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%e study the novel percolation phenomena that occur in random-lattice networks consisting

of resistor-like and diode-like bonds. Resistor bonds connect or "transmit information" in either

direction along their length, while diodes connect in one direction only. %e first treat the spe-

cial case of directed bond percolation, in which the diodes are aligned along a preferred axis.
Mean-field theory sho~s that clusters become extremely anisotropic near the percolation transi-

tion and that their shapes are characterized by hw correlation lengths, one parallel and one
transverse to the preferred axis. These lengths diverge with exponents vs = i and vz-1 j2,
respectively, from which we can show that the upper critical dimension for this system must be

five. %e also treat a more general random network on the square lattice containing resistors

and diodes of arbitrary orientation. Duality arguments are applied to obtain exact results for the

location of phase transitions in this system. %e then use a position-space renormalization-group

approach to map out the phase diagram and calculate critical exponents. This system has an iso-

tropic percolating phase, and phases which percolate in only one direction. Novel types of tran-

sitions occur between these phases, in which the diode orientation plays a fundamental role.

These percolating phases meet with the nonpercolating phase along a line of multicritical points,

~here concentration and orientational fluctuations are simultaneously critical.

I. INTRODUCTION

The percolation problem has been intensively stud-

ied, partly because it is an extremely simple model
system exhibiting the full range of features in critical

phenomena, and also because of the many realiza-

tions of percolation phenomena in random sys-

tems. "Although these investigations have proved
to be quite fruitful, there remain many interesting
generalizations of percolation which are relatively
unexplored. Many such generalizations are contained
implicitly ln thc plonccl'lng woI'k of Broadbcnt and
Hammersiey. ' In their original model (Fig. i),
nearest-neighbor sites on a regular lattice could be
joined by two directed bonds, each connecting or
"transmitting information" in opposite directions. IQ

this sense, thc directed bonds act as diodes, in con-
trast to the bonds of usual isotropic percolation which

act as resistors.
The primary purpose of this article is to investigate

percolation phenomena in random networks contain-

ing both resistors and diodes. When the diodes have

a preferred orientation, we shall see that the system
is in the universality class of fully directed bond per-

colation, a model which has bccn thc focus of I'cccnt
investigation. Near the percolation threshold of
this model, clusters become extremely anisotropic.
Two independent diverging correlation lengths, one
parallel, and one transverse to the special axis, are re-
quired to describe the phase transition. The inAu-

ence of a preferred direction on a phase transition is
a new feature not generally discussed in the theory of

critical phenomena. There do exist, however, several
potentially important examples of such directed
phenomena, e.g. , irreversible chemical reactions, '

Markov processes with branching, absorption, and
recombination, ' ' gelation in a Aowing solvent, and
transport in random systems with an external
bias. 2'2' Thus further study of the properties of
directed percolation may provide interesting predic-
tions that may be amenable to experimental verifica-
tion.

Further interest in directed percolation stems from
the existence of an exact mapping between directed
percolation and Reggeon field theory23 which models
the creation, propagation, and destruction of a cas-
cade of elementary particles. In turn, Reggeon field
theory can be related to branching Markov
processes. '9' Thus many apparently diverse
phenomena can be related within the context of
directed percolation.

In addition to studying directed percolation, we are
interested in understanding the percolation properties
in a more general network, where the diode orienta-
tion can be continuously varied. We shall see that
there are two parameters, the bond concentration and
thc bond OI'lcntatlon, which may bc adjusted in-

dependently to drive the system to a percolation
threshold. The range of phenomena which occurs in
this system is considerably richer than that in the
usual isotropic percolation problem. There exist tran-

sitions between nonpercolating, isotropically per-

colating, and unidirectionally percolating phases.
Moreover, these transitions meet along a line of mul-
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ticritical points where concentration and orientational
fluctuations play an equally important role. Our goal
is to understand, in greater detail, the general physi-
cal features of this interesting system. We will give a
more complete account of some preliminary work on
this model that was published earlier. '

