavior. %hen
the Mn concentration is low, the probability of hav-
ing in a copper chain Mn pairs or clusters is weak,
and the Mn atoms are mainly isolated. These ions do

GS

FIG. 4. Experimental values of the susceptibility X at
4.2 K vs manganese concentration x in

(CH3)4NMn„Cu) „C13.' our measurements; ~ Richards
(1976). The full line is a guide to the eye.
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IV. THREE-DIMENSIONAL ORDERING IN TMCuC:Mn

A. Neel temperature

Dupas and Renard have shown that introducing Cu
impurities in TMMC lowers the 3D ordering tem-
perature TN. We present here measurements of the
Weel temperature of TMCuC with a few percent of
Mn + ions. We have studied the susceptibility below
1.2 K of four samples with, respectively, 2, 4, 8, and
22 mo1% Mn impurities. The susceptibility exhibits a
maximum at a certain temperature that we identified
as T~, this maximum being rounded by the introduc-
tion of Mn impurities and shifted to lower tempera-
tures (Fig. 5). In fact, for antiferromagnets it is gen-
erally admitted that T~ is the temperature at which
d x/dT is maximum. In the present case, it is diffi-
cult to locate precisely this point except for pure
TMCuC. However, it might be pointed out that (i)
the temperature at which X is maximum is generally
close to T~ is many antiferromagnets; (ii) we are not
interested here by the absolute value of Tg but rather
by its relative variation with the impurity concentra-
tion Tz(x)/T~(0). It might be expected that this
quantity does not strongly depend on the exact defi-
nition of Tg. For the compound with 22 mo1% Mn,
the maximum of X( T) arises near 0.35 K, which is

the lowest temperature in our experimental setup.
The variations of Tz(x)/T~(0) vs x are shown in

Fig. 6, where we have also reported the correspond-
ing variations in TMMC:Cu. The lowering of T~ in

TMCuC:Mn can be understood with simple con-
siderations. The ratio of the impurity-host to host-
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host energy interactions is

Ecu—Mn Jcu-Mn~~ 1

Ecu-cu Jcu-cu5'(5'+I )

The Mn ions thus produce an effective breaking of
the copper chains. This effect is more drastic in

TMMC:Cu, where

1

Ecu —Mn/EMn —Mn 3p

FIG. 6. Relative variation T~(x)/T&(0) of the Neel tem-
perature vs impurity concentration x in some quasi-1D sys-
tems. Symbols represent, respectively, k TMMC:Cd; 0
TMMC:Cu; TMCuC:Mn (this work). The curves (1),
(2), and (3) are the results of the following theoretical cal-
culations: (1) XY classical chain with diamagnetic impuri-

ties; (2) XYclassical chain with S =
2

impurities; (3) quan-

tum Heisenberg chain with classical impurities (this work).
The impurity-host interaction value is J«M„=1.6 K.
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Moreover, TMMC is a better 1D model than
TMCuC. In TMMC and TMCuC, respectively,
5 mo1% Cu and 1S mol% Mn are necessary to reduce
the Neel temperature by a factor of 2.

B. Spin-flop transition

1

8
ila+~

I

0.5
I

T(K)
1.5

FIG, 5. Maximum of X vs T at the Neel transition to the
3D AFM ordered state in some TMCuC:Mn compounds.
Pure TMCuC kT~=1.24 K; 2 mol'/o Mn doped compound
~ T/i/ =1.14 K; 4 mo1% Mn OT~ =1.10 K; 8 mo1% Mn

eT~=0.96 K.

In order to confirm the existence of an antifer-
romagnetic long-range ordered state below the sus-

ceptibility maximum at low temperature, we have
studied the effect of a dc magnetic field on the sus-

ceptibility of the preceding samples at temperatures
lower than T~. In pure TMCuC, the variation of the
susceptibility versus magnetic field presents a max-
imum in the temperature range 0.95—1.25 K and two

maxima at lo~er temperatures, one of them exhibit-
ing hysteresis. The maxima are broad, due to the
powdered nature of the sample. We attributed these
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FKJ. 7. Magnetic phase diagram H(T) in pure TMCuC

