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Frequency dependence of magnetoelectric phenomena in BaMnF4
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Equations of motion of the Landau-Lifshitz type are used together with the free-energy

expression of an earlier publication [D. L. Fox et al. , Phys. Rev. B 21, 2926 (1980)] to
derive expressions for dynamic phenomena in the low-temperature phase of BaMnF4.
The magnon frequency decreases and the optical-phonon frequency increases with the
strength of the magnetoelectric coupling. Three susceptibilities, magnetic, magnetoelec-

tric, and dielectric, are found; all three have poles at both the magnon and the phorion

frequency.

I. INTRODUCTION

The various phase transitions occurring in
BaMnF4 have been under in.vestigation for nearly a
decade, but they are still by no means completely
understood. The literature up to about 1978 has
been comprehensively reviewed. ' At about 247 K
BaMnF4, which is pyroelectric at room tempera-
ture, undergoes a second-order or nearly second-
order transition into an incommensurate antifer-
roelectric phase. The exact nature of this phase
transition is still not clear, despite considerable re-
cent activity.

In common with ofher BBLMF4 compounds
(M =Fe, Ni, or Co), BaMnF4 shows two-
dimensional antiferromagnetic ordering below
about 70 K. Associated with this ordering is a
broad anomaly in the b axis dielectric constant

it has been shown' ' that the magnitude
of the anomaly is proportional to the nearest-
neighbor average (S,'S,'+

&
).

At the Neel temperature T~ ——27 K magnetic
susceptibility measurements' show the onset of
three-dimensional antiferromagnetic ordering.
More precisely, the low-temperature phase is a
spin-canted weak ferromagnet, the canting angle
being 3 mrad at 4.2 K.' The point group of the
low-temperature phase' ' is 2'. This point group
allows a linear magnetoelectric effect, and indeed a
magnetoelectric response has been observed. In
the low-temperature phase, then, BaMnF4 has a
pyroelectric moment P directed along the crystallo-
graphic a axis and antiferromagnetic ordering
along the b axis, with spin canting producing a
weak ferromagnetic moment M along the c axis.

These relationships are summarized in Fig. 1,
which also shows the axis labels to be used.

Below the Neel temperature the u axis dielectric
constant e, shows an anomalous decrease" ' 4e„'
it has been shown ' that —he, ~I.O, where I.o is
the sublattice magnetization. The close link be-
tween the magnetic and dielectric properties is em-

phasized by the absence of an anomaly he, in
BaMno»Coo o&F4.

' The addition of 1% cobalt
changes the antiferromagnetic axis from b to a
without significantly altering the Neel tempera-
ture. It is worth mentioning that the resulting
point group 2 does not allow spin canting, al-
though it does allow a linear magnetoelectric ef-
fect.

The first attempt' to explain the anomaly he,
proposed that it resulted from a bilinear coupling
between the long-wavelength magnon operator a
and the long-wavelength optical-phonon operator
b, the model Hamiltonian being

4 =co ata+coybtb+co(ab +atb) . (1

However, it was later shown ' that Eq. (1) predicts

J(z, b, L

y, o, P

FIG. 1. Notation used in this paper. P is the py-
roelectric moment, L the sublattice magnetization, and
M the weak ferromagnetic moment.
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an increase in e„so that Eq. (1) is not a basis for
explaining the experimental results. The increase
is a consequence of the transfer of oscillator
strength from the phonon to the magnon mode as
the coupling constant co increases. Besides the
variation with co of the zero-frequency dielectric
anomaly Ae„Ref. 23 gave results for the depen-

dence on co of the mode energies and for the fre-

quency dependence of he, . A consequence of the
transfer of oscillator strength is that 4e, develops
a pole at co, and the residue at this pole increases
with co. The calculations of Ref. 23 can be readily
extended to give the frequency dependence of the
magnetic susceptibility and the magnetoelectric
susceptibility; what is required, in the notation of
Ref. 23, is a calculation of the Green's functions

G„(a ~at) and G„(a
~

bt).
The calculation in Ref. 23 suffers from a num-

ber of shortcomings, apart from the obvious one

that since he, disagrees with the experimental re-

sult some crucial feature of the magnetic-electric

coupling has been omitted. First, the calculation is

very schematic, and in particular Eq. (1) is not

properly adapted to the symmetry of the system.