The organization of the remainder of this article is
as follows: In Sec. II, we first define the fully direct-
ed percolation model. We also recount recent work
on directed percolation along with some examples of
potential physical applications of this model. We
then define our more general model, which we call
the random resistor-diode network, and briefly out-
line its interesting features. In Sec. III, we describe a
Landau-Ginzburg free energy expansion of directed
percolation that gives an intuitive picture of cluster
shapes near the percolation threshold. From this, we
construct a simple argument that sho~s that the
upper critical dimension is five, a result first obtained
by field-theoretic methods. '"

In Sec. IV, we study the general random resistor-
diode network. First, we present duality arguments
to obtain exact results for the location of some of the
percolation thresholds and exponents of the system.
Then a position-space renormalization group (PSRG)
approach is given to map out the phase diagram and
elucidate the critical behavior of this model. In Sec.
V, we give some conclusions and summarize our
work. The Appendix contains the recursion relation
for the random resistor-diode network.

II. MODELS

A. Fully directed bond percolation

FIG. 1. {a) The random resistor-diode network as a reali-
zation of the general Broadbent-Hammersley percolation
model. Each pair of nearest-neighbor sites may be joined by

up to two directed bonds, one defining a connected path
from i to j, and the other defining a path in the opposite
direction. When both oppositely oriented directed bonds are
occupied, we have a resistor, while a single directed bond
acts as a diode. {b) The special case of fully directed bond
percolation. Each pair of nearest-neighbor sites may be
joined by a directed bond of positive orientation with respect
to any given cartesian axis.

For concreteness, we will define directed percola-
tion on. a d-dimensional hypercubic lattice. A site
may connect to its nearest neighbors, which are
separated by one lattice spacing in the positive direc-
tion along a given cartesian axis, with a probability p+
[see Fig. 1(b)]. Thus only sites confined to the first
2d-tant of the lattice —the "light cone" —may be
reached by a connected path from the origin. Due to
this biased way of forming connected paths, there ex-
ists a special "symmetry-breaking" direction,
(1,1, . . . , 1), which may be regarded as a "time"
axis. ' '

For a small concentration of directed bonds, we
have only finite clusters. At the critical concentra-
tion, an infinite cluster forms which percolates in the
direction of the time axis. Above the threshold, per-
colation is confined to a cone-shaped region of finite
opening angle about the time axis. This angle goes to
zero as the transition is approached from above, and
as p+~l, the percolating region fills the light cone.

Early low-density series work4 indicated that the
critical behavior of directed and isotropic percolation

were different. More recently, Obukhov' studied
directed percolation with field theory methods. He
showed that the system becomes extremely anisotrop-
ic near the percolation threshold, leading to a lower-
ing of the critical dimension, from six in the isotropic
case, to five. Because of the anisotropy, the decay of
connectivity is characterized by two lengths, one
parallel and one transverse to the time axis. In two
dimensions, a variety of numerical methods have
been applied to estimate the critical behavior of the
anisotropy. ' " In addition, recent PSRG ap-
proaches9 " give an intuitive way of seeing that
directed percolation is in a different universality class
than isotropic percolation. Moreover, these treat-
ments can be extended in a relatively simple fashion,
to provide information about random networks in
which the orientation of the diodes may be random.

8. Random resistor-diode network

In this model, each bond may be vacant with prob-
ability q or occupied by one of three bond elements
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[see Fig. 1(a)]. A resistor may occur with a probabil-
ity p; a diode oriented along the positive direction of
a given cartesian axis may occur with probability p+',
or a diode oriented in the opposite direction may oc-
cur with probability p . Clearly q = I —p —p+ —p .
On the square lattice, the time axis is parallel to

Self
pl

Symrne
plan

(b)

(1, 1) if p+) p, or parallel to (—1, —1) if p+(p .
The case p+ =p is particularly interesting. The sys-
tem is isotropic, but connectivity may be mediated
through either the resistors or the randomly oriented
diodes. The limit p+=p =0, p &0, corresponds to
conventional isotropic percolation, while the limits

p =p =0, p+ &0, and p+= p =0, p ~0, corre-
spond to fully directed percolation.

