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A new derivation, capable of straightforward finite-frequency generalization, is given of
the velocity of sound in the Pippard-Buckingham-Fairbank approximation. The first
correction to this approximation is expressed in a compact form and leads to a determina-

tion of the slope of the lambda line at low pressures. A crossover function for the critical
specific heat is also obtained.

I. INTRODUCTION

Investigation of sound propagation near the
lambda transition of liquid helium is a useful
probe for both static and dynamic properties. In
this work we study the thermodynamic sound velo-

city and the specific heat near the lambda point.
Using the Pippard-Buckingham-Fairbank (PBF) re-

lations, ' it is found that superposed on a large
noncritical part the sound velocity has a small crit-
ical part which is inversely proportional to the
constant pressure specific heat Cz. Since Cp grows
with the approach to the A. point, the critical part
gets smaller and the sound velocity dips. Precise
measurements of the velocity u were made by Bar-
matz and Rudnick. They plotted u —U~, where
U is the minimum velocity measured, against

Cp '. The result is shown in Fig. 1. For T & T~,
the lambda temperature, the data falls on a
straight line as expected from the PBF approxima-
tion. For T & T~, however, there is considerable
deviation as one goes further away from the A,

point. Ahlers then considered the first correction
to this linear approximation. Expressing his
answer as a sum of several terms, he succeeded in

bringing theory and experiment into full accord.
Our task here will be to provide a different

derivation of the PBF result and then consider the
first correction to it using our new technique. The
rederivation of the PBF equation is extremely im-

portant for the study of sound attenuation and
dispersion. Our derivation of this thermodynamic
relation makes the finite-frequency generaliza-
tion ' straightforward. The main points of the
derivation are (i) the imposition of the isentropic

condition of sound propagation at the outset, and
(ii) the use of the variables hT= T Tt„(P) a—nd P
instead of the conventional T and P, where P is the
pressure. The first correction to the PBF approxi-
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FIG. 1. Sound velocity v at saturated vapor pressure
vs reciprocal specific heat, after Barmatz and Rudnick
(Ref. 4). v~ is the minimum observed velocity. The
temperatures indicated by the arrows are relative to the
k point and are measured in mK, except when in
parentheses, in which case they are measured in pK.
The straight line is that predicted by the Pippard-
Buckingham-Fairbank relations (Ref. 2), while the curve
includes the first-order correction (which can be neglect-
ed above the A, point).
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mation is then easily obtained. The result is sim-

ple, in contrast to Ahlers's and allows a determi-
nation of the slope of the lambda line at low pres-
sures. This determination is consistent with experi-
ment. '

In Sec. II A we give the conventional derivation
of the PBF equation. Section II B contains the
new derivation, while in Sec. II C the first correc-
tion is computed. Finally in Sec. III, we present a
crossover function for the critical specific heat.
The crossover function becomes especially impor-
tant at higher pressures' when the range of validi-

ty of the asymptotical form is smaller. Sec. IV
constitutes a brief summary.

II. VELOCITY

A. Pippard-Buckingham-Fairbank
relations

In this subsection, we use the conventional
method to consider the critical temperature varia-
tion of the sound velocity u:

u =mn ps,—2 (2 1)

where m and n are the mass and density of the
helium atoms, respectively. Ps is the isentropic
compressibility and is related to the isothermal
compressibility PT by the thermodynamic identity

Tvap
Ps =PT

Cp
(2.2)

T, V, and Cp are the temperature, molar volume,
and molar specific heat at constant pressure P,
respectively. The thermal expansion coefficient is
given by

av as
aT, = aP, (2.3)

av BV T BS
aP, =

C, aP, (2.4)

Near the lambda line, the entropy can be
separated into its value at the lambda line plus its
critical variation away from the lambda line,

S(TP)=Si(P)+M(hT P), (2.5)

by virtue of a Maxwell relation. It is convenient to
multiply the compressibilities by the molar volume,
so that Eq. (2.2), upon substitution of Eq. (2.3), be-
comes