Second, there is no easy way to extend the calcula-
tion to predict temperature dependences.

In Ref. 21 we tried to improve upon Ref. 23 by
giving a Landau-type mean-field theory for the
low-temperature phase. It was pointed out in par-
ticular that a term PqP M„L, in the free energy is

allowed by symmetry, and that despite its non-

linearity this term contributes to the linear dielec-

tric constant. It was shown that the inclusion of
this term allows he, to have either sign, and that
the temperature dependence is

~

4e,
~

~LO, in

agreement with experiment.
Although Ref. 21 was an improvement on Ref.

23 in that it took proper account of the symmetry,

gave a result for 4e, in agreement with experi-

ment, and predicted temperature dependences, it
was restricted to static susceptibilities and related

quantities. The purpose of this paper is to extend

Ref. 21 by using equations of motion to find ex-

pressions for the normal mode frequencies and the

frequency dependences of the susceptibilities. The
equations of motion are of the type originally pro-

posed by Landau and Lifshitz for magnetic sys-

tems and by Landau and Khalatnikov for relaxa-

tional systems. The application to ferroelectrics
with the inclusion of inertial or kinetic energy
terms was pioneered by Tani and is reviewed by
Blinc and Zeks.

The plan of the paper is as follows. In Sec. II

we set out the free-energy expression 4 used be-

fore. ' lt is pointed out that the uniaxial antifer-

romagnet and a weak ferromagnet are described by

special cases of the free-energy expression. Corn-

parison of the static magnetic susceptibilities of the
antiferromagnet derived from the free energy with

conventional expressions enables us to express some

of the parameters of the free energy in terms of the
more usual anisotropy and exchange fields. The
equations of motion are postulated, and equations

giving the linear response of the system to rf driv-

ing fields H and E are derived. Section III is de-

voted to the resonance frequencies, which are
found essentially from the conditions for singulari-

ty of the response functions of Sec. II. For the an-

tiferromagnet there are two degenerate modes at
the usual antiferromagnetic resonance frequency

In the magnetoelectric, one of these modes

persists at OAF, while the other couples to the opti-

cal phonon with a consequent frequency shift. In
Sec. IV we find the rf susceptibilities from the

linear response equations of Sec. II. The magne-

toelectric susceptibility has poles at both the mag-

netic resonance frequency and the optical phonon

frequency. As at zero frequency, ' it is found that

the dielectric anomaly Ae, is a sum of two terms,
one of which is essentially positive and the other of
which can have either sign at zero frequency. The
first of these terms, however, has a pole at OAF,
while the second does not. Conclusions are

presented in Sec. V.

II. FREE ENERGY AND EQUATIONS

OF MOTION

BaMnF4 is a two-sublattice antiferromagnet, and

we use variables

L=Mi —Mp,

M=Mi+Mp,

where Mi and Mz are the sublattice magnetiza-
tions. %e write the free-energy density in the
form~'

cy = —,(A +a)L ' , aL,'+ , GL 4—+—,BM~——
+ —,D(1- M)'+ (Po+Pu+ Pe')M. L.

y~,g, + —,Ep' —p E—M-H, (4)

where the polarization P is

P=P, +p, (5)

with P, the pyroelectric moment. E and H are



FREQUENCY DEPENDENCE OF MAGNETOELECTRIC PHENOMENA. . . 3253

external fields which in Ref. 21 were taken as stat-
ic fields since we calculated static susceptibilities;
later in this paper we take them as rf fields for the
calculation of rf susceptibilities. 4 is not the most
general form allowed by symmetry; some possible
terms are omitted on grounds of physical implausi-
bility. ' In particular, a possible p dependence of
the anisotropy parameter a is omitted.

Here and later in looking at the implications of
Eq. (4) it is helpful to consider two special cases.
If Po ——pl ——pl ——y=O, a & 0, and terms in p are om-
itted, Eq. (4) describes a umaxial antiferromagnet.
The equilibrium configuration in zero applied field
is given by the solution of BC/BL=B4/8M=0,
namely

L=(O,O,LO),

X„'y (0)= PlL—0/BE (13)

Xyy(0) = I/E+(pl+ pepl)LO/BK' . (14)

It is seen from Eq. (14) that the dielectric anomaly
is proportiong to L02 and can have either sign, as
already mentioned.