(1) and in TMCuC:Mn 2 mo1% (0). The regions corre-

sponding to the antiferromagnetic (AF), spin-flop (SF), and

paramagnetic (P) phases are shown. The arrow indicates the

value of TN in pure TMCuC.

two peaks to the antiferromagnetic spin-flop (SF)
and spin-flop paramagnetic (P) transitions and
could thus draw the magnetic phase diagram of this
compound' (Fig. 7). From the value of the SF-P
transition field (Hgp p

—600 Oe), we obtained a

value of the interchain interaction J' in good agree-

ment with that deduced from Tg/J.
We performed analogous measurements on the

powdered TMCuC:Mn samples with 2, 4, and

7 mo1% Mn. The compound with 2 mo1% Mn exhi-

bits a behavior similar to that of pure TMCuC, but
the values of HA~ s~ and Hsp p are lower than in

TMCuC. The reduction of the spin-flop field when

replacing some Cu'+ by Mn'+ ions can be under-

stood: the Mn'+ ions are in an S state and their in-

troduction lowers the anisotropy in the sample
(moreover, the mean exchange field inside the chains

is slightly reduced too by the introduction of Mn'+

impurities). In the more-Mn-doped samples, only a

broad maximum of X vs H can be seen at all tern-

peratures below T~ (Fig. 7); the value of H at X,„ is

lower than Hsp p in the samples with 0 and 2 mo1%
Mn for the same temperature values. This broad
maximum can be due to the overlapping of the AF-
SF and SF-P maxima in these impure and powdered

samples or even, perhaps, to the disappearance of the
SF transition. Clearly, detailed experiments on
monocrystalline samples would be necessary.

V. THEORY

A. Theoretical background

The problem of calculating the magnetic suscepti-
bility of disordered magnetic chains has been con-
sidered by several authors. When only two distinct
spin species exist in the crystal and can be treated as
classical vectors (8))1), and when all magnetic in-

teractions are isotropic, the calculation can be per-
formed using the Fisher's method" completed by the
introduction of recurrence relations' between spin-
correlation functions. This method has been extend-
ed to the case of S = —, impurities at low concentra-

tions in a classical chain. " For anisotropic exchange
interactions, a transfer-matrix formalism method can
be used. "

Some attempts have been done too for antifer-
romagnetic chains of quantum spins S = —, with

random isotropic exchange interactions. In that case,
the formalism derives from the methods of the real-
space renormalization group; the purpose is the study
of the asymptotic properties at T =0 of the thermo-
dynamic functions. Some problems remain to be
solved for the ferromagnetic random chains with

S = —,, all of which do not belong to the same univer-

sality class. Any~ay, such methods would not be ac-

curate enough in the temperature range of interest in

our problem. '

We have to treat the case of a magnetic chain of
spins S =

2
with low atomic concentrations of classi-

cal spins 8 )& 1. The starting Hamiltonian is

3,= Xx, + gz, ,

&p = —J QSI S ) +] gpsH xSi'—
P

gp = —L 8~(SN +St,) gpsHSp—

In the following, we suppose J &) L )0. These
conditions are satisfied in the compounds
(CH3)4NCu„Mn~ „C13. Each spin interacts only with

his two nearest neighbors. In TMCuC and
TMCuC:Mn, the anisotropy is only approximately
known but certainly weak, and will be neglected
in our calculations. The classical spins

Sp(p =1, . . . , xN) cut randomly the chain of quan-

tum spins. Sl~ is the ith spin in the pth fragment,
which contains Np spins [X Np=N(1 —x)]. The

magnetic field is along Oz. To the first order in x,
when x (& 1, we suppose that two classical spins are
never nearest neighbors (no cluster at low concentra-
tions).

The static properties of the system are deduced
from the free energy

F = ——(lnZ)1

We turn now to the calculation of the susceptibility
and Neel temperature in the compounds
(CH3)4NCu~ „Mn„C13 for x ((1.

with

Z =Tr exp( —PX), P = (ks T) '
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The mean value (lnZ }& is taken over all spatial con-
figurations of SI» and 8~. A first approach consists in
a series expansion of F vs P, but the calculations be-
come rapidly intricate for P ' ( J,L We will thus
use some approximations, the validity domains of
which are to be defined later.