- 2

where

bT=T T—i(P) . (2.6)

Ti (P) is the temperature of the A, transition at
pressure P. As the critical behavior depends upon
4T, which is a function of both T and P, the fol-
lowing partial derivatives are needed:

aaT
aP p

(2.7a)

aaT
T p

(2.7b)

Following Pippard' and Buckingham and Fair-
bank, we see that if a particular thermodynamic
function depends upon pressure only through hT,
Eqs. (2.7} can be combined into the equivalent
equation

a
dP

(2.8)

Returning now to Eq. (2.4} we require the deriva-
tive

MS
dT

ds as
dT . aT ~

=TA,
TA. T (2.9)

av
BP

where Ci is the specific heat along the jL line. It is
equal to the value of Cz at the temperature of
maximum density (vanishing ai ). The first line of
Eq. (2.9) uses Eq. (2.8) and neglects any pressure
dependence other than that through hT. Substitu-
tion of Eq. (2.9) into (2.4) gives

av Cp Cg Cg T—2-
BP ~ T Tg Tg2 C

(2.10)
In order to apply Eq. (2.10) to the calculation of

the critical temperature dependence of the velocity
of sound we need an expression for the isothermal
compressibility. For this we break up the volume
into its value at the lambda line plus the deviation
away from the lambda line [as we did in Eq. (2.5)
for the entropy]:



V(T,P)=V&(P)+hV(T, P) .

Thc rcqulfcd pfcssufc dcflvatlvc ls

BV V,
"dbV

'dP
T dP

(2.11) Here we have neglected the small second term of
the right-hand member of Eq. (2.13), which is less

than 1% of the first term. We have also approxi-
mated T=Ti, The coefficient of Ci/Ci in Eq.
(2.16) is a kind of dimensionless coupling constant

BV

I'
dS

2 dV
(2.17)

=VX+Tk
BP

(2.12)

Thus, Eq. (2.16) takes on the simple form

ul Cg
=Ko

ug Cp
(2.18)

from Eqs. (2.8), (23), and (2.9). Substitution of
(2.12) into Eq. (2.10) yields the desired isentropic
derivative

T= V'i Ti —+Ti 2 . (2.13)

—2
ux ——nmPs i=—nial 8V

~P sx

Because of the small value of the critical specific-
heat index, it will be sufficiently accurate for the
present purposes to set it equal to zero. The asso-
ciated logarithmic behavior, which is studied in de-

tail in Sec. III, causes Cp to diverge at the A, point.
The last term in Eq. (2.13) consequently vanishes

and Eq. (2.1) determines the limiting sound veloci-

Equation (2.18) is equivalent to the expression
derived in Ref. 2 for the critical temperature varia-

tloIl of thc sound vcloclty. Thc llncaflzatlon cIQ-

ployed here depends upon the smallness of J o. A
rough qualitative argument leads us to expect
Eo « 1. Because of the steepness of the A, line we

can approximate (dS/d V)i by (BS/8 V)T, which

equals (BP/BT) i by Maxwell's relation. For this,
the classical perfect-gas law gives the order-of-

magnitude estimate P/T. This amounts to 15
atm/K at the top of the A, line. The steepness of
the A, line corresponds to —Ti '-10 atm/K.
Equation (2.17) therefore gives Eo ——0(7.5)& 10 2),

or one order of magnitude smaller than unity.
Reference to the thermodynamic data shows that

go ls cvcn smallef than this qualltatlvc est lIQatc by
one more order of magnitude. For saturated vapor
pressure (SVP) we find Eo ——8.8)& 10

—V&+T&— (2.14)

B. Isentropic condition

ui, as determined by Eq. (2.14), can be regarded as
a convenient extrapolation. The fact that a more
accurate treatment of Ci would give a finite limit-

ing value at the A, point will be of no consequence

for the subsequent work.
Separating the velocity into its lambda-point

value and its deviation from this value,

(2.15)

we see that the fractional increase in the sound

velocity is given according to Eq. (2.13) by

~
2 2 l2T, C& T T&C& C&

dS
(2.16)

