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The influence of a cos$ conductance on the motion of fluxons in long and narrow Josephson

junctions is investigated by numerical computations and by a perturbation analysis, It turns out

that the presence of the cos$ term will have opposite effects on the motion of a fluxon and on

plasma waves or breathers. If the fluxon motion is damped, the plasma waves are enhanced by

the cos@ term and vice versa. The presence of loss and bias results, in any event, in stabiliza-

tion of the fluxon in a stationary motion. Good agreement between the numerical result for

fluxon motion and the perturbation analysis is found.

I. INTRODUCTION

Nonlinear solitary waves are currently being used
in a remarkable variety of contexts in almost every
area of physics. In particular the sine-Gordon 2m-

kink solution is ubiquitous in its application as a
model for dislocations in crystals, domain walls in

ferromagnets, and propagation of flux quanta, flux-

ons, in Josephson transmission lines.
The dynamics of fluxons on Josephson-junctions

transmission lines has been studied extensively. In
particular we mention the papers by McLaughlin and
Scott' and Kaup and Newell' which contain many
references. In Refs. 1 and 2 a perturbation theory
for fluxons propagating on Josephson lines with bias,
impurities, and losses is formulated. Some of the
results from this theory were compared with numeri-
cal solutions by Christiansen and Olsen. ' A numeri-
cal investigation of the reflection of a single fluxon
on a semi-infinite Josephson line at a passive or an
active boundary has been performed by Christiansen
and Olsen. 4 They found a single reflected fluxon, an
antifluxon, absorption of the incident fluxon, or fis-
sion into an arbitrary number of fluxons depending
on the boundary conditions. In Ref. 5 the reflection
of a single fluxon on a boundary condition modeling
an external magnetic field has been performed nu-

merically. The outcome of the reflection can be an
arbitrary number of fluxons or antifluxons, the
number depending on the magnetic field and the
velocity of the incoming fluxon.

Besides the 2n-kink solution, the sine-Gordon
equation possesses the breather solution which re-
cently has attracted considerable interest. The

breather can be considered as a bound state of a flux-
on and an antifluxon. Furthermore, fluxons, anti-
fluxons, and breathers possess the remarkable soliton
property. Also, breathers have an oscillatory degree
of freedom, which increases their physical potential.
In Ref. 10 the effect of a boundary on a breather was
examined numerically. Depending on the boundary
condition (modeling either a passive or an active ter-
mination) the breather was reflected into a breather
of decreased or increased energy.

Fluxon propagation in long Josephson-line cavities
has been used to explain the so-called zero-field steps
(without externai magnetic field) in the current-
voltage characteristics. ""The nth zero-field step
corresponds to a situation in which n fluxons are
propagating back and forth along the junction, being
reflected at the ends. Each reflection creates a vol-
tage pulse. Thus a single fluxon on a Josephson line
of length I produces a microwave signal of frequency
u/21, where u is the velocity of the fluxon. Recently
microwave emission from long Josephson tunnel
junctions dc-current biased on zero-field steps and
Fiske steps has been measured" (the Fiske steps ap-
pear when an external magnetic field is applied). It is

remarkable that the even Fiske steps coincide with
the zero-field steps. The measurements of the radia-
tion emitted from the long junctions biased on Fiske
steps show exactly the same features as the radiation
from zero-field steps. Therefore it was concluded
that Fiske steps in long junctions are due to propagat-
ing fluxons. '4

In the present paper we examine the influence of
the cos$ conductance" on a propagating fluxon. It is
easily seen that a positive cos$ loss term will enhance
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the damping of small-amplitude plasma ~aves while a
negative cosP term will reduce the damping. The
result of the present investigation is that the effect of
the cos@ term on fluxon motion is the opposite: A

negative cos@ term enhances the resistance against
the motion while a positive reduces the resistance.

The outline of the paper is as follows. In Sec. II
we apply a well-known perturbation analysis for flux-
on propagation to derive the trajectory for single flux-
ons. The results are compared to numerical solutions
of the corresponding initial value problem for the
perturbed sine-Gordon equation in Sec. III. In Sec.
IV we comment on the results.