In order to find resonance frequencies and rf
susceptibilities we postulate that the mean
fields on the sublattices and on the polarization are
—84/BMl 2 and —84/Bp, so as to write equa-
tions of motion

(15)

toeleetric susceptibility X„'z (0}and the static dielec-
tric susceptibility X~(0) Rl'c

Lo ———A/G .

3 p Bp 84
Qtl dt Bp

(16)

In a simple version of the theory, one would set
3 =AD(T Ttt ), bu—t as before ' we take the view
that the aim of the theory is to express other quan-
tities in terms of Lo With a .static field H rein-
stated in Eq. (4} the static magnetic susceptibilities

X~~ =X and Xl——X =X~~ of the antiferromagnet
can be calculated. Comparison of the expressions
with those found in the conventional way gives
the identifications

aLo ——Hg,

BLO ——2HE+Hg, (10)

L=(O, O,LQ),

M = ( —poLO/B, O, O), (12)

so that the spin-canting angle is 8, =Po/B.
In their full form the equations for the equilibri-

um configuration and static susceptibilities derived
from Eq. (4) appear to be intractable. They have
been solved '

by power series expansion up to qua-
dratic terms in the parameters Po, P» P2, and y.
To that order, I. remains in the z direction but an
additional term of order P is added to Lo, while
M retains the value in Eq. (12). The static magne-

between parameters of this theory and the ex-
change and anisotropy fields H@ and Hz which are
normally used.

If pl ——pl ——0, po ——y, a & 0, and terms in p are
omitted, Eq. (4) describes a weak ferromagnet with
equilibrium configuration

Here yo (taken negative) is the gyromagnetic ratio,
Q' represents damping, p is the optical-phonon ef-
fective mass, and b a phonon damping parameter.
It is essential to include damping in the equations
of motion for the longitudinal components I;,. If
it were not included, Eq. (15) would give a zero
value for ihe static longitudinal susceptibility, in
contradiction to the nonzero value found directly
from Eq. (4} and to the experimental results. As
can be done for magnetic resonance, we overcome
this formal difficulty by assuming that M;, relax
towards the values that would be determined by
tllc lllstalltailcous VRlllc of tllc rf field. Tllls 18

equivalent to using the "modified Bloch equa-
tions" ' instead of the usual Bloch equations. It
is less essential to include damping in the equations
of motion for the transverse magnetization com-
ponents and for p, but it appears in Eqs. (15) and
(16) for completeness. Detailed forms of the
damping terms in Eq. (15) will be given below.

In order to apply Eq. (15) to Eq. (4), we use Eqs.
(2) and (3) to convert (15}to equations for L and
M.

1 BM B4 84= —M~ —Ly
y at KC aL

H and E are taken as rf fields:

H=H exp( i cot), —
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E=Eexp( i—cot),

and I. and M are written in the form

L=(lx, ly Lo+Iz)

M=( —PoLo/8+m„, my, m, ),
so that 1 and m are the linear response of I. and
M to H and E. Equations (16)—(18) are linearized
in 1, m, H, and E; with the replacement
Blat~ iso—they take the form

(21)

(22)

idiom —/yp Lp@t—y—+m„ITz, (23)

icbm—ylpp= IapLp(@ H )IB Lp@t„—+my/Tz

(24)

—ill~/N)=Lp(@~y Hy )+I —/Tz (26)

i cooly /yp — Lp(4 ——„—H„) Pp—L pC&t, —/8 +ly /Tz,

ipymz—/yo=PoLo(@my Hy )/8—+ms/T& XpHz/—Ti ~

(25)

they describe coupled magnetic-electric behavior.
It can also be seen from the explicit form of the
equations that in the limit co~0 the static suscep-
tibilities derived previously ' are again found.

III. RESONANCE FREQUENCIES

In order to find the resonance frequencies, Eqs.
(23)—(29) are solved with the driving fields H and
E omitted. As is clear from the comment at the
end of Sec. II, Eqs. (23), (27), (28), and (29) are
then coupled homogeneous equations for
(m„,ly, l„p), while Eqs. (24) —(26) are coupled
homogeneous equations for (my, m„l„). Rather
than consider the general case immediately, it is
helpful to start with the special case of the antifer-
romagnet and the weak ferromagnet.