The phase diagram of this system can be visualized
within the composition tetrahedron. This is defined
by the intersection of the three-dimensional subspace
p++ p +p + q =1 with the half spaces p+, p, p,
q ~ 1 within the composition space defined by p+ p,
p and q [see Fig. 2(a)]. Within this phase diagram,
we can describe the crossover between directed and
isotropic percolation as the relative concentration of
the bond elements varies. We find four phases in
the system. There are the usual nonpercolating and
isotropic percolating phases. In addition, there are
two phases which percolate in only one direction, ei-
ther along the (1,1) axis or in the opposite direction.

Novel types of transitions arise because of the pos-
sibility of forming an Infinite cluster with either an
isotropic or unidirectional connectivity. Furthermore,
on the square lattice, there exist additional sym-
metries in the phase diagram, due to the self-dual na-
ture of the lattice. As a result, there exists a special
line where the self-dual plane, defined by p = q (cf.
Sec. IV), and the p+=p symmetry plane intersect.
We shall see that this is a line of multicritical points
~here the four phases meet and concentration and
orientational fluctuations are both critical.

III. MEAN-FIELD THEORY FOR
DIRECTED PERCOLATION

FIG. 2. (a) The composition tetrahedron of the random
resistor-diode network. For any point inside the
tetrahedron, the perpendicular distance to any face gives the
relative concentration of the species labeled at the opposite
apex. The self-dual (p = q), and the symmetry (p+= p )
planes are shown shaded. Their intersection defines a line

where the concentration of directed bonds per lattice edge is

unity: (b) Phase diagram of the random resistor-diode net-

work. Fixed points are sho~n by heavy dots, and the ar-

rows indicate the direction of flow under renormalization.
At the mixed fixed point, the two perpendicular axes define
the "p " and "p+" directions. The point marked x

represents a lattice in which each edge is occupied by a

diode, but there is no orientational order of the diodes
("randomized Manhattan" ). Shown shaded are the surfaces
of second-order transitions which divide the diagram into

the positive diode, negative diode, resistor, and vacancy

phases. These surfaces meet at a common multicritical line

defined by the. intersection of the self-dual and symmetry

planes. (c) The renorrnalization flow within the p+= p

symmetry plane. Notice that the top vertex of the triangle is

not a fixed point. The flow is confined to lie within the
symmetry plane.

A mean-field theory for isotropic percolation can
be derived through a Landau-Ginzburg-Wilson ex-
pansion for the free energy of the corresponding Q-

state Potts model. '4 In the g I limit, we obtain a

free energy

F(P) = [(p —p, ) +bk'+ . ]P +cP3+

Here p is the bond probability of p, is its critical
value, kis the wave vector, band care constants, and
P is the percolation probability. This latter quantity is
the order parameter in percolation, defined as the
probability that a randomly chosen site belongs to the
infinite cluster. By minimizing (3.1a) with respect to
I', we find the well-known results the P vanishes as

p p,+ as (p —p, )~, with P = I, and that the mean
cluster size (the percolation analog of the susceptibil-

tiy) diverges as (p —p, ) ~ with y=l. Moreover, this
wave-vector dependent susceptibility analog is a
Lorentzian with a characteristic width that goes to
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zero at the transition. From this, we deduce that
there exists a characteristic length scale ( diverging as

(p —p, ) "with v=1/2.
In directed percolation, the up-down symmetry

along the time axis is broken and we wish to under-
stand how this is manifested in the free energy. In
the free energy, there exist gradient terms to account
for the presence of spatial fluctuations in the system.
For percolation, the clusters represent these fluctua-
tions. Because of the anisotropic structure of the
clusters in directed percolation, both even and odd
terms in the gradient should now occur. In the first
approximation, we keep the linear and quadratic
terms, leading to a free energy in momentum space

F(P) =[(p —p, )+a k+bk + ]P'

+cp3+ (3.lb)

~~ Transverse

0-— = "Time"

FIG. 3. Schematic picture of a typical cluster, defined
with respect to a fixed origin, near the threshold of directed
percolation. Notice that the sites f~ and r2 on opposite sides
of the cluster are related only through their common con-
nection to the origin,

where a is parallel to the time direction. In this ex-
pression, p is again the bond probability, but it may
now be some linear combination of p+ and p.