II. PERTURBATION ANALYSIS BASED
ON ENERGY ARGUMENT

In this section we consider a perturbed normalized
sine-Gordon equation describing the motion of flux-
ons in a long and narrow Josephson junction" in-

cluding a cosQ term. " Further the perturbation
theory from Ref. 1 is applied to develop an ordinary
differential equation for the velocity of a single fluxon.
This equation is integrated to obtain the trajectory for
a fluxon.

We consider the perturbed sine-Gordon equation

are determined by the equation

which can be derived by replacing $ by —sin 'rt + $
in (2.1) and linearizing in $.

Equation (2.2) shows that the cos$ term changes
the damping parameter for the plasma waves from n
o 0,'p]asma given

up„, , ——n[1+ e(1 —rt') 't'] (2.2a)

Here xo is the initial position of the fluxon with the
velocity u and y(u) is the Lorentz factor

i.e., a negative cos$ term (negative e) will reduce the
damping of the plasma waves while a positive e will

enhance the damping.
Now we examine fluxon solutions to Eq. (2.1).

The sine-Gordon equation [i.e. , Eq. (2.1) with
a = q =0] has the Hamiltonian or total energy

H = 'P (—$'+ —,/~2+1 —cos@)dx

The fluxon solution to the sine-Gordon equation is
given by

Po(x, t) =4tan '{exp[y(u)(x —ut —xo)]] . (2.4)

—$„=si nQ +a/, (1+ecosQ) +rt, (2.1) y(u) = ( I —u') 't' (2.5)

where P(x, t) is the space- and time-dependent phase
difference between the two superconducting films.
The spatial variable x is measured in units of the
Josephson penetration depth X& = (tt/tt02ettj'J ) ' ' and
the time t in units of the reciprocal plasma frequency
co~ ', re~ = (2ej&/ttC)'t' Here —e i.s the electronic
charge, 2vrh is Planck's constant, po is the permeabil-
ity of free space, jj is the maximal Josephson current
density through the barrier, d is the magnetic thick-
ness of the barrier (2h. + to), where A. is the London
penetration depth, and to the thickness of the barrier,
and C is the capacitance per unit area of the junction
(eoe /to). The second term on the right side of (2.1)
represents dissipative effects. Thus a = Go(tt/2edjqC)'~'
and e = G~/Go, where Go is the conductance due to
the quasiparticle tunneling current and Gl the con-
ductance due to the quasiparticle interference current.
The terms Go and G~ are fairly complicated functions
of voltage and temperature but in the following we

regard them as independent of voltage. Furthermore
physical reality requires that —1 « ~ «1."

The presence of dissipative terms require a
mechanism of energy input in order to obtain physi-
cally interesting solutions. Such a mechanism is
represented by the q term which models a uniformly
distributed bias current (only valid when the width of
the junction is much less than the Josephson penetra-
tion depth).

The development of small amplitude plasma waves

Insertion of (2.4) into (2.3) yields the energy of a

single fluxon

H, =gy(u) . (2.6)

where the location of the fluxon is given by

ft
X(t) = Jl u(t)Ct+xo

Second, we derive the time derivative of Hf

—Hf =Sy(u) u—3 dQ

dt dt

(2.8)

(2.9)

Differentiating the Hamiltonian (2.3), integrating by
parts, and inserting the perturbed Eq. (2.1) yields

IQ'—Hf= —
& u, 1+icos +q dx . 2.10

Finally, insertion of (2.7)—(2.9) in (2.10), integra-
tion, and rearranging give an ordinary diffential equa-
tion for the velocity of the fluxon

r

y(u) =—[uy(u)] =—a 1 ——uy(u) +3dQ d VT l7

dt dt 3 4

(2.11)

The parameters o. and q are small. First we as-
sume the effect of the perturbation on a fluxon is to
modulate its velocity. Thus the corresponding fluxon
solution to (2.1) can be written as

P(x, t) =4tan 'exp[y(u(t))[x —X(t)]], (2.7)
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Equation (2.11) shows that the cos$ term changes
the damping parameter for the fluxon motion from o,

to O.q given by

In Sec. III we solve the corresponding initial value
problem numerically and compare the results with
the results from the analysis in this section.