As seen above, the adiabatic constraint of con-
stant entropy has a drastic effect on the critical
behavior of the compressibility. The leading term
in Eq. (2.12) for the isothermal compressibility is
canceled by the leading term in Eq. (2.10), so that
the lscntloplc compressibility has a n1uch weaker
critical behavior, inversely proportional to Cz.
Subsequent applications of this paper will depend
upon a frequency-dependent generalization of this
weak critical behavior. It might naturally be ar-

gued that thc canccllatlon IIllght not be Rs com-
plete at finite frequency, which might introduce
some uncertainty into the generalization. For this
reason we present in this subsection a derivation of
Eq. (2.13) that does not involve any cancellation.
This preferred derivation is based upon choosing as
the pair of independent thermodynamic variables
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bT, P instead of T,P.
The resulting improvement in the analysis is al-

ready apparent in the dependence of the entropy on
the new pair of variables. For arbitrary variation
of hT and P we find a~G S,~T (2.25)

where the higher-order term involving the average
of &AS over the interval AT can be dropped. The
remaining derivative that we need is therefore

5S=5S&+56S
Cp=S,'5P+ 5b,T, (2.19)

so that

where T has been approximated by T~ and the
small effect of the explicit pressure dependence of
M has been neglected [i.e., (dhSldP)~r-0]. Im-

posing the isentropic condition

(2.20)

requires that the variation of hT be related to that
of the pressure by

aG
dP

aP, aaT,+ aP

=Gg+ TgS —SghT, (2.26)

55T= — 5P .
Cp

(2.21)

Equation (2.21) illustrates how this section differs
in an essential way from the preceding. The
numerator of the right-hand member of Eq. (2.21)
is noncritical, so that as T~T~, Cp~ 00 and the
fluctuation in hT vanishes. This shows the advan-

tage of working with the variable b, T rather than
T. It is easy to see that in the latter case the coef-
ficient of 5P in Eq. (2.19) acquires an additional
term proportional to Cz, so that 5Tl5P remains
finite as T~Ti. It is evident from Eq. (2.21) that
in this limit the temperature variation corresponds
to a displacement in the T-P plane which is paral-
lel to the A, line, and therefore noncritical. By
working with the variable hT, we automatically
eliminate this parallel displacement from con-
sideration and concentrate on the true critical dis-
placeinent away from the A, line. From Eq. (2.21)
we obtain the isentropic derivative

(2.22)
Cp

BAT
BP

To obtain the compressibility we need an expres-
sion for V. This we can get from the Gibb's func-
tion G =Gi (P) + EG. EG is related to the entropy
(assumed known throughout the AT, P plane) by

BV „.. . BAT= i'+
aP S aP S

Returning to Eq. (2.26) we note

(2.27)

(2.28)

Substituting Eq. (2.21) and the derivative of Eq.
(2.28) into Eq. (2.27) gives

2

av
ap ~' T'S'+

S P
(2.29)

in complete agreement with Eq. (2.13). The
present derivation of this result has not depended
on any cancellation and is therefore more suited to
generalization at finite frequency.

C. First-order correction

by substitution of Eqs. (2.23) and (2.25). In the
isentropic derivative of Eq. (2.26), we impose Eq.
(2.20) so that only the second term contributes by
virtue of the pressure dependence of Ti In oth.er
words, we keep S equal to a constant, which for
the present purposes can be approximated by S~.
The variation of Si in the last term is a higher-
order contribution that we also neglect for the mo-
ment. Thus, differentiating Eq. (2.26), we obtain

S=- aG
clT

BAG

aaT,
Integration gives

hG(hT, P)= —(S)AT
Sib, T (bS)bT- —
Si (P)hT, —

(2.23)

(2.24)

