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Mean-field theory for one-dimensionally inhomogeneous magnetic systems is formulat-

ed as an area-preserving map. The map and its associated boundary conditions are de-

rived for nearest-neighbor Ising interactions. The corresponding continuum theory is also

constructed. These mappings are two dimensional. Their phase portraits are exhibited

and applied to the study of a representative set of surface and interface phenomena, in-

cluding interfacial structure, surface phase transitions, wetting, prewetting, and layering.

The methods developed lend themselves to easy and physical visualization of the types of
solutions which the mean-field theory can have, even in rather complex situations. They

also make explicit the fundamental differences between continuum mean-field theory

(which is integrable) and discrete mean-field theory (which is not).

I. INTRODUCTION

Many problems in condensed-rnatter physics in-

volve the study of a d-dimensional sample with lo-

cal average properties which vary along one space
direction, but are homogeneous in the remaining

(d —1 ) orthogonal directions. Simple examples in-

clude both bulk properties of layered materials'

and surface or interface properties of materials

which in the bulk would be homogeneous. Such
systems have been studied recently by a large
variety of methods. Mean-field theory often (but

not always ) provides a useful first approximation.
It is the purpose of this paper to explore the obser-

vation that the mean-field theory of one-dimen-

sionally inhomogeneous systems may be regarded

as a problem in nonlinear dynamics subject to ap-

propriate boundary conditions. What makes this

point of view useful is that the phase portrait of
the appropriate nonlinear map exhibits in a partic-

ularly graphic way the kinds of solutions which

the theory can have and, hence, the types of physi-
ca1 phenomena to be expected. The mean-field

map turns out to be area-preserving. The generic
features of its phase portraits depend crucially on

whether or not the map is integrable.
We consider for specificity the Ising model on a

d-dimensional hypercubical lattice and take the in-

homogeneity to be along the x direction. If the lo-

cal magnetization density M(x) is regarded as con-

tinuous, then the (differential) mapping turns out
to be integrable and the phase portraits are rather
simple. On the other hand, when the layers are re-

garded as discrete, the mapping is nonintegrable
and the phase portraits are more complex. In the
former case mean-field theory allows only a finite
(small) number of phase transitions; in the latter,
there is the possibility of infinite sequences of dis-

tinct layer transitions. ' This possibility is real-

ized in some physical situations and not in others.
When such sequences of "layer" transitions occur,
the continuum theory cannot in any direct way be
regarded as an approximation to the discrete
theory.

Section II develops the nonlinear maps for both
the continuum and discrete cases. Section III
displays the important features of their phase por-
traits. Section IV applies the phase portraits
developed in Sec. III to several typical surface and
interface problems. The focus here is on develop-

ing appropriate boundary conditions to character-
ize the dynamical problem and explaining the
differences between the integrable and nonintegr-
able versions of each problem. An appendix re-
views additional interesting properties of the phase
portraits which are not important in the examples
discussed here but may play a role in other ean-
texts.

We emphasize that actual mean-field solutions
found by our methods are no different from those
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found by any other methods. Our contribution,
such as it is, is a different point of view, which
lends itself to different insights. A final dis-
claimer: It is well known that mean-field predic-
tions may or may not be fundamentally modified

by proper inclusion of thermal fiuctuations. We
shall comment briefly on this point but detailed
discussion is beyond the scope of this paper.

where i is any (specific) site in the mth layer and j
is summed over all nth-layer sites. Under the as-
sumption of one-dimensional inhomogeneity the
variational function (2) takes the form,

L 'd "X[[M„j;T,[H„},[E „j]
H„M„—T J dytanh 'y

II. MEAN-FIELD THEORY
AND NONLINEAR MAPS

The s = —, Ising model is defined by the Hamil-

tonian,

P'= —& H cr —& J"cr-o o.=+&
g l ~ lJ l J~

(ij)

where subscripts label lattice sites and the sum

(ij ) is over distinct pairs. H; is the magnetic field

at site i and Jj is the exchange coupling between

sites i and j. The free energy of this model is (in

units such that Boltzmann's constant ks ——1)

F= —T ln Tr exp( 4 /T), —

where T is the temperature. The thermal average
magnetization of the ith spin is M; =(o;). Within
the context of mean-field theory F and [M; j may
be found by minimizing the functional, '

gH;M;—+ Tg J dy tanh 'y

1

p g +mn~m~n
m, n

where I. ' is the number of sites per layer. " The
condition BW/BM„=O that P be extremal leads
to the usual mean-field equations,

(6)H„+g &nmMm =T tanh
m

Equation (6) will provide the nonlinear mapping
which we shall study.

If the interactions J&~ are of finite range, then
there is a maximum layer spacing Q beyond which
layers do not interact directly, i.e., IC „=0for all

~

n —m
~

& Q. Then, Eq. (6) can be solved to ob-
tain the magnetization M„+2+1 in terms of that
of the preceding 2Q layers, Mn+i, Mn+2, . . . ,
Mn+2g. We can therefore define a 2Q-dimen-
sional map which translates layers n +1,n
+2, . . . , n +2Q into layers n +2,n +3, . . . , n

+2Q+1,

"iii'n+m =~n+m+ i for m = 1, . . . , 2Q —1 (7a)

~~ n +2g ~n +2g + 1 (~n + 1~~n +2 s ' ~ y ~n +2g ) ~

(7b)

~J I J
&ij &

(2)

The fields IH„} and interlayer couphngs IE„j'
enter only into Eq. (7b). When the interactions are
translationally invariant in the x direction,

with respect to the variational parameters [M; j.
At the (global) minimum

~„=H for all n,
Emn =E(n —m) =E(m n), —

(8a)

(a )„„„=F[T, [H; },I J;, j ]

(M; );„=M,[T, [H; j, [J;J j ] .