The susceptibility N (X}„ofthe impure chain is

given by the expression

& ( s&.s) )„=Sss.,(X (s!st) + X (s;s:)
ij i, a

+ X(s:s;))„,
N, S

where the interior angle brackets ( } refer to the
canonical mean values. There and in the following
we shall omit for sake of clarity in the text the aver-
age ( }„which are effected after the thermal average

}. We suppose that if no anisotropy is present the
susceptibility per spin Xo of the pure infinite fer-
romagnetic chain can be written as

(T) 2 2 S(S+1)
3

n(T) =1+2 Xexp 4(T)

where n ( T) is of the order of the number of spins S
correlated to a given one. The correlation length

(0( T) is thus of the order of n ( T) a, a being the in-

trachain distance between adjacent spins. 8'e suppose

n ( T)x (& 1. The probability of finding in the im-

pure chain two classical spins separated by less than
2alt ( T) ls

x $(1 —x)t=2n(T)x (&1

The susceptibihty difference N( (X}„—Xo) is due, to
the first order in x, to the contribution of the spins
located at a distance smaller than n (T)a from a clas-

sical spin 8. Two such spin groups surrounding each
impurity are not correlated. The correlations (S;S&}
between two quantum spins can be assumed to be
the same in the pure and impure chains if there is no
classical spin between i and j and if their distances to
the next& and St)are greater than n(T)a. In the
calculation, we thus take in account only those spatial

configurations for which all the 8 are separated by
more than 2n (T)a. In these cases, the susceptibility

does not depend on the position of the classical spins
and we can thus calculate X for a regular configura-

tion in which all 8 are equidistant.
The presence of the 8 allows us to factorize

exp( —Pge):

exp( —PX) = +exp —P[Xt,—I (gt, -(S) +8&Stt )]

8»' )+Sp
"expPg p 1tH

2

where N~ = (1 —x)/x. Then, by calculating the trace
over all quantum spins, we obtain

Trexp( —PX) = g (IIt, t[U~ II~}
(8)

The vector S~ is given here by its spherical coordi-
nates g, O~, $~ =8, II~ and U is independent of p-
in fact, U is a symmetrical (28+ I) x (2&+ I) matrix
with real coefficients and real eigenvalues. If A,o is
the greatest eigenvalue,

Tr[exp( —PX)] =Z=(A())'" .

The diagonalization of U, although analytically im-

possible, may be performed numerically.

S. High-temperature susceptibi1ity

An approximate analytical solution can neverthe-
less be obtained by modifying the transfer matrix U
using several approximations. If ~mt~} are the eigen-
states of S&»,

'xN
2+ I

4m

~&Igdn( m, n~ J » » »

xexp( —PX)[ m 0 }I P

A first approximation consists in writing

Tr exp [—P(g(:~ +2~) ] Tr [exp—( PX~)ex—p( PZ~) ] .—

In fact, X» and ZP do not commute with each oth-
er, and this approximation is only valid at high tem-
peratures, i.e., PLM (1. We then define the ma-

trices 9t and/ as

(111),mn )%&(mt nlN }= (mt mt ' ' ' m(tt )) mtt I exp( —PXp) l-mt mt m(w 1) mN } ~ (12)-
2 (N -1)

(lnN litt [$&(lttN, mt ) = Jl d 0& (mtt, Qtmt s( exp( peC&(mtt, Q&, mt }
28+1
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The interactions being isotropic, the only elements in &» are the diagonal ones and those for which m~ W m&

and mN A m~ simultaneously. When n(T) (( jl'~, these terms can be neglected. If we introduce now the ma-»»
trixOR» defined by

OII. .= (ml, ml„, lSII, lml, ml„, ) = X (ml, mw, l&, lml, mw, ) (mw, ml„, l4lmw, ml„, ) .
Ht jti

(14)

Z —Tr(mt)""= Tr(&&) "
and OR constitutes an approximate form for U. If A

is the greatest of the two eigenvalues of 9R,

(lnZ)„—xN lnA (16)

w (x),= ——1 9F I 1 Q in@
HBH H~ JS H 9H y

By developing A in powers of H to thc second order
we can calculate X. %C shall see later that OR has the
form