The preceding derivation of the sound velocity is
valid only in the immediate vicinity of the A, point.
This restriction is due to the simplifying approxi-
mations introduced in going from Eq. (2.26) to
(2.29). Equation (2.26) is accurate to first order in
b, T. The same accuracy can be achieved for Eq.
(2.29) by keeping all of the first-order terms which
result from differentiating Eq. (2.26). Two such
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terms come into question. One of these is
—Si' hT from the last term. The second term,
Ti' (S—Si)=Ti' M, gives a larger correction be-
cause of the logarithmically diverging specific heat.
As both of these terms vanish at the A, point, u~ is
unaffected by them. But Eq. (2.15) has to be
amended to read

U =Qg+Q1+AQ

where the additional fractional increase in the
sound velocity is

(2.30)

(Ti' AS —Sj' ~T) . (2.31)

We have [as in Eq. (2.16)] again neglected the
small term —T~S~ in the denominator. Equation
(2.31) is equivalent to some results of Ahlers.
Ahlers's derivation is, however, more complicated
than that given here because he splits up the
second term of the right-hand member of Eq.
(2.26) as TiSi + Ti b,S. In the ensuing differen-
tiation both S~ and ES contribute. But all such
terms must in the final analysis cancel because of
the isentropic "clamping" condition, Eq. (2.20).

Because of finite-temperature resolution and the
effect of gravity, the sharp dip of the sound veloci-

ty at the A, point is observable only to a limited ex-
tent. In any given experiment u~ is not directly
measurable, but only some minimum velocity U

It is therefore convenient to rewrite Eq. (2.30) as

~m QA, ~m +Q1+~Q

portion of the data points are shown). The values
of hT indicated by the arrows are given in mK ex-
cept for the lowest one on the figure which is en-
closed in parentheses and which is given in pK.
The vertical intercept ui —v~ = —56 cm/sec has
been adjusted to give a best fit to the data.

Below the A, point the last term of Eq. (2.32)
cannot be neglected, as can be seen by the strong
deviation of the Barmatz-Rudnick data from the
straight line of Fig. 1. A portion of these points is
shown by the solid circles. In attempting to ac-
count for this deviation by substituting Eq. (2.31}
into Eq. (2.32), we are frustrated by the fact that
the SVP value of Ti' is not accurately enough
known for this purpose. %e therefore adopt the
point of view that the Barmatz-Rudnick measure-
ments provide the most accurate determination of
this parameter. The choice T~' ———7.69g 10
K/atm gives the good fit shown by the curve in
Fig. 1.

The value of T~' found above can be compared
with Ahlers's ' measurements of the pressure
dependence of the slope of the A, line, as shown in
Fig. 2. These data are consistent with those of

I20-

I!8—

hu
QA, ~m+QA, - +

Qg Qg

au=us —Urn+us &0 + (2.32)

o AHLERS {l972)

c AHLERS {l968)

where we have substituted Eq. (2.18}. It still
remains to substitute Eq. (2.31) for the last term.
In the latter step we note that Eq. (2.31}makes a
negligible contribution to Eq. (2.32) for T & Ti„.
This is mainly due to the fact that for a given
value of

~

b, T l, C~ is much smaller for T)Ti
than for T ~ T~. The last term in parentheses is
consequently reduced while the first term is in-
creased. To a good approximation the last term
can be dropped entirely for T & T~, giving the plot
of u —v vs C~

' shown by the straight line in Fig.
1 and based on the parameters u~ ——218 m/sec,
Ci =24.0 J/mole K, and Eo ——8.8)& 10 i. The
data of Barmatz and Rudnick for T & T~ are
shown by the crosses and the hollow circles (only a

I I 0

I08

l

0.4 0.2
p„(atm }

FIG. 2. Pressure dependence of the slope of the A,

line. The slope of the curve at its upper end is fixed by
the value of the second derivative Tq' found at
Pq ——0.05 atm (saturated vapor pressure) from the first-
order correction of Fig. l.