(3)

and the mapping Mn+2g+, (Mn+i, Mn+2, . . . ,
~2g ) in Eq. (7b) no longer depends explicitly on
n. It is straightforward to compute the Jacobian
of the map (7),

&mn = g Jij =+nm ~

j6n
(4)

Suppose now that all quantities may vary in the
x direction but remain translationally uniform in
directions perpendicular to x. Denote by H„and
M„ the magnetic field acting on the nth-layer
spins and the magnetization of a spin in the nth
layer. Furthermore, define interlayer couplings

J(M' M)—
am'

+~n+1 +n+Q+1, n+2Q+1
(9)

When the interactions are translationally invariarit,
Eq. (8b) holds, J(M', M) =1, and the map (7) is
area-preserving.

Different physical problems require different in-
teractions [H„j, [Emn j. The so-called ANNNI
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(axial next-nearest-neighbor Ising} model' is trans-
lationally uniform in the x direction [so Eq. (8) ap-

plies] and requires interactions between next-
nearest-neighbor layers (so Q =2). The map (7) is
then four dimensional. A two-dimensional approx-
imation to this system was recently treated by
Bak. ' For the surface and interface problems
which we shall use as examples in what follows, it
suffices to consider nearest-neighbor interactions

only. For the homogeneous system we shall take

J;J =J for all nearest-neighbor pairs i,j,
H; =H for all sites i .

(10)

Xn n =2(d —1)J,

Kn, n+i=J

H„=H .

The free-energy functional (5) becomes

Thus, Q = 1 and for the hypercubical lattice (which

we shall consider henceforth),

and independent of n.
It is instructive to develop for comparison con-

tinuum analogs of Eqs. (12) and (13). Let the local
magnetization M(x) now depend on a continuous
variable x. The appropriate analogs are

I. ' "a [M(x)]=f dx g M(x),
dX

r

dM(x) J dM(x)
g Mx,

dx 2 dx

@(x)
+ 7' f Zy tanh-'y

de —(x) HM(x—),

(15)

H +J +2dJM(x) =T tanh 'M(x),d M(x)
dX

with

I.-l'-"~[I~„]]= g g(~„,~„+,),

J
g (M„,Mn+ l ):—(M—n+ l M„)—

2

+7 f "dytanh-'y

—de„—HM„. (12)

which follows from Eq. (15) by the variation
5M [M]/5.%(x)=0. When there is no spatial
variation, Eqs. (15}and (16) are identical to Eqs.
(12) and (13) at all T,H. When there is spatial
variation, then Eq. (16) can approximate those
solutions of Eq. (13}for which such variation is
slow on the scale of the interlayer spacing. If this
is so, then

and the map (7) is

~n+1 fl ~(n+l~~ +n2 } ~n+2 ~

~n+2 f2(~n+li~n+2}

=—tanh
T
J

H—2(d —1)Mn+2 —Mn ~ l
——

(14a)

The two-dimensional map fl,f2 is area-preserving

Differentiation B~ /BM„=O leads to Eq. (6) in the
form,

H+J(Mn+l —2 4'n+Mn l)+2dJMn

=T tanh M„, (13)

dM(x)
dX

d M(x)
M„+j[

—~„+M„
dX

A necessary but not sufficient condition is that
the correlation length g » 1 (i.e., H =0 and
'r= T, =2dJ). Note that Eq. (16}can be written in
a two-dimensional form directly analogous' to Eq.
(14),

dM(x) =g, (M(x),M(x)) =M(x},
dX

—=g, (~(x),~(x))dM(x)
dX

=—tanh M(x) —2dM(x) ——.7, H
J J

(17)
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The condition that such a map be area-preserving
1s

dary condition,

+hi —JM(0)[1—2(d —1)D]=0,

which is trivially satisifed by Eq. (17).
We wish finally to introduce a free surface into

the theory. It will be useful to have the possibility
of modifying the magnetic field and exchange cou-
pling in the surface layer. Hence, we take M„=O
for all n &1 and

J,J ——J(1+D) for i,j in layer n =1,
H; =H +h &

for i in layer n = 1 .

D is called the surface enhancement. ' h
&

is the
surface layer field. ' This modifies Eq. (11) to

(24)

which is analogous to Eq. (21). We emphasize,
however, that the introduction of a surface always
involves inhomogeneity, so Eq. (24) can only be an
approximation to Eq. (21) when g» 1 and, even
then, requires that the surface perturbations be suf-
ficiently weak so that they do not lead to strong
inhomogeneity. To make this concrete, notice that
adding Eq. (21) to the sum of Eq. (13) over layers
m =2, . . . , n produces the discrete analog of Eq.
(24),

J(M„+i—M„)+hi —JMi[1 —2(d —1)D]
Ki i

——2(d —1)(1+D)J,

H] ——H+hi .

The free-energy functional (12}becomes

L ~ '~W[IM„I]= g g(M„,M„+i)
@=1

(19) = g (Ttanh 'M~ —2dJM~ H) . —

For 1 « n « g, the left side of Eq. (25) agrees
with Eq. (24); however, the right-hand side is not
small unless the surface perturbation is weak.

+—[1—2(d —1)D]Mi h iMi—,
J 2

2

(20)

which leads to a modification of Eq. (13) for the
surface layer n =1,

H +hi+ J(M2 Mi)+2dJM—i

—JMi[1—2(d —1)D]=T tanh (21)

Mo ——hi/J+2(d —1)DMi . (22)

The corresponding modification of the continuum
theory' takes the form

L ' "P [M(x)]= J dxg M(x),

+—[1—2(d —1)D]M (0)
2

—hiM(0) . (23)

Variation with respect to M(0) leads to the boun-

Notice, by comparing with the uniform equation
(13), that the boundary condition (21) is completely
equivalent to the introduction of a fictitious n =0
layer with

III. PHASE PORTRAITS

H +2dJM= T tanh (26)

Equation (26) has either one or three solutions
depending on T,H, as shown' in Fig. 1. Of
course, only that one of the three solutions which
minimizes the free-energy functional (12) or (15}is
thermodynamically stable for a homogeneous bulk
system. In the presence of surface or interface in-
homogeneity, other fixed points can play a role, as
we shall see in Sec. IV. Local structure near the
fixed points is qualitatively the same in the con-
tinuous and discrete cases; however, global
behavior of the insets (inflowing orbits) and outsets
(outflowing orbits) of the hyperbolic fixed points is
entirely different.