Such a modified free energy is consistent with the
anisotropic propagator in the field-theoretic treatment
of directed percolation, ' or in Reggeon field theory. "
The free energy (3.1b) still yields the exponents
P = y = l. However, two characteristic length scales
are evident. Parallel to a, the linear term in k dom-
inates as k ~0, and we obtain a longitudinal correla-

tion length, g~~, which diverges as (p —p,),with
v~~= 1. However, perpendicular to a, we obtain a
transverse correlation length, (q, diverging as

(p —p, ) ~, with et=1/2. Thus as p, is approached,
there exists a strong anisotropy in the cluster shapes
(see Fig. 3).

From this picture, we can obtain the upper critical
dimension d„above which mean-field theory is
quantitatively correct, in a simple fashion. Generally,
to find d„we require that the relative fluctuations af
the order parameter in a suitably-chosen volume
are small. For an isotropic system, the fluctua-
tions are important over a linear dimension of the or-
der of (. Thus the appropriate volume is a sphere of

radius g, and we are led to the condition d, u =2P +y,
or 1,=6. However for directed percolation, the
fluctuations are important over a dimension g~~ in the
time direction, but only over a dimension $q
transverse to the time. Thus we are led to consider
fluctuations in a prolate ellipsoid of revolution about
the time direction, with a major axis g~~ and with
d —1 minor axes gq. As a result, the Ginzburg cri-
terion generalizes to

( tg —1 ) pi + p
i i
= 2P + y (3.2)

Employing the mean-field exponents calculated
above, we find d, =5, a result first obtained by field-
theoretic methods. We see that the critical dimen-
sion has been reduced compared to isotropic percola-
tion because of the effective longer-range interaction
along the time axis. This situation is analogous to
the reduction of the critical dimension in systems
with long-range interactions, such a dipolar-coupled
ferromagnets.

IV. RANDOM RESISTOR-DIODE NETWORK
ON THE SQUARE LATTICE

A. Exact duality relations

Because the square lattice is self-dual, one can
determine exactly that the critical concentration is
1/2 for isotropic bond percolation. ' We shall now
extend these duality arguments to the full random
resistor-diode network, yielding more general exact
results for the structure of the phase diagram.

The dual transformation constructs a one-to-one
correspondence between the configurations on a lat-
tice Z, and configurations on a closely related dual
lattice 2 (see Fig. 4). For the random resistor-diode
network, we define the dual transformation by the
following rules: if an edge on 2 is occupied by a
resistor, then on 2 the edge crossing the resistor is
defined to be vacant. Similarly, if an edge is vacant
on 2 then on ZD the edge crossing the vacancy is oc-
cupied by a resistor. These rules give the conven-
tional dual transformation between resistor-vacancy
configurations on 2 and 2 . In addition, if an edge
on 7 is occupied by a diode, then on 2, we define
the corresponding dual edge to be occupied by a
diode rotated by m/2 clockwise with respect to the
original diode. Such a correspondence also rotates
the time axis by the same amount so that the direc-
tionality of the diodes with respect to the time axis is
preserved under duality. Under these rules, the bond
probabilities are related by p = q, q =p and
p+ =p+, where the superscript D refers to the proba-
bility on the dual lattice.