The magnetic susceptibility is given by the expression

n(T)x &&1. We then find
l

A=2m+ c+e+ — H
b2- d2

2'
Coming back to the % matrix, we can write

'!

off+ oH + yffH2 t)l+ yflH2
~lf+&lfH' ~ll

— H+&llH',
'

For isotropic couplings and n ( T)x && 1, one finds

~ff tll ~' ~fl ~lf

&ll & &fl &lf

If g is the partition function of a chain fragment of
N» spins S=—,, one has

m„+&H+eH' m„+dH+cH'
mlf —dH+eH2 mll —bH+eH

with ygff=mll=v), mfl =mlf, mff=mfl for

(Ig) g =4(r+~H') =g'+4yH'. (21)

In order to estimate the o. factor„we use the high-
temperature approximation

I

N -I N
»

exp p J X S(S,+1+gIIsH QSj =exp(pJ XSIS+l) I+pgpsH $Sj+
1 1 1

(22)

which we shall improve later. %e find

l52'''Np
»

ml m~ gsj exp pJ QS;s,+, ml mh
» »

i !

X
(mllsl lml )

Ptl
&

NI

sf lml) =mllml)

this contribution to a is

n(A

Pgr s X (SfSj) .
Sf

(24)

(25)

Ill (23), we first co11slder ill tile sulll XSj tile cofl-
tribution of the spins S, which are correlated to SI.
Using the identity

Consider the susceptibility X» defined by

N iV

X,X, =Pg'l. ,' X X(S;Sj) .
i~1 )~l

(27)

If we observe that l m 1l
= lmy l

=
z and neglect the

modification of the correlations at the end of the seg-

of the chain fragment and the spin S~, and finally

N

—-pgp, s — + X(SlSj)r . (26)
» N) Ng )» l
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ment, we obtain

2(x„+x,)rS( —1) '

gp~ P 1 N

where x is the susceptibility per spin (6) for
n (T) =1. One finds easily that

-1

gpXp =2y

(28)

(29)

4 may be expressed as follows:

j„+vH+~H' g„+gH
j y+02 j —vH+~02 ~

SP( +S1,= O.
pp p+1

expPL+@ ~r =f(0'r

(31)

We introduce the representations
I o, o*) where o is

diagonal, and then IS) where the scalar product 8 o.

is diagonal. Then

&m~, mt, +,If(» ~) lm~, mt, +, )
= $&m~, mt, +, I~ ~') &~, ~'l»f(&, » &Sl~. ~")&~, o'*ImN, , mi „), (32)

where the summations are taken over the states
lo', o'), I~, o'*), and IS) and where f($, 8)
= (Slf(S. o.) IS). The Clebsch-Gordan coefficients
&m~, mt I o, o') are given by the equalitiesp' p+1

&»II, » = &»II, -I) =I,
&Tjll, O) = &~glo, o) =I/J2,
&&tll, o) = &g[IO, 0) =-IiJ2 .

In order to calculate &
o., o'IS), we first note that

8" a- =&a+, where a+ is the projection of o. over the
vector 8 whose polar coordinates relatively to the
magnetic field direction Oz are @,O, P. The eigen-
states IS) of 8 rr can thus be deduced from lo, o, )

by the rotation bringing Oz over 8; they will be la-

beled I 8) =
I o, o, ) . When rr = 1, the & o, o'I o', o', )

are the matrix coefficients of signer's, irreducible
representation D "of the rotation group, given by"

1+cosO «sinO
2 J2

sinOe 'a cosO
2

1 —cosO &a sinO
2 J2

I —cos0"

sinHe'~
v'2
$ +cosO"

2

(34)

The corresponding eigenvalues of cr are , 0, and
—S. Thus

&11lf(» ~) lll) = '-" e 'af(%, 1, 1) ' e'a+ f(8:,1,0) """

+ 1 cosH I—af (0-, 1 I) 1 —cosO
2

' ''
2

The preceding relation has been obtained by appUcation of (32)—(34), with

f(8;I, +1) =exp(+PL&); f(&;1,0) =1; f(&, 00) =1

(35)

(36)

Analogous calculations lead to the other matrix elements of the operator f(8, o ). The next step is a summation
over Dd= si OnOde

J~dfi &lglf(» o')if))=„dII &Jglf(&, o)ljl)= —', ~(2coshPLS+I)= jtt

„df) &ljlf(S. )Itj) =J d«jllf(@, ~)lll)=3~(coshpLS+2)=- jtt
(37)

But j~~ =jii, j~i =ji~. In order to obtain the terms in 0 and 0 in I, one must write

2

exp( —i32) =expPLeo 1+Pgp, sHScosO+
i

g Jll H&scos 0+
2!