In this section we describe the fixed points of
the area-preserving maps (14) and (17) and their as-
sociated trajectories, since it is these features that
we shall need for the physical examples to be dis-
cussed in Sec. IV. The Appendix contains a brief
discussion of additional properties of these maps.

The fixed points of both Eqs. (14) and (17)
correspond to a spatially uniform magnetization
distribution given by solutions of the usual mean-
field equation of state,
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FIG. 1. Different regimes for uniform mean-field

theory (d =3). In region 1 the mean-field equation (26)
has a unique solution, corresponding to a single hyper-
bolic fixed point Po of Eqs. (14) or (17). In region 2,
there are three solutions corresponding to the fixed
points P+ (hyperbolic) and Po. In the continuum theory

Po is always elliptic. In the discrete theory Po is elliptic
in region 2a but becomes hyperbolic with reflection in

region 2b.

FIG. 2. Phase portrait for the continuum theory Eq.
(17) in region 1 (Fig. 1), showing the unique thermo-

dynamically stable fixed point Po along with its insets
and outsets. Data for this plot are d =3, H =0, T =7J.
Nonzero 0 would shift Po away from M=O. Note that
the graph is restricted to M

I
& 1 and that the insets

and outsets intersect
I
M =1 at finite values of M

A. Continuous case

Multiplication by dM(x)/dx makes Eq. (16)
readily integrable and leads to a constant of the
motion,

2

dy tanh y
2 dx

points. The central one, (Pc), is elliptic (cr; &0)
and has no inflowing or outflowing orbits. The
outer ones (P+ and P ) are hyperbolic. When
H =0 (Fig. 4), both P+ and P are thermodynam-

ically stable (corresponding to "up" and "down"

stable phases at coexistence) and are joined by two
(heteroclinic) trajectories. For H & 0 (Fig. 6) only
P is thermodynamically stable, while P+

+de (x)+HM(x) . (27) l.5

I.O

When E is set to its fixed-point value, Eq. (26) can
be solved for the insets and outsets. These sets are
shown in Figs. 2, 4, and 6 for representative cases.
For real M the function tanh 'M exists only for

I
M

I
& 1, so the figures are restricted to this inter-

val. Because Eq. (17) is area-preserving, the
characteristic fixed-point (FP) eigenvalues o1, oI of
the 2X2 matrix ag/i)(M M)

I pp su111 to zel'o. 111

fact,

0.5

-0.5

—I.O

-2.0-2.0 -I.O 2.0

T 1O.
2

2d
1 —m' (28)

In region 1 of Fig. 1 there is a single thermo-
dynamically stable hyperbolic (o; & 0) fixed point

Pp (see Fig. 2), with nonintersecting insets and

outsets. In region 2 of Fig. 1 there are three fixed

FIG. 3. Phase portrait for the discrete theory Eq.
(14) in region 1 (Fig. 1), showing the unique thermo-
dynamically stable fixed point Po with its insets and
outsets. Data are the same as for Fig. 2. The different
variables used in the discrete theory have the effect of
rotating Fig. 3 relative to Fig. 2 by m/4. Note that in-
sets must have

I
M2

I & 1, while outsets must have
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FIG. 4. Phase portrait for the continuum theory Eq.
(17) in region 2 of Fig. 1 for H =0, showing the three
points, Po, P+, and P, and the insets and outsets.
Data for this figure are d =3, T =3.3J. At H =0 both

P+ and P are thermodynamically stable but Po is un-

stable. Po is elliptic and has no inset or outset.

FIG. 6. Phase portrait for the continuum theory Eq.
(17) in region 2 of Fig. 1 for H &0, showing the three
fixed points, Po, P+, and P, and their insets and
outsets. Data for this figure are d =3, H/J = —0. 1,
T/J=3. 3. For H &0 only P is thermodynamically
stable. Note that P+ has developed a homoclinic orbit.
When lH I

is small, the inset of P passes close to P+.

2.0

I.5—

I.O

0.5

I I

H=0
IiT Tc
I

I

I II

II

II

II

I
I P+

develops a homoclinic orbit. As
l
H

l
is increased

to the boundary between regions 1 and 2 (Fig. 1),
Po and P+ come together and annihilate. ' Simi-
lar statements obtain for H &0 with the roles of
P+ and P interchanged.

-0.5

-I 0-- —--=

-I 5-

-2.0-2.0

p+JT I
-III I

ilia
III I

IIII
IJI I I I

-I.O 0
I

I.O 2.0

FIG. 5. Phase portrait for the discrete theory Eq.
(14) in region 2a of Fig. 1 for H =0. The three fixed
points, Po, P+, and P are shown. P+ and P are
thermodynamically stable; Po is unstable. Data are the
same as for Fig. 4. The nonintegrability of Eq. (14)
leads to insets and outsets of P+ and P that do not
terminate, as do their counterparts in the continuum
theory Eq. (17), but continue indefinitely. For simplicity
only a part of the inset of P (solid line) and a part of
the outset of P+ (dashed line) are shown. The corre-
sponding parts of the outset of P and the inset of P+
may be constructed by symmetry (see text). The circles
and crosses mark members of two different trajectories
of heteroclinic points which join P+ to P and
represent possible mean-field interfacial profiles (Sec.
IV A). Additional circles and crosses which should
mark the remainder of these trajectories are not shown
because they get crowded below P+ and to the right of
P, where the inset of P+ and the outset of P cross
each other an infinite number of times on a finer and
finer scale. The circle trajectory has lower free energy
and describes the equilibrium interface.

B. Discrete case

We study the discrete map in the form' (14).
This has the effect of rotating the phase portraits
by n/4 relative .to the continuous case, so the fixed
points lie on the diagonal M& ——Mz. This map is
not integrable. The phase portraits were computed
numerically ' and are shown as Figs. 3, 5, and 7.
The map is discrete, so the orbits are not simply
limited to the region

l
M

l & 1: Eq. (14b) requires
only that inset points have

l Mq & 1, while (14a)
requires that outset points have M~

l
& 1.