For the antiferromagnet, the longitudinal com-
ponents m, and l, are decoupled from the trans-
verse components and have a purely relaxational
behavior

—lNI Ipp=PpLp@ty/8+I /T) XtpH„/T—), (28)

icbm, =I im, ,

with a similar equation for l„where

(32)

(pro +ib—co)p = —4y+E .

The notation for derivatives is

(29) I'i = —}'o/Ti

The equations for m„and lz are

(33)

ae
ly

(30)

and so on. Transverse and longitudinal relaxation
times Tj and Tq have been introduced. As ex-

plained, as m —+0, Eqs. (25) and (28) allow m, and

I, to relax to the static values XpH, and XtpH„.
Here Xp is the relatively complicated form of the
static susceptibility X~ given in Ref. 21, Eq. (16),
and

Xto = Po/28GL o— (31)

this being introduced because l, has a static
response to H„, as is seen from Ref. 21, Eq. (13).
Purely for simplicity, no static fields have been in-

cluded in Eqs. (23)—(29); there would be no diffi-

culty in including them if necessary.
%hen explicit expressions for the derivatives 4~~

etc. are substituted, it is found that the general
structure of Eqs. (23)—(29) is as follows. Equa-
tions (23}, (27), (28), and (29) are coupled, and give
the response of (m„,I„,l„p) to (H„,E} Equations.
(24) —(26} are coupled and give the response of
(my, m„l„) to (hy, h, ). Of these two sets of equa-
tions, the former are the more interesting, because

with

t N m~ = ppHg ly +I z—m~

ioyly =yp(2H~+Hq )m„+I'zl„,

(34)

(35)

I'z = —}'o/Tz (36)

~AF l otzBL o ro(2HEHw +Ha } (37}

For the weak ferromagnet, the equations of mo-
tion for m~ and l„are identical in form to Eqs.
(34) and (35), so that the resonance frequency for
that mode is still given by Eq. (37). The only
difference from the antiferromagnet is that m, now
follws mz.

r

leo + m. =PoLom, .
70

(38)

The (m„, ly ) mode is shifted up in frequency; in the

where Eqs. (9) and (10) have been used. The equa-
tions for m~ and I„ take the same form, so that the
(m„,ly) and (m„,l„) modes are degenerate. With-
out damping, I 2

——0, the resonance frequency, as is
well known, is
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In this mode, l, follows l»:

l, = Lol» .i co 1 Po

ro
(40)

Equation (39) is exact; for comparison with the full
magnetoelectric equations, which we expand to
order P, note that the shift of cowF from coAF is
second order in Po.

For both the anitferromagnet and the weak fer-
romagnet the optical phonon is not coupled to the
magnetic resonance modes, as is obvious on general
grounds. In the absence of damping, Eq. (29) gives
the usual result for the optical-phonon frequency:

absence of damping the resonance frequency is

oi = oiwF=yo(&+Po&&)(&+Pol&)Lo

+(ygaia){1+2GL,'ta)L,'. (39)

values are ~m —3 cm-' and a To ——4O cm-', "this
is a substantial numerical difference.

Equations (44) and {4S) predict the temperature
dependences of the frequency shifts. Equation (39)
shows that ~wF ~I.o, using this and the numerical
values just quoted one finds

~To —~wF(T =o)2 2

—=0.994 . (46)
~To —~wF( T = TN )

To better than 1%, therefore, the contributions of
the corresponding terms in Eqs. (44) and (4S) may
be disregarded, and the temperature dependences
reduce to

5' (T) Lo(T)
5~ (0) L,,'(0)

coTO
——E/p .2 (41)

After these preliminaries we turn to the magne-
toelectric, for which the resonance modes are those
given by the full set of equations (23)—(29) with rf
fields omitted. If y=po, the (m», m„l„) mode still
has frequency co&F given by Eq. (37); if y+Po the
frequency is shifted. The (m„,l», l, ) mode is now
coupled to the p mode, and both the magnon and
phonon frequencies are shifted. It is notable that
the coupling between the modes involves only the
parameter Pi. The full expressions for the fre-
quencies, involving the solution of a 3)&3 secular
determinant [l, can be eliminated by Eq. {40)jare
complicated, and it is helpful to expand the shifted
mode frequencies in powers of P, . To order Pi,
they are

with

CO~ =NwF+ 560~

NT =NTo+5Ny,

2 14
5cd~ =—

2 2
2po»wF{~To ~wF)

roPi«o
5coy =

2m~To(~To —~!wF)