(38)
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and the calculations are then identical to the preceding one for jtt. Finally

v = —,S(2$+ 1)pg ps sinhpL &,

e =8'(28+ 1)P'g'p s(—„coshPL 8+ —,0 )

g = —,8'(28+ 1)P'g'p, s2( —„coshPL &+—„)
In order to obtain A, one calculates the coefficients of OR =Otl(18). The final result is

A i 0 2a' coshPL &—1

28+1 Q(c—oshPLS+ I ) + 2av +2y(coshPLS+ I ) + (a+ g) +
2 Q 3

0

(39)

(40)

The total susceptibility of the impure chain is

1 1 9lnA
NX =xN——

P H BH

t

8 sinhpLS 8 Xr 1 coshpL8 —1= N(1 —x) X~+xN pg2ps2 —+ —Xrp +
3 3 coshpLS+I 3 g p, p coshpL&+I

(41)

with Xq =
2 Xo. But in order to improve this high-temperature calculation, we shall take XT =

2 Xov where the

parameter v will be adjusted in the following. 'In the spirit of the preceding approximations, we admit that for
pL8 » 1, the correlation (Sf Sf) between two quantum spins located at each side of a classical spin 8 is not
greatly affected by& when 2$(T) & rti &2a. Hence

N(1 —x) X, = N(1 —x) Xo ——Nx8 XT

pg ps

and at last

(42)

N (X)„=N(1 x) Xo+Nx —pg'II, ,'S +—X,g(0+ I ) 8 sinhpLS 16 Xr 1

Pg'p, s2 coshPLS+ I
(43)

C. Susceptibility at intermediate temperatures

At low temperature, when n (T) » 1 and pL9 » 1, the decoupling relations (11) and (22) lead to poorly
satisfying results. We go back to the general expression of the susceptibility (X)„(5). When xn (T) « 1, the
terms with n W 8 can be neglected. Let us consider the difference y(x, T) defined as follows:

Ny(x, T) =N[(X(x, T))„-X(0,T)]
T

=pg2p) X[(SfSf(x))—(Si'Sf(0))]+ X[(Sf@*(x)—(S;S*,(0))]+$((b*)') (44)

The host and impurity spins S and + are, respectively,
labeled here by i, j, and 0,. The physical meaning of
the terms to the right in (43) appears when compar-
ing (44) and (43). The term in (8,)' (44) corre-
sponds to that in 8' (43). The term —g (SIS' (0) )
(44) is equal to Nx Xo (43). The t—erm X(Sf&'(x) )
in (44) corresponds to the term proportional to Xr in
(43). Finally, the first term in (44) is in correspon-
dence with the last one in (43).

We write this last term as

X' (S;Sf(x)) —(S;Sf(0) ) = $(x, T) —@(0,T) = 8@

(45)

The X summation has the following significance:
As has been shown in Sec. V A, we need only to con-
sider in Q(x, T) all the spina S; and S& whose distance
to a same impurity spin 8 does not exceed $0(T).
An approximate value of Sqh can be obtained by tak-
ing in account only the terms (SfSJ) in which
rs & 2/0( T) and S& and S& are on each side of a 8
spin. This approximation is valid when n(T) » 1
and pLS &1. In order to estimate (Si',Sf, (x))
(where SI, and SJ, are the nearest neighbors of 0 )
we suppose that their behavior is described by the
coupling energy 20—= L'g (SI +S~ ). As-
n (T) » 1 we suppose that S~ and S~ can only take
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the values + —,. We hope in this way to eliminate the

quantum fluctuations of S& and S~ . With the Hamil-
1

tonian Rat such fluctuations appear for PL & & I and
would oppose to the alignment assumed when writing
n(T)» 1.