Indeed, the image under Eq. (14) of the line

M, = 1 [M,= —1+] is the point (M', ,M,')
=(1,oo ) [(—1+,—oo )], while the preimage
under Eq. (14) of the line M~ ——1 [M& ———1+] is
the point (Mt, Mz)=(oo, l ) [(—oo, —1+)]. We
note finally that the area-preserving property re-
quires that the fixed-point eigenvalues At, Aq of
the 2&(2 Jacobian matrix B(Mt,~q)/B(Mt, ~q)
satisfy At ——Aq

In region 1 of Fig. 1 the fixed point Po is hyper-
bolic (A; real, positive, Ql) and its insets and
outsets are qualitatively similar to those of Fig. 2.
Po is thermodynamically unstable' throughout re-
gion 2. It is elliptic (A~ ——Aq+1) in region 2a but
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FIG. 7. Phase portrait for the discrete theory Eq.
{14)in region 2a of Fig. 1 for H &0. The three fixed
points Po, P+, and P are shown. P is thermodynam-
ically stable; Po and P+ are unstable. Data are the
same as for Fig. 6. For simplicity only a part of the in-

set of P {solid line) and a part of the outset of P+
{dashed line) are shown. The corresponding parts of the
outset of P and the inset of P+ may be constructed by
symmetry {see text).

P is the thermodynamically stable fixed point.
The homoclinic orbit of Fig. 6 no longer exists;
however, there are an infinite number of homoclin-
ic points in the vicinity of P+. The inset of P
intersects the outset of P+ in an infinite number of
heteroclinic points. In Fig. 7 we show a part of
the inset of P and a part of the outset of P+,' the
corresponding parts of the outset of P and the
inset of P+ may be obtained by noting that under

(MI,M2)~(M2, MI) outsets interchange with in-

sets. As
I
H

I
is increased to the boundary be-

tween regions 1 and 2 (Fig. 1), Po and P+ come
together and annihilate, there are no longer any
heteroclinic or homoclinic trajectories, and a phase
portrait like Fig. 3, with Po shifted away from the
origin, is obtained. For H &0 the behavior of the
phase portraits is similar, with the roles of P+ and
P interchanged.

IV. APPLICATIONS

becomes hyperbolic with reflection (A; real, nega-

tive, Q —1) in region 2b. P+ and P are hyper-

bolic throughout region 2. For H =0, P+ and P
are thermodynamically stable; however, they are
not (cf., the continuous case) joined by a hetero-

clinic orbit. Instead, as shown in Fig. 5, the inset

of P intersects the outset of P+. These intersec-

tions are called heteroclinic points and will play a
role in the discussion of the interface problem in

Sec. IV. Because the insets and outsets are invari-

ant under the map (14), the existence of a single

heteroclinic point implies the existence of an infin-

ite number of them. Also, the inset of P+ (P )

intersects the outset of P+ (P )at an infinite-

number of points called homoclinic points. The
insets and outsets do not terminate (as in the con-

tinuum case) but continue indefinitely, creating a
"stringy" region on a finer and finer scale. The
whole rather complicated structure is referred to as

a "horseshoe" in the mathematical literature.
For the sake of simplicity we have shown in Fig.
5 only a part of the inset of P and a part of the

outset of P+. The corresponding parts of the

outset of P and the inset of P+ may be con-

structed from these data by noting that the whole

figure must have two symmetries: It goes into it-

self under (M&,M2)~( M~, —M2), while under-
('~,Mq)~(M2, ~~) outsets interchange with in-

sets. The whole structure is much richer than

that of Fig. 4. Analogous structure appears for
H+0 in region 2, as shown in Fig. 7. For H &0,

The trajectories described in Sec. III are useful
in solving a variety of surface and interface prob-
lems in the mean-field approximation. In each
case the phase-portrait approach identifies the
solutions of the mean-field equations (6) subject to
appropriate boundary conditions. When multiple
solutions exist, then the original variational princi-
ple (3) requires that the solution with the lowest
value of the free-energy functional P be chosen.
This physical solution in general changes continu-
ously as external parameters are varied; however,
when (and if) the minimum free energy switches
from one solution to another, then there is a phase
transition.

A. Interfacial profile

M(x)~+M as x~+ca (29a)

or

as n —++00, (29b)

where M is the magnitude of the fixed-point mag-
netization at P+. Thus, the appropriate solutions

Here we deal with a system having translational-

ly invariant interactions —Do & n, x & 00 and con-

taining two coexisting phases, so H =0 and
T & T, =2dJ. We take the "down" phase at
n,x~+ oo and the "up" phase at n,x —+ —ao, so
the appropriate boundary conditions are
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B. Surface enhancement and
the surface transition

Here we consider the semi-infinite system, ' Eqs.
(18) and (19), with H =h

~
——0 but D & 0. Bound-

ary conditions deep in the material are

M(x)~+M,
as x —+ oo, and

(29c)

(29d)

as n ~ ao, while at the surface Eqs. (24) and (22)
reduce, respectively, to,

M(0) =M(0)[1—2(d —1)D], (30a)

of the mean-field equations (14) or (17) are those
which lie simultaneously on the inset of P and on
the outset of P+.

In the continuum case (Fig. 4), there is a single
heteroclinic orbit joining P+ to P, which deter-
mines the interfacial profile M(x) uniquely (up to
an overall translation). In the corresponding
discrete case (Fig. 5), the inset of P does not
coincide with the outset of P+. The solutions of
Eq. (14) subject to Eq. (29a) are restricted to the
set of heteroclinic points, where the outset of P+
intersects the inset of P . In contrast to the can-
tinuous case there are now many (indeed, an infi-
nite number of) discrete orbits connecting P+ to
P . Two of these orbits (some points of which are
indicated on Fig. 5) go directly from P+ to P
and correspond, respectively, to an interface which
is symmetric about a layer (crosses) (e.g., M„
+M „=0)and to an interface which is symme-
tric about an interlayer (circles) (e.g., M„+M „+~

=0). All others involve additional kink-antikink
excitations, i.e., they start near P+, spend time
near P, return to the neighborhood of P+, and
then go to P, etc. It is clear from Eq. (12) that
these additional excitations cost extra free energy
and will not appear at equilibrium. Of the two
direct orbits, the interlayer-symmetric one has
lower free energy for all T & T, and gives the
equilibrium interacial profile (M„ I.