Ay=A 1
3

(2.11a)
III. NUMERICAL RESULTS

z=u y(u),
and the inverse

~ 1/2z'
1+Z2

I

(2.12)

(2.13)

Note that the dissipative terms cause the fluxon to
slow down awhile the bias term accelerates the fluxon
in positive direction. The stationary velocity found
from (2.11), representing a balance between energy
input and energy dissipation, is

i/2
z oo

1+z2,'

(2.14)

Comparison of Eqs. (2.2a) and (2.11a) shows the op-
posite effect of the cos@ term on plasma waves and
fluxons. For instance we would, with a small bias q
and an ~ close to —1, have a situation where plasma
waves or breathers experience practically no damping
awhile the Auxon will meet an effective damping
parameter of —,e.

%e now introduce the quantity z, which is
8

of the

momentum of the fluxon, by

In this section we consider a single fluxon pro-
pagating under the influence of loss and bias. The
results are then compared to the results obtained in
Sec. II.

We solve the initial value problem (2.1) with

y(x, 0) =F(x,0),
(P, (x, 0) = F,(x, 0)

y„(o,r) =@„(i,r) =0,
(3.1)

A. Influence of loss

~here

F(x, r) =4tan '[exp[y(uo)(x uor —xo)]—I —sin 'q .

(3.2)

Here the expression for F(x, t) represents a fluxon
with initial location xo and initial velocity uo. The
fluxon is Lorentz contracted. The boundary condi-
tions at x =0 and x = /model an open-ended junc-
tion.

The numerical results are obtained by means of a
computer program based on the method of charac-
teristics and are displayed in terms of $„(x,r).

'9
z 00

4ng
(2.15)

This result is of course independent of the initial con-
ditions,

In order to determine the trajectory of a fluxon we
integrate equation (2.11) to obtain

In this section we present numerical solutions of
the problem (2.1) and (3.1) and (3.2) with rt=0.
Figure 1 shows the propagation of fluxon in a junc-
tion with loss. The parameters are chosen to be

flz =z„+(zo—z„)e
m'9=zo+ E, for =0 (2.16)

m'q
=xo+ ' 1+ t+zo

mq 4
(1 +z2)1/2,

for a=0 (2.17)

where zo= woes(uo), uo being the initial velocity of
the fluxon. Insertion of (2.16) via (2.13) into (2.8)
yields'

1 z+ (z'+ I)'i'
x =xo+ 1loof ln

aq zo+ gzo +1y

1+z„zo+ (z„' +1)'"(zo' + 1)'"
ln

ao 1+z z+(z +1)' (z +1)' FIG, 1. Propagation of a fluxon in a junction with loss.
The parameter values are e =0.1, q =0, e =—1, xo =5, and
uo =0.9. The results are displayed in terms of @z for
0 ~x ~ 30 and 0 ~ t ~40. For t ~ the fluxon converges
towards a static location at x =16.04. The radiation is un-
damped.
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FIG. 2. Propagation of a fiuxon in a junction with loss.
The parameter values are as in Fig, 1 except for ~ =1. The
results are displayed in terms of Q„ for 0 ~ x ~ 30 and
0 ~ t ~40. For t ~ the fluxon converges towards a static
location at 27.08, Compared to Fig. 1 the radiation dies rap-
idly out.

FIG. 3. Propagation of a fluxon in a junction with loss
and bias. The parameter values are a=0.1, q=0.1, e= —1,
x0=5, and u0=0. The results are displayed in terms of $„
for 0 ~ x ~ 30 and 0 ~ t ~ 40. The initially static fluxon
stabilizes at a velocity determined by the balance between
loss and bias.

o. =0.1, e= —1, x0=5, u0=0.9, and I =30. The
fluxon is seen to converge towards a static location.
For t =40 we find numerically x =16.1. For u =0,
Eq. (2.17) becomes'

1 1+uo 1+ux =xo+ ln ln
2Afi 1 uo 1 u

(3.3)

8. Influence of loss and bias

In this section the combined effect of loss and bias
is investigated. Thus we solve the initial value prob-

For the parameter values given above, (3.3), (2.13),
and (2.16) give, at t =40, x =15.97 which agrees well
with the numerical result. As a result of the de-
celeration of the fluxon there is a small amount of
radiation propagating at the characteristic velocity.
The radiation is reflected at the boundary at x =30
and is not damped in accordance with the analysis in
Sec. u [Eq. (2.2a)).