Under duality, consider how various bond config-
urations transform. We can classify four distinct
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FIG. 4. Relationship between bond configurations on the
original lattice (top row) and on the dual (bottom row). A

heavy line represents a resistor, a heavy line with an arrow

represents a diode and a light line represents a vacant bond.
The coordinate axes show the orientation of the positive
diodes on 2 and 2 . In addition, the arrows exterior to the
lattices indicate the direction(s) of the percolating paths
present. %e define spanning (either forward or backward)

along the vertical in L. On &D, this axis becomes the hor-

izontal, In (a), a finite configuration is shown and a super-

imposed dual lattice is shown dashed. Below, the spanning
configuration obtained after the dual transformation is

shown. In (b), we show a unidirectional forward spanning
configuration that transforms into another such configura-
tion under duality. In (c), we sketch a configuration con-

taining "mismatched" diodes (open circle), and its dual

counterpart which spans in both directions.

path to pass in either direction. Thus we transform
to a configuration that percolates in both directions.

In summary, under duality the positive diode phase
transforms into itself and the negative diode phase
also transforms into itself. The resistor and vacancy
phases transform into each other. Because the lattice
is self-dual, we thus conclude that the phase diagram
must be symmetric about the p = q plane. %e will

see in the next section, that due to the additional
symmetry with respect to the interchange of p+ with

p, there exist~ a critical line defined by the interac-
tion of the self-dual (p = q) and the symmetry
(p+= p ) planes. Along this line, there is an iso-
tropic percolation threshold given by the condition
p, =1/2 —p+. This generalizes the result p, =1/2 of
isotropic percolation, to the random resistor-diode
network.

8. Position-space renormalization-

group treatment

Our PSRG approach is based on rescaling a b & b
bond cell to a l x 1 cell first used by ReynoMs
er al. 'c "for isotropic percolation (see Fig. 5). In
their procedure, a "connectivity" weight function
was used in which "percolating'" cells map to an oc-
cupied bond upon rescaling. Our treatment is based
on generalizing this connectivity weight function to
account for cells which percolate in only one or in
both directions. In the larger cell, if a configuration

types of configurations with different transformation
properties. First, consider configurations consisting
of only finite clusters [Fig. 4(a)]. A percolating clus-
ter of vacancies must occur in order to isolate the
clusters of occupied bonds. Under duality, we obtain
a percolating cluster of resistors. This result, togeth-
er with the correspondence between p and pD and the
self-duality of the square lattice, lead to the well-

known result that p, =1/2 for isotropic percolation.
Next, consider a bond configuration that percolates

in only one direction. Under the dual transforma-
tion, the percolating path maps into a "barrier" that
allows paths to pass through it in only one direction
[Fig. 4(b)]. As a result, a unidirectional spanning
path transforms into a undirectional path which spans
in the same sense with respect to the time axis. Fi-
nally, consider configurations such as the one shown
in Fig. 4(c). We could percolate in any direction, if
the directionality constraints imposed by the diodes
are ignored. Under the dual mapping, this cluster
transforms into an inpenetrable barrier of vacancies,
except at the locations of the diodes which are
"mismatched" [see Fig. 4(c)]. At these locations, a
"gap" occurs in the barrier which allows a connected

FIG, 5. A b & b cell on the square lattice which maps into
the 1 x 1 cell shown to the right. A regular array of these
cells cover the lattice. Shown below is the 5-bond cell re-
quired for calculating the probability of getting across the
cell vertically when the rescaling factor is 2. On this celt,
we sketch a typical configuration and its rescaled counter-
part.



1,625 0 0
0 1.5625 0.0625
0 0.0625 1.5625,

Thus there are three relevant eigenvalues, 1.625

(4.1)

of resistors and diodes traverses the cell in both
directions, then after rescaling, the configuration
maps to a resistor. Similarly, if a configuration
traverses the cell in only one direction, then on the
rescaled level the cell maps to a diode whose orienta-
tion is determined by the direction of traversing. Fi-
nally, a nontraversing configuration maps to a vacan-
cy upon remormalization.