DyD, = 1

2(d —1)
(32)

This phase first appears via a second-order surface
phase transition at the temperature T,(D) which
makes Eq. (31) an equality. For T & T, (Fig. 4),
P+ become the appropriate fixed points and the in-
tersection of their insets with Eq. (30a) is always
unique, so no new phase transitions occur.

The discussion is similar for the discrete system.
Written in terms of the map (14), M'; (M~,~2),
i =1,2, the boundary condition (30b) reads (with
appropriate relabeling of layers)

Mz ——M)/2(d —1)D . (33)

It is the intersection of Eq. (33) with the appropri-
ate inset which determines the solutions of the
mean-field equations plus boundary conditions.
For T & T„M„=Ois always a solution; however,
two additional surface-phase solutions (with lower
free energy) appear when

2(d —1)D —1 & t/2+ [t+(t/2)~]'~2, (34)

which agrees with Eq. (31) for T & T, and leads to
Eq. (32). For T & T, there are (as for the interface)
many solutions to mean-field theory. Those
corresponding to down magnetization in the bulk
may be visualized by superimposing the boundary
condition (33) on Fig. 5. The lowest free energy is
always attained for M& &0 and for the trajectory
which flows directly to P

There is every reason to believe that these phe-
nomena persist beyond mean-field theory, al-
though with a value of D, appropriately renormal-
ized by thermal fluctuations.

a solution; however, two additional solutions ap-
pear when the initial inset slope at P'0 exceeds the
slope of Eq. (30a), i.e., whenever

2(d —1)D —I & t '~ with t:(T——T, )/J. (31)

When they exist, these solutions have lower free
energy than M(x) =0 and correspond to the ex-
istence of a phase with spontaneous surface mag-
netization but no bulk magnetization. ' ' Such a
"surface ferromagnetic phase" occurs when the left
side of Eq. (31) is positive,

Mp ——2(d —1)DM) . (30b) C. W'etting, presetting, and layering

Consider first the continuum case. The bound-
ary conditions pick out the intersection of the inset
of the appropriate bulk fixed point with the
straight line (30a). For T & T„M(x)=0 is always

We are again in the semi-infinite geometry but
now take D =0, H &0, and h ~ &0, so the layer
field h

&
biases the surface spins up, while the uni-

form field H &0 forces the bulk magnetization
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down. The boundary condition in the bulk is

M(x) —+ —M as x~oo,
as n —+oo,

while Eqs. (24) and (22) become, respectively,

M(0) =M(0) —h )/1 (36a)

and

2.0
0&h(/J & a)

1.5-

1.0

0.5

-1.0

hl/J = 0.5

Mo ——h)/J . -2.0 -0.5 0.5 I.O

Consider the continuum case first. For T y T,
(Fig. 2), the straight line (36a) has a single intersec-
tion with the inset of Po, indicating an excess sur-

face magnetization induced by the layer field h ~, as
expected. What happens for T ~ T, depends cru-

cially on the magnitude of h ~/J.

2.0 I

g(& h)/J & g~
1.5—

1.0—

(b)

h)/J = 0.95
T/J = 4.6
M/J = -0.0005

1. Critieai wetting 0(h~/1&at

For small h i the situation is as pictured in Fig.
8(a). For H &0 the relevant inset of P starts at S
and crosses the line LL' representing the boundary
condition (36a) exactly once. The position of the
intersection changes smoothly with T, so there is
no phase transition at H+0. Behavior in the limit
0—+0—is, however, very sensitive to the value of
T, because the inset then passes arbitrarily close to
the fixed point P+. When T=T, the distance be-

tween P and P+ is small and the intersection oc-
curs between S and P+. Since flow past P+ be-
comes slow as H —+0—,this produces an arbitrari-

ly thick region of "up" magnetization at the sur-

face of the "down" bulk. This corresponds to the
formation of a "wetting layer" in the lattice-gas
language. The thickness of the wetting layer'
diverges as H~O as

I
ln IH I I

—. As T de-

creases, the distance between P+ and P grows
and, for sufficiently low T, the line LI.' intersects
the inset of P between P+ and P, so the thick-
ness of the surface region of "up" magnetization is
finite at 0=0 . The "critical wetting tempera-
ture, " Tn"(h

& ), which separates the two regimes,
occurs when LL' passes through P+, i.e., for

M(Tn", H =0)=hi/J .

At H =0 the "up" surface region grows continu-

ously to infinite thickness as T approaches T~'
from below. In this sense the transition is second
order. ' The limit of critical wetting is reached
when the slope of the outset of P+ at the intersec-
tion with LL' reaches unity, i.e., when

—1.0

-2.0-I.O 0.5 1.0

2.0

1.0—

I

hi/J =2
T/J =4
H/J = -0.0005

0.5

-0.5

-1.0

-2.0
—1.0 -0.5 0.5 1.0

—2d =1 (38)

which gives (for d =3) a& ——0.453 (Tn" 0.927T, ). ——

FIG. 8. Continuum phase portraits for T ~ T„H (0,
illustrating the mechanisms for critical wetting, first-
order wetting, and layering. The straight line LL' must
intersect the inset of the stable fixed point P for the
boundary condition (36a) to be satisfied. (a) 0& h i/J
=0.3 (ai, T =5.9J, H = —O. OOOSJ. (b) ai &hi/J
=0.95 (u2, T =4.6J, H = —0.0005J. (c) up(hi/J =2,
T =4J, H = —0.0005J.
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2. Eirst-order wetting and
preroetting, ai &hi/J&a2