(42)

(43)

(44)

{4S)

The zero-temperature forms of Eqs. (44) and (4S)
may be compared with the results of Ref. 23.
They are consistent in that ~~ goes down and ur
goes up, the shift in both being proportional to Pi.
However, there is a significant difference because
in Ref. 23

I
5'

I

=
I
5cor I, whereas here we have

rather 5(oP~ )=5(coz ). Since the zero-temperature

~WF

AF NF

I

!
I

I

I

I

I

I

I

I

I

0 po

(p)

Pl (LINEAR SCALE,
ARB, UNITS)

FIG. 2. Summary of the results of Sec. III. The
changes in mode frequencies are shown as an antifer-
romagnet is changed first into a wreak ferromagnet, then
into a magnetoelectric.

The temperature dependence of Lo(T) in BaMnF4
follows a Brillouin —, function, and a plot of
Lo(T) versus T is given in Ref. 21, Fig. S.

The results of this section are summarized in
Fig. 2, which shows a "thought experiment" in
which an antiferromagnet is turned first into a
weak ferromagnet then into a magnetoelectric with
an increasing value of Pi. In the first stage the de-
generacy of the two antiferromagnetic modes is
lifted, and of course the frequency of the phonon
mode is unaltered. In the second stage the cou-
pling between the (m„,l», l, ) and p modes means
that the corresponding frequencies move apart,
while the (m», m„l„) mode continues unperturbed
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at frequency co~F. (It is assumed that y=Po. ) The
right-hand side of Fig. 2 may be compared with
Fig. 1 of Ref. 23, in which frequencies are plotted
against the coupling constant co of the Hamiltoni-

whereas the present result is ro
~

5co

=ror
~
5ror

~
. The difference between these forms

is seen in the relatively small increase of the @-

mode frequency in Fig. 2.

of (mz, m„l~) to (h„,h, ) which for Po——y is the
same as that of an antiferromagnet. We therefore
concentrate on the solutions of Eqs. (23), (27), (28),
and (29). As for the static susceptibilities ' an ex-

Rct cxpllclt sollltlo11 11as Ilot bcc11 foulld, slid In-

stead we give the result of a power series expansion
in the parameters P; and y. The susceptibilities of
most interest are defined by

(48)

IV. SUSCEPTIBILITIES
P =g'yH +g~E (49)

The susceptibihties are given by the solutions of
Eqs. (23)—(29) for the linear response to the rf
drlvlng flclds. EqllatloIls (24) —(26) glvc R I'cspollsc

The symmetry by which 7„'„occurs in both off-
diagonal positions emerges from the detailed solu-

tions as well as being required on general grounds.
To order P, the susceptibilities are

X =(aLo+flcl+aLodI)(f2+aBLo)

X„'z —— (PlaL—o/iJ, )(coTO icoI —OI ) '—(f2+aBLo)

Xyy =p (oITo iroI oI—) +(—plaLo/iI, )(OITo ioII' n) —) (fI—+aBLo)

+(pop2Lo/Bp )(coro —lcol —OI )

The auxiliary notation is

&I=(PoLofl/B)(fz+aBLo) ',
dl = (P'I/ILo/»—(fI+aBLo) ' (13oafILo/—Bfl )(I+2GLo/B)(f1 +aBLo) '

PoLoXIo(1+2GLo/B)/f1TI +(PlaLo/p)(pro icoI —ro ) '—(fI+aBLo)

(50)

(51)

(54)

(55)

(56)

Xlo is given in Eq. (31), and the phonon-damping

parameter I" is defined by

P(coTo lcoI co )=E—I cob ——Pco—
In the absence of damping, T2

' —(),

where ~~F is the antiferromagnetic resonance fre-

quency of Eq. (37). It is seen, therefore, that the
susceptibilities of Eqs. (50)—(52) have poles at the
unshifted magnetic resonance and optical-phonon
frequencies. This, and the fact that some of the
singularities are double poles, are artifacts intro-
duced by the use of a perturbation expansion. The
basic response equations are linear, and the reso-
nance frequencies (42) and (43) are given by the
condition that the matrix multiplying the vector

(m„,l„,p) is singular. In an exact solution, there-

fore, the susceptibilities would have single poles at
the exact resonance frequencies.