In the simplest approximation, we treat the 2 x 2
cell. %e calculate the probabilities of traversing the
cell either from the top to the bottom or in the oppo-
site direction. In this case, three of the eight cell
bonds do not contribute to these probabilities; hence
we need to examine 4' distinct configurations on
the remaining 5-bond cell. The probability that we
traverse the cell in both directions then gives p', the
probability of a rescaled resistor, while the probability
of traversing in only one direction gives p+ the prob-
ability of a rescaled diode. These recursion relations
are displayed in the Appendix.

From these relations, we obtain the phase diagram
shown in Fig. 2(b) in the composition space defined
by p p, p, and q. The diagram divides into four
distinct phases. There exists a "vacancy" phase in
which only finite clusters occur. There also exists a
"resistor-like" phase in which an infinite cluster
forms that percolates isotropically via both resistors
and diodes, There are also two "diode-like" phases
with an infinite cluster that percolates in only one
direction.

In the phase diagram, the q and pg phases, and the
p and p g phases are separated by surfaces of second-
order phase transitions. By duality, these surfaces
are symmetrically located with respect to the self-dual
(p = q) plane. In addition, the obvious symmetry
under the interchange of p+ and p means that pairs
of surfaces on opposite sides of the p+ p plane are
also symmetrically positioned. A11 four phases meet
along a common line, which is the intersection of the
self-dual plane with the p+= p symmetry plane.
This is a line of higher-order critical points where the
four phases become simultaneously critical.

In order to determine the critical behavior, we ex-
amine the linearized recursion relations in the vicinity
of the fixed points. There are ten fixed points, but
four of them are trivial corresponding to a lattice
completely occupied by only one type of bond
species, Gf the remaining nontrivial fixed points,
there is the isotropic percolation threshold located at
p"=q'=I/2, p+ =p" =0. At this point, the linear-
ized transformation matrix T s = 80. /BP, (u, P =p, —
p+, or p ~ is equal to

(doubly degenerate) and 1.5, with associated eigen-
vectors (1,0,0), (0,1,1) and (0,1,—1), respectively.
The double degeneracy of the larger eigenvalue im-
plies that when we approach the isotropic fixed point
along any path within the symmetry plane, the corre-
lation length has the same singular behavior. Our
2 x 2 approximation yields a correlation length ex-
ponent v = ln2/ln1. 625 =—1.428. This value has been
obtained previously in the PSRG treatment of Rey-
nolds et al. 30 and is accurate to within 7'/o of the best
estimates for v. Thus we might anticipate similar
accuracy at the other fixed points.

The remaining eigenvector is perpendicular to the
symmetry plane and therefore points outside the
composition tetrahedron. Thus it is not clear how to
define an exponent associated with this eigenvector.
Because all three eigenvectors are relevant, the iso-
tropic fixed point is a fourth-order critical point.

There also exist two directed fixed points which
signal the onset of an anisotropic infinite cluster per-
colating predominantly along the time axis. These
fixed points occur at p g =0.5550, q' = 1 —p+ and
p =0. Our value for p+ ls a lough approximation to
the best numerical estimates"' of 0.6447 for the
threshold of directed percolation. At the p+ directed
fixed point, the linearized transformation matrix is

0 0 0
1.628 1.567 0.061

0 0 0
(4.2)

In this case, there is only one relevant eigenvalue
conjugate to the eigenvector (0,1,0). In the plane
perpendicular to this direction, we have two ir-
relevant eigenvectors which may be chosen arbitrarily
due to the double degeneracy of the eigenvalue zero.
Since these eigenvalues are zero, the renormalization
flow is asymptotically tangent to this perpendicular
plane. The directed fixed point ls a domain of attrac-
tion for all points on the critical surface separating
the vacancy and diode phases. This indicates that a
random network containing resistors and diodes with
a preferred orientation, no matter how weak, is in the
universality class of fully directed percolation.