For h I/J & ai, the situation is as sketched in

Fig. 8(b). At sufficiently high temperature LL' in-

tersects the inset of P between S and P+, so
there is wetting as H~O —;however, now, as T
decreases for H =0, LL' becomes tangent to the
inset of P . At a temperature Tg slightly below
the temperature at which tangency occurs (Tg can
be determined by an equal-area construction as
shown in Fig. 4 of Ref. 16), the minimum-free-

energy solution switches discontinuously from the

segment SP+ to the segment P+P; thus, as T ap-
proaches Tg' from below, the thickness of the

up surface regioIl ]uIQps discontinuously fron1
some finite value to infinity at a first-order phase
transition. This first-order behavior extends to
nonzero H and terminates at a "prewetting critical
point, " as shown in Fig. 9. %'etting and prewet-
ting have been discussed previously by Saam and
Ebner, Cahn, ' Ebner, Sullivan, ' and others.
At sufficiently large hi the behavior changes again,
as shown in Fig. 9. The mechanism, illustrated in
Fig. 8(c), is the development of a range of T and H
(shown shaded in Fig. 9) for which LL' does not
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FIG. 9. Surface phase diagrams for the continuum description of wetting, pfewetting, and layering. The point C is
a critical point. The first-order line which attaches to C represents a discontinuity in the excess surface magnetization
(or the excess surface density in the lattice-gas language). The shaded regions show where the boundary condition (36a)
cannot be satisfied. (a) For weak layer field h

&
(0 & h I/J &aI) there is no phase transition at H &0 and T~'(h &) marks

a continuous transition between an infinite wetting" layer (T& T~') and one of finite thickness (T & T~'). Data for
this figure are d =3, h~/J =0.3, T~' ——5.815J. (b) As h~ increases (ai &h~/J «aq), prewetting develops and the transi-
tion at Tg becomes first order. Data for this figure are 1=3, h ~ /J =0.95, Tg=4.41J. (c) For a2 & h ~ /I, a region
(shown shaded) develops where the boundary condition cannot be satisfied (see text). Data for this figure are d =3,
h I/J =2. (d) For large h ~ (a2&&h i/J), the region where the boundary condition cannot be satisifed becomes larger
and larger and the first-order line gets pushed nearer and nearer the T =0 axis. Data for this figure are d =3,
h ~/J =4. The critical point C, the first-order line it is attached to, and the boundary of the shaded region near the
T =0 axis are shown on an expanded scale in the inset. The "elbow" which appears in the first-order phase boundary
in (c) [also, in (d) but not visible on the scale shown] arises from a small region of parameters where the minimum-
free-energy solution switches from the point S to the segment 8+I' (Fig. 8). See also Ref. 35.
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intersect the inset of I', so the boundary condi-
tion (36a) cannot be satisifed. s' This first appears
at hi/J =a2, where (for d =3), aq ——1.46
(Tg'=0. 56T, ).

3. Layering, hi/J)a~

As hi/J is increased beyond a2, the region for
which the boundary condition (36a) cannot be satis-
fied continues to grow. The prewetting critical
po1nt and 1ts associated f1rst-order 11ne move away
from the T axis (see Fig. 9) and become a thin-
layer-to-thick-layer transition, as H increases at
Axed (low) T.

The discrete case is actually somewhat simpler.
The boundary conditions (35b) and (36b) require
that the inset of the appropriate bulk fixed point
(see Figs. 3, 5, and 7) intersect the vertical line

Mi ——Ii)/J .

This 1nter'section 18 unique for T p T~; however, for
T & T, there are always an infinite number of solu-
tions because of the "horseshoe" structure of the
inset, described in Sec. lII. These multiple solu-
tions correspond, roughly speaking, to different
numbers of "up" surface layers on top of the
"down" bulk plus additional kink-antikink excita-
tions. Kink-antikink excitations are expensive in
free energy and do not occur at equilibrium. The
new feature here, not present for the interface or
the surface phase (Secs. IV A and IV 8), is that the
free-energy minimum switches from one intersec-
tion to another as a function of T and H, giving
rise to an infinite sequence of first-order layer tran-
sitions, ' ' as shown in Fig, 10. For 0&h&/Jg1
and H =0 these transitions accumulate from
below at a wetting temperature Tir(li i ), while their
associated critical points approach T =T„H=0.
As Ii i/J —+ I —,Tir +0 For Ii i /—J& .1, the infinite

sequence of layer transitions first noted by
de Oliveira and Griffiths is present. We discuss
in a separate publication the details of this
behavior and the extent to which it is modified by
thermal fluctuations, non-first-layer-only fields,

etc.
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APPENDIX

In the main body of this paper we have concen-
trated on certain fixed points and their insets and
outsets for the maps defined by Eqs. (14) and (17).
In this appendix we give a brief description of the
rest of the phase portraits of Eqs. (14) and (17).
We shall only consider the case H =0; the exten-
sion to H+0 is straightforward.

The (differential) map (17) is integrable and its
phase portraits (Figs. 11 and 12}are simple: Ei-
ther fixed points have smooth elliptical orbits en-

circling them or they have nonintersecting insets
and outsets; there are also smooth, open trajectories
that do not pass through or go around any fixed
point. The discrete map (14) is a nonintegrable
perturbation of the differential map (17); this
nonintegrable perturbation is small when Eqs. (14)
and (17) agree approximately, i.e., when g» 1 (see
Sec. II). When the nonintegrable perturbation is
small, the Kolmogorov-Arnol'd-Moser (KAM)
theorem ' tells us that the phase portraits of Eq.
(14) (Figs. 13, 14, and 15) must share some of the
simplicity of the phase portraits of Eq. (17). In
particular, only a small subset (with finite but
small measure) of the elliptic orbits in Fig. 12 are
destroyed by the nonintegrable perturbation.
KAM trajectories (i.e., elliptic orbits that are not
destroyed, only distorted} are shown in Figs. 13
and 14. The complete phase portraits of Eq. (14)
are, however, very complex. In Sec. III we have
described how the insets and outsets of the hyper-
bolic fixed points of Eq. (14) intersect each other
at an infinite number of points to yield a horse-
shoe. In addition, the discrete map (14) also has