In Fig. 2 wc have changed the sign of the coeffi-
cient of the cos$ term. Thus the parameter values in
(2.1) (3.1), and (3.2) are a =0.1, g =0, a =1, xp=S,
and u0=0.9. In this case the fluxon travels a longer
distance (compared to Fig. 1) before it stops. This
indicates that the fluxon is less damped for ~ =1 than
for e= —1. The radiation resulting from the de-
celeration of the fluxon is seen to die rapidly out in

accordance with the results in Sec. II. At t =40 the
position of thc f/uxon in Fig. 2 is x =24.7, while Eq.
(3.3) yields x =24.94. Thus a good agreement
between the perturbation theory and the numerical
results is observed.

The results in this section illustrate how the cos$
term effects fluxons and plasma ~aves differently
[Eqs. (2.2a) and (2.11a)l.

lem in (2.1), (3.1), and (3.2) with u =0.1, q =0.1,
~= —1, x0=5, u0=0, and I =30. In Fig. 3 thc
results are displayed in terms of $„(x,t). An initiaily
static fluxon is accelerated into a stationary motion,
with the velocity u„given by Eqs. (2.14) and (2.15),
u„=0.50S. The numerical results show that the
velocity at t =40 is u =0.507. Insertion of the
parameter values in the expressions (2.16) and (2.13)
for u yields u =0.506. At t =40 the numerical com-
putations yieM the location of thc fluxon x =22.0
while Eq. (2.17) yields x =21.96. For other parame-
ter values, e.g. , O. =q=0.2 and ~= —1, the same
good agreement between numerical results and thc
analysis is found.

%e note that if the fluxon starts out with a nega-
tive velocity it will stop, return, and enter a stationary
movement (from the analysis the time and location

FIG. 4. Propagation of a fluxon in a junction with loss
and bias. The only change in parameter values compared to
Fig. 3 is a change of ~ from —1 to 1, The results are
displayed in terms of $„ for 0 ~ x ~ 30 and 0 ~ t ~40. The
velocity of the stationary fluxon is increased in accordance
with the analysis.
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of the return event can easily be found).
In Fig. 4 the only change in parameter values com-

pared with Fig. 3 is a change in e from —1 to 1.
Again an initially static fluxon is accelerated into a
stationary motion. The stationary velocity, however,
is increased. From the numerical results we find at
t =40, u =0.75 while the analysis yields u =0.74
(u„=0.76). The location of the fluxon at t =40 in
Fig. 4 is x = 28.2, from Eq. (2.17) the analysis gives
x =28.01. Again a good agreement is observed for
larger values of a and g (e.g. , a = g =0.2). For
lower values of e and q the numerical and the
analytical results differ less than 1%.

IV. CONCLUSION

In the present paper we have examined the influ-
ence of the cos$ conductance on propagating fluxons

and plasma waves. It turns out that the cosQ term
effects fluxons and plasma waves differently'. If the
fluxon motion is damped the plasma ~aves are
enhanced and vice versa [Eqs. (2.2a) and (2.11a)].
Furthermore, the presence of loss and bias results in
any event in stabilization of the fluxon in a stationary
motion. A perturbation method based on energy ar-
gument has been applied and the results from this
perturbation theory have been compared to results
obtained by numerical solution of the corresponding
initial value problem. A good agreement between the
analytical and the numerical results has been found.
Actually the physically relevant o. values are of the
order 10 —10 for which the perturbation theory
works very well.

Finally we remark that the results obtained for a
single fluxon also hold for an antifluxon if the sign of
q is changed.
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