From the relevant eigenvalue, we obtain a longitu-
dinal correlation length exponent v~~=1.543, com-
pared to the numerical estimates, v~~=1.74. ' '3 It
should be stressed that our PSRG approach based on
a connectivity rule should be sensitive only to the
longitudinal correlation length, g~~. This is defined in
terms of connected paths„while the transverse
length, which is proportional to the mean cluster
width, must be defined differently. It is not possible
to construct a connected path joining opposite sides
of the cluster. The connection between the two sides
may be defined by their being joined to a common
site at the origin of the cluster (see Fig. 3). Thus the
properties of fq are considerably more subtle, ap-
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parently rescaling as ps times an angle'~'5 which de-
fines the width of the infinite cluster. It would be
very interesting to understand the properties of gq

within the PSRG framework.
Because of the dual symmetry of the problem,

there also exist two more fixed points located at

pg =0.5550, p'=1 —p+, and q =0. At these fixed
points, there is a transition from a diode phase for
p+ )pg, in which there is connectivity along the
diode "polarization" to the resistor phase for
p+ & p g, in which isotropic connectivity occurs.
Thus as pg pg from above, connected paths
oriented opposite to the diode polarization begin to
span the lattice. We term this situation "reverse"
percolation. By duality, the matrix T & at the reverse
fixed points is related to T ~ at the directed fixed
points. For example, at the p+ reverse fixed point

T~y is
1

(4.3)

1.625 0.537 3 0.537 3

0 1.025 2 —0.474 8

0 —0.474 8 1.025 2,

(4.4)

We find two relevant eigenvalues 1.625 and 1.5 with

eigenvectors (1,0,0,) and (0,1,—1), respectively. No-

tice that these two eigenvalues and their correspond-

ing eigenvectors are identical to those at the isotropic
fixed point. This feature is quite unexpected, and it

would be worthwhile to understand whether this

equality is merely an artifact of the approximations
inherent in the small-cell PSRG approach, or whether

it reflects an additional symmetry in the system.
From (4.4), we see that one type of critical

behavior occurs when we fix p+= p =p+ to maintain

isotropy, and we exchange resistors with vacancies to

approach the transition. This corresponds to a path

in the symmetry plane which is parallel to the p —q

base of the composition tetrahedron —the "p" direc-

tion (see Fig. 2). For p (p", only finite clusters ex-

1.628 0 061 1;567
-1.628 -0.061 -1.567

0 0 0,
This leads to an identical renormalization flow struc-
ture, and the same exponents as those found at the
directed fixed points.

One of the more intriguing aspects of this system is

the existence of a "mixed" fixed point located at
p'= q'=0.2543, p+ =p' —=p+ =0.245 7, very close
to the center of the composition tetrahedron. It
describes a transition in which an isotropic infinite
cluster forms with percolating paths containing both
resistors and diodes. Even though the infinite cluster
is isotropic at the threshold, there are two interesting
and distinct critical behaviors that depend on the
direction of approach to the fixed point.

To gain further insight into this behavior, we ex-
amine the linearized transformation matrix at the
fixed point

ist (which may contain both resistors and diodes),
but for p & p', an isotropic percolating phase occurs.
As we approach p', the correlation length diverges
with the identical exponent to that found at the iso-
tropic fixed point, in the 2 x 2 approximation.

On the other hand, we can also approach the tran-
sition by fixing p = q =p' and varying the diode
orientation. This corresponds to a path perpendicular
to the symmetry plane —the "p+"direction. To
understand the nature of the transition, suppose that
we start with p & p+ & p+, so that the diode orien-
tation is along the (—1,—1) axis. Thus an infinite
connected path propagates along this axis. As p de-

creases and p+ increases, longer connected paths be-
gin to form, which propagate primarily in the (1,1)
direction. Finally, as p+, p 0, the diode polariza-
tion goes to zero, and we have the onset of percola-
tion along (1,1). The divergence of the correlation
length along this axis is governed by the eigenvalue
1.5, with an associated exponent of 1.710. On the
other hand, for p+ & p, connected paths in the
(—1,—1) direction are now finite in length. As p+ in-

creases these paths shrink at a rate governed by the
same exponent given above.