2.0

2.0
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1,5 — T Tc

I.O
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FIG. 12. Phase portrait for the continuum theory Eq.
(17) in region 2 of Fig. 1, for H =0. Data are the same
as for Fig. 4. In addition to the fixed points, Po, P+,
and P, and the insets and outsets of P+ and P
shown in Fig. 4, the plot shows elliptic orbits that encir-
cle Po and open orbits that lie outside the region bound-
ed by the heteroclinic trajectories that connect P+ and
P

1 I i I l Il I
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periodic points or ¹ycles [i.e., fixed points of
(f&,f2), the map (14) iterated N times] with arbi-
trarily large N. If the fixed point of (f&,f2) is
elliptic, the periodic points have elliptic orbits go-
ing around them. Such elliptic orbits show up
clearly in Figs. 13 and 14. Nonintegrable perturba-
tions can also yield "stochastic" or "chaotic" tra-

1.5

1.0

0.5

-1.5-

-2.0

pPt(—
I

II

III
II I

I I
III

I III I 1

-10 0 2.0

—I ——————
I

I

I I

1.0

-0.5

-1.0

—1.5

-2.0-1.0 -0.5 0.5 1.0

FIG. 11. Phase portrait for the continuum theory Eq.
(17) in region 1 of Fig. 1. Data are the same as for Fig.
2. The fixed point Po, its inset and outset, and some
open trajectories are shown.

FIG. 13. Phase portrait for the discrete theory Eq.
(14) in region 2a of Fig. 1, for H =0. Data are the
same as for Fig. 12 and Fig. 5. The fixed points, Po,
P+, and P, and the parts of the inset of P and the
outset of P+ are the same as for Fig. 5. In addition, a
KAM trajectory (the "elliptic" orbit around Po) and the
seven "elliptic" orbits that go around an elliptic seven-
cycle are shown. On the scale of this figure, the seven
elliptic orbits show up as seven lines that lie roughly on
an ellipse which encircles Po.
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jectories. ' For the map (14), such chaotic trajec-
tories do not lie on a one-dimensional curve but fill

a two-dimensional region (see Figs. 14 and 15).
The last major difference between the phase por-

traits of (17) and (14) is that the open trajectories
for Eq. (17) have no counterparts in the phase por-
traits for Eq. (14); all points that lie outside the re-
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'.
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FIG. 15. Detail near Po of the chaotic orbit shown in

Fig. 14. All the points shown in the plot were obtained

using just one initial condition for the discrete map (14).
Note how the chaotic orbit fills a two-dimensional re-

gion.

FIG. 14. Phase portrait for the discrete theory Eq.
(14) in region 2b of Fig. 1, for 8=0. Data for this
plot are d =3, T=1.9J. The fixed points, Po, P+, and
P aIld parts of thc iIlsct of P (solid linc) and thc
outset of P+ (dashed hne) are shown. The correspond-
ing parts of the outset of P and the inset of P+ may
be obtained by symmetry (see text). A KAM trajectory
that goes around Po and two "elliptic" orbits that go
around the elliptic two-cycle points, P, ~ and P,2, are also
shown. The broken orbit that looks like the figure eight
and seems to pass through Po is a chaotic orbit (see Fig.
15).

gion bounded by the insets and outsets of P+ and
P (see Sec. III and Fig. 5) are mapped, after a
finite number of iterations of Eq. (14), outside

~
M;

~

& 1, where Eq. (14) is no longer defined.
To make thc discussion glvcn above prcclsc wc

now describe some phase portraits of Eqs. (17) and

(14) systematically (only for H =0). Figure 11
shows the phase portrait of Eq. (17) in region 1 of
Fig. 1. There is only one fixed point, Po, and it is
hyperbolic. The insets and outsets of Po and
selected open trajectories are shown. There are no
elliptic or homoclinic orbits. The analogous phase
portrait for Eq. (14) has been shown already in

Fig. 3. As discussed above, it does not have any
open trajectories,

Along the boundary separating region 1 and re-

gion 2(a) in Fig. 1, the fixed point Po is parabolic

[o ~
——oq ——0 for (17); A& ——Az ——1 for Eq. (14)]. In-

finitesimally below this boundary the parabolic
fixed point bifurcates into an elliptic fixed point,
Po, that remains at the origin {for H =0), and two
hyperbolic fixed points, P+ and P . Figure 12
shows the phase portrait of Eq. (17) in region 2(a)
of Fig. 1. Two heteroclinic trajectories connect P+
and P . Inside the region bounded by these
heteroclinic trajectories there are elliptic orbits
which go around Po. Then there are the open or-
bits. Figure 13 shows the analog of Fig. 12 for the
map (14). There ls an elhptlc fllxed point, Po, at
the origin and two hyperbolic fixed points, P+ and
P . Inside the region bounded by the complicated
insets and outsets of P+ and P (see Sec. III 8
and Fig. 5) there are KAM trajectories and N cy-
cles. The open orbits in Fig. 12 have no counter-
parts ln Flg. 15.

For the map (17), the fixed point, Po, is elliptic
in both regions 2a and 2b of Fig. 1. However, for
the map (14), at the boundary separating regions 2a
and 2b in Fig. 1, Po becomes parabolic with reflec-
tion (A&

——Az ———1). Infinitesimally below this
boundary, the fixed point at the origin bifurcates
into a fixed point Po that is hyperbolic with reflec-
tion and a pair of points, P, ) and P,2, that consti-
tute an elliptic 2-cycle. The inset and the outset of
Po intersect each other at an infinite number of
hoIDoclinic points; they do not, however, lntcrscct
the insets and outsets of P+ and P . Figure 14
shows the phase portrait of Eq. (14) when Po has
become hyperbolic with reflection. We do not
show the inset and outset of Po. Instead, we show
the chaotic orbit that is obtained by starting with a
point r ear P, but not on its inset or outset. Figure
15 shows a magnified picture of the chaotic orbit
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near Po. Elliptic orbits that go around the 2-cycle
points, P, i and P, z, show up clearly in Fig. 14.
KAM orbits that encircle Po still exist and are
shown in Fig. 14. All these orbits are contained in
the region bounded by the insets and outsets of P+
and P . There are no open trajectories.