In the limit of zero frequency and zero damping,
oI, T 1

', T2 ', I'~0, Eqs. (50)—(52) reduce to the
static expressions derived previously. ' In checking
this limit it must be borne in mind that according
to Eq. (55), fl Tl +1. —

Tllc slllglllRrltlcs 111 Eqs. (50)—(52) occlll 111 dif-
ferent orders in the expansion parameters P;. X~™
has a pole of zero order at m=~&F and a pole of
second order at a=~To. X~z has first-order poles
at co&F and at ~To. Xzz has a second-order pole at
~AF and a zero-order pole at ~To. Since X is
primarily a magnetic response function, X~~ pri-
marily a dielectric response function, and X„'~ a
mixed response function, these properties are not
surprising.

With damping neglected, X„'„may be written in

the alternative form
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2 2&.' = (Pi~Lo/p)(~ro ~AF

X [(CANTO
—

CO ) — ~F—2 2 —1

P
2 2 2 —2be= (LoleoBp )(coTo—co

X(pwAF(AF ~') '+poA (60)
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which shows the vicinity of co=oAF in more detail.
That figure emphasizes, as is already clear from
Eq. (60), that near OAF the Pi term must dominate,
with a positive value for be on the low-frequency
side of OAF. Like Fig. 3, Fig. 4 shows the general
weakening with increasing temperature of effects
due to the magnetoelectric coupling.

V. DISCUSSION

The postulated form (4) of the free-energy densi-

ty leads to predictions for equilibrium values and
static susceptibilities which were worked out in
Ref. 21. By adding the equations of motion (15)
and (16) we have extended the scope to find
dynamic properties. The equations of motion are
postulated and not derived, but since they give the
usual results for an antiferromagnet and a dielec-
tric when the coupling terms in (4) are dropped
there is no reason to doubt their validity.

Our main results are the mode frequencies of
Sec. III, particularly Eqs. (44) and (45), and the
frequency-dependent susceptibilities, Eqs.
(50)—(52) in Sec. IV. The coupling parameters Po,
Pi, and P2 in Eq. (4) have quite distinct roles in
these expressions. As indicated in Fig. 2, Po is pri-
marily involved in the spin canting and consequent
lifting of the degeneracy of the antiferromagnetic
resonance modes, while the frequency shifts (44)
and (45) due to the magnetoelectric coupling
depend solely on Pi. The parameter Pz plays a
crucial part in expression (60) for the dielectric
anomaly Ae, since it allows he to be negative, but
it is not otherwise important.

The present results may be compared with those
found in the theory of improper ferroelectrics. 3

In that case, the polarization P may be coupled to
the two-dimensional primary-order parameter by
means of a term linear in P, analogous to our Pi
term, or by means of a term quadratic in P, analo-

gous to P2. The linear term leads to a step discon-
tinuity in e at the critical temperature, with
e( T & T, ) & e( T & T, ). The quadratic term, howev-

er, produces a term in e which is continuous at T,
but with a discontinuity in de/dT. Here, by
contrast, both the Pi and the P2 coupling terms
produce discontinuities in de/dT but not in e, al-

though as we have shown the frequency depen-
dences of the two contributions are quite different.
This disparity between the present theory and the
theory of improper ferroelectrics stems from the
different mathematical structures of the free-

energy expressions. In improper ferroelectrics, a

two-dimensional primary order parameter is cou-
pled to the secondary order parameter P. Here,
however, the primary order parameter L, is one-

dimensional, and is coupled to two secondary order
parameters M„and P. In particular, the coupling
terms PipM„L, and P~ M„L, involve all three
order parameters.

It was pointed out previously ' that the free en-

ergy of Eq. (4) implies the existence of various
nonlinear susceptibilities. As in Ref. 21, however,
we have worked out the linear response functions
without attempting to derive expressions for non-
linear effects. A systematic account would be
quite difficult, and in any case would have to build
on a proper understanding of the linear susceptibil-
ities.