The irrelevant eigenvalue is 0.5504, and the corre-
sponding eigenvector is (0, 1,1), parallel to the line

defined by the intersection of the self-dual and sym-

metry planes. Thus the mixed fixed point controls
the entire critical behavior along this line where the
four phases in the system meet. We have multicriti-

cal behavior where concentration fluctuations—
corresponding to deviations from criticality in the p
direction, and 'orientational fluctuations—
corresponding to deviations in the p+ direction —are
simultaneously critical.

Finally, it is amusing to note that we can character-
ize this multicritical line in a simple fashion. If we

view a resistor as a directed bond pair (see Fig. 1),
then all along this line the concentration of directed
bonds per lattice edge is unity. This perspective indi-

cates that there may be additional symmetry in the
model which may provide a clue concerning the ap-

parent universality between two evidently distinct
fixed points on the multicritical line.

V. SUMMARY AND DISCUSSION

We have studied percolation phenomena in a ran-

dom network consisting of resistor-like and diode-like

bonds. We first treated a special case, in which

diodes of only one orientation can occur, by mean-

field theory. The existence of a preferred direction in

the model can be accounted for by a very simple

modification of the standard Landau-Ginzburg-
Wilson free energy for isotropic percolation. From
this, we find that clusters become extremely anisotrop-

ic near the percolation threshold and are character-
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ized by two diverging correlation lengths, one parallel
and one transverse to the preferred or time axis. The
longitudinal length represents a mean length of con-
nected paths, and this appears amenable to study
through a PSRG approach based on a connectivity
rule. However, the transverse length represents a
mean cluster width, which we are unable to treat
within out PSRG framework. Further analytic work
on this interesting problem would be quite useful.
Additionally, it would be interesting to make closer
connections between directed percolation and various
physical systems. Along these lines, we are currently
studying the conductivity properties of resistor-diode
networks.

We then introduced a more general system, the
random resistor-diode network, in which the lattice
edges may be occupied by either resistors or diodes
of arbitrary orientation. Because of the self-dual na-
ture of the square lattice, exact results for the struc-
ture of the phase diagram could be derived. The per-
colation phenomena of this model are quite diverse
because of the possibility of forming an infinite clus-
ter that percolates either isotropically or in only one
direction. Moreover there exists multicritical
behavior where the directed and isotropic percolating
phases become identical simultaneously. Our study
thus far has been of a qualitative nature, and it would
be quite interesting to use numerical simulations to
test our theoretical predictions.
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APPENDIX

Recursion relations for the random resistor-diode
network. The symbols p+, p, p, and q refer respec-
tively to the probability that a lattice edge is occupied
by a positive diode, negative diode, resistor, or va-
cancy. The prime refers to the renormalized bond
probabilities.

I

p+ = (~p p+ +p (7p+ +7p+p )+p(5p+ +14p—+p +6p+p )+ (p-+ +5p+p -+4p+p ))--
+q (p (4p+) +p (22p++14p+p ) +p(20p++36p+p +Sp+p') +(Sp++14p+p +6p+p ))

+q' Ip'(17p++ p )+p (22p+ +-14p+p )+ (7p+ +7p-+p )j + q'(4pp++-2p+)

f(p+,p .p.q), —-
p'= Ip5+p4(5p++Sp ) +p3(8p~2+20p+p +Sp2) +p2(3p+3+23p+p +23p+p' +3p2)

+p (6p+p +16p+p +6p+p —)+ (3p+p +—3p—+p )j- —

+q (Sp +p (16p++16p ) +p (8p++32p+p +Sp ) +p(8p+p +8p+p ) +(2p+p )j
+q'(Sp'+p'(6p++6p )) +q'{2p')

—= g(p+, p-, p, q),
p-' =f(p ,p+,p, q) ~-
q' =g (p+,p-.q.p)
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