In region 2a of Fig. 1 the elliptic fixed point Po
undergoes an infinite number (denumerable) of bi-
furcations. Po itself remains an elliptic fixed
point, whHe a pair of N-cycles, one elliptic and the
other hyperbolic, are ejected from it. Precisely at
the bifurcation point, there is a parabolic N cycle-
at Po. Po acts as a center for the generation of
pairs of N cycles-only as long as it is elliptic. The
moment Po becomes hyperbolic with reflection, it
stops bifurcating.

The X-cycles that are ejected from Po behave as
Po does, if we consider the map (fi,fq) . If the
fixed points of (fi,f2) are hyperbolic (with or
without reflection) they do not generate any
periodic points; however, if the fixed points of
(fi,f2) are elliptic, they act as the centers for the
generation of M-cycles of (fi,f2) . This sort of
bifurcation 'ceases the moment the elliptic fixed
points of (fi,f2) become hyperbolic with reflec-
tion.

We have already noted that Eq. (14) is a nonin-
tegrable perturbation of Eq. (17) which is small
when g)) 1, i.e., when T- T, =2'. The pertur-
bation becomes larger and larger as T—+0, and the
insets and outsets of P+ and P become more and
more "stringy" (see Sec. III B). The area contained
within the insets and outsets of P+ and P be-
comes smaller and smaller until, at T =0, only
nine points (all the pairs that can be formed with
1, 0, and —1, remain inside the square

~
M;

~
& 1;

all other points are mapped into the region

~
M;

~
& 1 where the map (14) is not defined.

For the physical problems that we have con-
sidered in this paper, the only interesting parts of'

the phase portraits of the maps (14) and (17) have
been the fixed points and their insets and outsets.
It is quite conceivable that E-cycles and KAM and
chaotic trajectories might be physically relevant in
other physical situations. Indeed, ¹ycles and
KAM trajectories have been interpreted as com-
mensurate and incommensurate phases, respective-
ly, in systems with competing ferromagnetic and
antiferromagnetic interactions. ' ' Whether there
are thermodynamically relevant chaotic trajectories
is, however, a controversial question. ' '
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tion (14) then takes the form [cf. Eq. (17)]: M„+t
=M„+M„+](M„,M„) and M„+&——M,
+(T/J) tanh 'M„—2dM„—(H/J), which is area-
preserving. Equation (14), which contains only the
layer magnetizations themselves, is physically a little
more direct than the M„,M„equations above, and we
shall continue to use it in the text.

~5K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461
(1972); 9, 2194 (1974). These articles contain exten-
sive earlier references.
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C, =
2
[1+M(0)],and our choice of surface couplings
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+(//2)[1 —2(d —1)D](2C,—1)2.
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combination 2dJ; however, the inhomogeneous equa-

tions (14) and (17) and their boundary conditions are
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Schneider (Springer, New York, 1978), p. 264; S. Au-
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2~The insets and outsets of the hyperbolic fixed points

shown in Figs. 3, 5, and 7 were mapped out by mak-

ing use of the following property: Let P be a hyper-
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nite number of iterations of a, onto the outset of P.
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2~Figure 5 shows the form of the insets and outsets in

region 2a (Fig. 1), where Po is elliptic. In region 2b

(Fig. 1), where Po is hyperbolic with reflection, its in-

sets and outsets develop homoclinic intersections and

horseshoes; however, this complicated structure will

not be relevant for us, since Po is thermodynamically

unstable throughout region 2 (Fig. 1). Also see the

Appendix.
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Systems, Annals of Mathematics Studies No. 77

(Princeton University Press, Princeton, 1973); S.
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also Ref. 5.

24This visualization shows, for example, that the inset of
P (P+) will intersect the outset of P (P+) at an in-

finite sequence of homoclinic points.
2~Note that there are no homoclinic orbits and that

kink-antikink excitations and other more complicated
structures like kink-antikink-kink are not solutions of
the continuum mean-field equations.
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Reference 15 cites subsequent work. A mean-field
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and M. Wortis, ibid. 22, 1286 (1980), and others.

29In the lattice-gas picture the local particle density is
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curve lies at H =0, so H & 0 at T g T, corresponds to
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tial exerted by the substrate on the first-layer ada-
toms.
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Chap. VI, especially pp. 214 and 215, or %. A. Zis-
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only first-order wetting. On the other hand, D. E.
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(1977).
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Cahn, Science 207, 1073 (1980).

35Appropriately formulated, the variational problem
must, of course, have a solution. The resolution of
this apparent paradox is to write Eq. (23) in fully con-
tinuous form,

L '" "M[M(x)]=I dxg x,M(x),
00 dM

—00 dx

with
'2

—dJ2(x)M (x)
2 dx

M(x)—H(x)M(x)+ dy tanh 'y,
0

and

Ji(x)=J8,(x),

2' (x)=2dXe, (x)—J[1—2(d —1)D]5,(x),

H(x) =H8, (x)+h i5,(x),

where 5, and 8, are smoothed versions of the usual

(step) 8 function and 5 function. Variation gives in

place of Eq. (16)

J](x) +2dJ (x)M(x)
dx dx

+II(x)=T tanh-'m(x) .

+e
Integration of this equation, dx, across x =0,
gives the boundary condition Eq. (24), provided every-
thing varies slowly on the scale of the smoothing. Be-
cause of the tanh 'M(x), this proviso fails for

~
M(x)

~

=1. Thus, solutions of the smoothed prob-
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in detail on the shapes of the smoothing functions.
Note that it is quite possible that the minimum-free-
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