We put

P(m, , mj) = dOsinOexp[PL0cosO(mi+ mj)]
~Jp

lim v'(T) = J3
pL»j && 1

lim u'(T) =1.5
]SLY &1

At last, (43) takes the form

N(x) =N(I —x)xo

(53')

term between the brackets (43) by —,Xov'( T) with

For PL& )& 1,

(S»Sz (x)) (T) S(S+1)
1 1 3

+w+Wx g ps

+ 4 i( T)0 slnhpLS
cosh/3L &+ 1

(47)

P ( ml ml) P( m;—, m;) —sinh/3LS//3L @ I—
p(T) =

P(mi, m~) +P(m;, —m, ) sinh/3LQ/pL0+1 valid for /3LS& l.

4XO2

/3g'p, s2 coshPL&+ I
(54)

When r» » a and n ( T) &) 1, we have the approxi-
mation

(S;SJ(x))= p(T) exp[ r&g/bo(T)]S S+I) (48)

= —,
' S (S + 1)p ( T) Aj'n '( T)x, (49)

where we have used the relation (6) between n ( T)
and $0(T). It follows that

Sy(x, T) = —,'S(S+I)xn'(T)x[p(T) -1] . (50)

It is interesting to calculate the ratio of the two

values of 8$(x, T) obtained in (50) and in (41).

"(T)[p(T) -I][-,'S(S+I)]
V=

', (xo—v/pg'ps2)'(coshpLe+ I) '

Now, if we let L 0, we find

lim V=-=3
L~0

so if we wish (43) to be valid also for diamagnetic
impurities (L =0), we must require u = J3. It can

be shown that if /3L 8 & 1,

X((S*S*(x)) & S
l

(53)

and it follows that we must replace XT in the second

and

g (S,*SJ*(x))= —,S(S+1)p(T) Xl exp[ —1 /ga(T0)]
i,J I 1

D. Weel temperature

The expression (54) just obtained gives the suscep-
tibility of an isolated mixed chain, and can only be
compared to experiment in the temperature range
where the compounds studied exhibit a purely 1D
behavior. At sufficiently low temperatures, the inter-
chain interactions which cannot be neglected lead to a
crossover to a 3D behavior and to the onset of a
long-range-ordered state below a phase-transition
temperature (see Sec. IV A). In the compounds
(CH3) 4NMn„Cut „C13, we have to explain why the
Neel temperature Tn(x) is reduced by increasing x at
low Mn concentrations" while at the fixed tempera-
ture 4.2 K, the magnetic susceptibility X(x, T) in-

creases with x.
Many authors have calculated the Neel tempera-

ture of quasi-1D systems by treating the spins as clas-
sical vectors. ' The effects of impurities and aniso-
tropic couplings have also been considered. ' The
problems encountered are complex, and there exists
no truly satisfying theoretical solution at this time.
The solution we propose in the following is also ap-
proximate.

We restrict ourselves to the case of isotropic inter-
and intrachain couplings. The interchain exchange
interaction has the form —J'S; X,S», (

~

J') && ( J ~
)

where we sum over the z nearest neighbors of a spin
in the plane perpendicular to the chains.

The Neel temperature of ferromagnetic chains
without impurities is given by

2&
I
J'Ixo( TN)

g2p 2

with Xo( Tn) extracted from (6). We wish to extend
(55) to the case of impurity doped chains. We note
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that in our compounds, at T = 1.2 K:

Ny(x, T) =Pg ~ g'[(S;S~(x)) (S/SJ(0))]

(45) and (50),

STD(x) ( Tn) = —[ (X( Tjv,x) )~
—Xp( Tn) ]

dXp

dT SJ'
Xp (57)

(56)

More generally, there may exist a temperature range
where (56) is valid: the right member of (56) is of
the order of n'( T), while the other terms in (44) are
of the order of n (T).

In order to calculate y(x, T) at such temperatures,
it is thus adequate to estimate the modification in the
correlations between the spins S due to the presence
of the . The effect of the classical impurity spins is
thus only an indirect one. This result gives us the
opportunity to use the relation (55) in order to esti-
mate Tn(x) by simply replacing Xp(Tn) by

(X(x,Tn))„and J' by J'(1 —x) when TN(x) is in the
validity range of (56). Indeed, relation (55) arose
from a molecular-field approximation in which each
spin S is supposed to have zn ( T) first neighbors on
the adjacent chains. The value of the number n(T)
of spins S correlated on a given chain is given by
Xp( Tn). But as the S are eliminated from (44) be-
cause of (56), Eq. (44) gives also the number of
correlated spins in the impure chain.