An earlier attempt to give an account of'

frequency-dependent phenomena in BaMnF4 was

based on the model Hamiltonian (1). As implied
in Sec. I, the present work is an advance on that in
several ways. It is less schematic because the
terms in Eq. (4) are invariants of the point group
of the high-temperature phase, and it gives predic-
tions for temperature dependences. Nevertheless,
our results are broadly consistent with those of
Ref. 23. The presence of the coupling terms leads
to an increase in the phonon frequency coro and a
decrease in the magnon frequency OAF, although
now we find 5(Nyo) = —5(co&F) rather than the
p«»ous

I
N ~TO) I I

b(~AF)
I

~ It may be pointed
out that the more complete Hamiltonian

H =co~Fa a+corob b+co(a +a)(b +b) (62)

also leads to 5(coro) = —5(co&F), in agreement with

the present theory. With coupling included, the
susceptibilities X~, P„'», and P»» of Eqs. (50)—(52)
have poles at co~o and OAF, and the relative
strengths are in line with those found from Eq. (1).

It was mentioned before ' that the experimental
data on static properties of BaMnF4 at low tem-

peratures are not adequate for a critical test of the
theoretical predictions. This has been emphasized
recently in a detailed comparison of the theory
with available experimental results. The same
comment applies with more force to the present
dynamical results; there are no experiments with
which the theory can be directly compared.
Al'Shin et al. observed strong frequency depen-
dence of the magnetoelectric response in the kHz
region, but as is seen from Fig. 3, for example, we
are concerned with frequencies of the order of tens
of 6Hz. We believe that the qualitative origin of
the frequency-dependent effects reported by
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Al Shin et al. in the 1-kHz regime is domain wall
oscillation, as suggested by them. Since the free
energy employed in the present work ignores all
domain effects, it does not yield predictions in the
kHz regime with which comparisons can be made.
However, we note that Al'Shin et aI. recognized
explicitly that thclI' d.ata wclc incompatible with
what was then believed to be the ferroelectric
structure. The free energy employed in the present
work, which incorporates both the correct antifer-
roelectric ordering and the spin orientations deter-
mined subsequent to the studies by Al'Shin et QI.

may serve as a starting point for the analysis of
the latter.

Because of the limited extent of the comparison
with experiment, the present theory must be re-
garded as tentative in some ways. It was men-
tioned in Sec. II that some terms which are al-
lowed by symmetry have been omitted from Eq. (4)
on physical grounds, and there is always the possi-
bility that some of these might have to be reinstat-
ed.

The calculations presented here may be corn-

pared with the work of Bar'yakhtar and Chupis, s

which as far as we know was the first paper to
deal with tllc frequency dependence of tllc sllsccptl-
bilities of magnetoclectric materials. They start
with a Hamiltonian density which is a model for a
system which is ferromagnetic and ferroelectric.
As in Eq. (4), their density is a power series in P
and M, although the details are different and in
particular. they include terms in the spatial gra-
dients with a view to discussing the spectrum away
from k =0. Rather than use classical equations of
motion, as we have done, they quantize the field
operators, then introduce magnon operators via the
Holstein-Primakoff transformation. Retaining
only bilinear terms, they find a Hamiltonian which
is a generalization of Eq. (1) and which like (1) can
be diagonalized by a Bogoliubov transformation.
They find typical mode mixing effects in the exci-
tation spectrum. Their susceptibilities, like ours,

have poles at the frequency of each normal mode.
Our calculations may also be compared with the

recent work of Maugin. Like Bar'yakhtar and
Chupis, he considers a ferroelectric ferromagnet
with a Lagrangian which is a power series in P and
M. Like us, however, hc uses phenomenological
equations of motion. Maugin does not give expli-
cit expressions for susceptibilities, although they
are derivable by his method; instead, he directly in-
troduces coupling to the electromagnetic field
equations in order to discuss polariton propagation.
%e have not dealt with polaritons, although it
would be possible and interesting to derive their
properties from our expressions for the susceptibili-
ties together with the standard account for elec-
tromagnetic wave propagation in magnetoelectric
materials.

Finally, it is worth remarking that the present
method is of fairly wide applicability. Although
the use of equations of motion similar to (15) and
(16) to obtain dynamical information from a Lan-
dau free-energy expression has been known for
many years, it seems that the method is not much
applied in practice. For example, in improper fer-
roelectrics such as boracites34'4' there is an anoma-
ly in the static dielectric constant due to coupling
between the ferroelectric moment I' and the
primary order parameter. A term involving I',
such as the P2 term in Eq. (4), is introduced into
the free energy in order that the theory should
hRvc enough Acxibility to account foI thc I'ange of
observed anomalies. It should be possible and of
value to use equations of motion to obtain detailed
dynamical predictions from the free-energy expres-
sions.
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