If 8Tn(x) = TN(x) —Tn(0), we have, by using

and finally, by using (54)

STN(x) [n (Tn) —2] [1 —p( TN) ] +4
T~ 20!

in the validity range of (56) and for p„LS) 1.

(58)

VI. COMPARISON WITH BXPBRIMBNT

We have compared the experimental variation of
the susceptibility in TMCuC:Mn versus maganese
concentration x at the fixed temperature 4.2 K to the
theoretical expression (54). We used for the Cu-Mn
exchange interaction L the value 1.6 K deduced from
susceptibility and TN measurements in TMMC:Cu
(Refs. 3 and 12) and for V'(T) the value V'(T) =1.5
(53'). As the agreement between theory and experi-
ment seemed satisfactory, without any adjustable
parameter, for the low values of x, we tried to extend
the fit to higher values by estimating the terms in x':

N(X)„—N(1 —x)Xp+Nx(1 —2x) pg'p, sz
S(S+I ) 4, sinhPLS+ —Xpu'( T)S

3 3 coshPLS+1
4 Xp
3 g'ps2 P coshPLS+1

1

+Nx 2Pg p, +2P cothPJ S—

s sinhpLS . , I, sinhpLS, 1 1+—Xy& 1+coth jtS' — +8Xr coth Jt S'—
coshPLS+1 pJ S coshpLS+I pJ S p

with Xy —
2 Xp&. Here, we have assumed an isotropic
1

exchange coupling —J~8 &~ between two neighboring
classical spins 8 and 8~ and we take J~ = —6.7 K
which is the value of the intrachain coupling in
TMMC.

The experimental values fit well with the theory
(Fig. 8).

The expression giving STn/Tn (58) also does not
contain any adjustable parameter. The experimental
value of the exponent n[X(T) ~ T ] is a=1.525
(Sec. III A). With such a divergence law, the number
n ( TN) of correlated spins in the vicinity of TN is of
the order of 12 for pure TMCuC. An extrapolation
of (58) would give a null value of TN for x =37/o.
By comparison, the straight line tangential to the ex-

perimental curve for small x values intersects the
TN =0 line for x =28'/0. This discrepancy could be
ascribed to the value of L It is not obvious why the
Mn-Cu exchange interaction in TMCuC:Mn should
be the same as in TMMC:Cu. In fact the value of
this parameter depends drastically on the superex-
change path Mn-C1-Cu, which is different in TMMC
and in TMCuC. Moreover, in this last salt, three dif-
ferent superexchange bridges with different angles
are already observed at room temperature, ' Never-
theless, the value L =1.6 K gives a good fit for the
susceptibilities at 4.2 K. The disagreement comes
thus probably from the model. First, the approxima-
tions used in the course of our analytical calculations,
which were detailed in Sec. V, lead to an overestimat-
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M5 01

FIG, 8. Comparison between theory and experiment for
the variation of X at 4.2 K vs Mn concentration x in

TMCuC:Mn.

ed value of p( T). But there is also a more funda-
mental cause, i.e., the starting Heisenberg Hamiltoni-
an. In TMMC, the existence of an XYanisotropy at
low temperature has been shown to lower consider-
ably the theoretical values of T~(x) in the impure
salt with respect to that obtained with a Heisenberg
Hamiltonian.

In this paper, we have reported measurements of
the magnetic susceptibility of powdered samples of
(CH3) 4NMn„Cut „Cl3 in a wide concentration range.
The value of Tg has been obtained at low Mn con-
centration. An approach to the magnetic properties
of quantum S =

2
chains with classical impurities has

been developed, which gives reasonable agreement
with experiment for the susceptibility but only quali-
tative agreement for the T~ value. Measurements on
monocrystalline samples would be highly desirable in
order to determine the value of the anisotropy and
the spin direction at low temperature in these com-
pounds. Results on the dynamic properties of these
systems obtained by means of EPR measurements
are yet unpublished.
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