25 SOUND PROPAGATION IN LIQUID HELIUM NEAR THE. . . 3173

Elwell and Meyer" and of Kierstead' at higher
pressures. The curve has been constructed to fit
Ahlers's data and to have a slope at its right-hand
end which corresponds to the above value of T~'.
The modest upwards curvature which is evident in

Fig. 2 is necessary in order for the latter "boun-

dary condition" to be satisfied. The intercept at

P«=0.05 atm (SVP) yields ri = —112.3 atm/K.

III. SPECIFIC HEAT

As is evident in Eq. (2.18), the specific heat

plays a key role in determining the critical varia-
tion of the sound velocity. This section is devoted
to some of the important features of the specific
heat for T ~ T~. Within the critical region the
specific heat is well described by the logarithmic
expression

3
Cp =Al (nip/r ) = 4ALrH (3.1)

where t=b, T/Ti„, to ——0.25, A =5.33 J/K mole, and

In our subsequent work we will need an expres-
sion for Cp valid outside the limited range of Eq.
(3.1). A complete theory of Cz including the
crossover from critical to noncritical behavior is
not available at the present time. Therefore, we

are forced to resort to a simple model in which,
added to a noncritical background contribution
B(t) to LrH, we have a critical contribution LrH
resulting from fluctuations in the order parameter.
We calculate the latter in lowest order in the e ex-

pansion, i.e., for four-dimensional space. This ap-
proximation corresponds to a single-loop Feynman
graph involving the Ornstein-Zernike order-
parameter correlation function

1
g(pp&) =

p +Ic
(3.5)

where p is the wave number of a fluctuation and
' is the correlation length. The integration over

all fluctuations is restricted by a Debye cutoff pz.
In carrying out the integration, it is convenient to
replace the integration variable p by the thermo-
dynamic stiffness

LrH =in(to/t) ~

Substitution of Eq. (3.1) into Eq. (2.18) gives

(3.2)
p=g =p +a—1 2 2 (3.6)

(3.3)

Thus 2pdp=dy' and the minimum value of y' is

(3.7)

where the "coupling constant" in this alternative
form is

We represent the cutoff by

2
7D PD ~ (3.8)

4 &o&~

3 A
(3.4)

i.0

At saturated vapor pressure (SVP) we find

Ci ——5.3&(10 . Figure 3 shows the variation of
Ci along the A, line. Ci at first drops with rising
pressure, and then exhibits a minimum approxi-
mately 25% below Ci, at about halfway up the
k line. The subsequent rise higher up on the A, line
almost restores C1 to its full C1 value.

so that the upper limit of y' is yD + y. In this no-

tation the single-loop integral becomes

3dL'„=, I d pg'(p, «.)=2 J (p'+«')'

=ln 1+ 7D

y .

2
'

2
—1

1+'
K p

(3.9)

12 l6

p{otm)
20 24

FIG. 3. Pressure dependence of the coupling constant
C~ relative to its value at saturated vapor pressure.

where the last line follows from substitution of
Eqs. (3.6)—(3.8). The temperature dependence of
L ~H is now brought in by

v=vot (3.10)

where ~o——0.7)&10 cm ' and the critical exponent
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is v= —, because of the smallness of a. It is con-

venient to define a parameter ta corresponding to
the Debye cutoff by

B(t)=B,+B,t, (3.15)

we choose for B(t) the liliear background function

2/3
pa =Ko&L)

so that

2
pD

K

' 4/3 4/3 —1

' 4/3

Substituting Eq. (3.12) into (3.9) we find

I-=I-»+B(t)

(3 ] 1)

(3.12)

with Bo ——1.46 and Bi ——3.03. Equation (3.15) is
shown in Fig. 4 by the dashed curve. Although
there is no rigorous theory with which Eq. (3.15)
can be compared, the free roton gas provides a
rough guide. The reasonableness of the simple
linear form of Eq. (3.15) is supported by the fact
that Landau's formula' for the specific heat of the
roton gas has a point of inflexion in the vicinity of
the k point and that it varies more or less linearly
in that region. Furthermore, the intercept of the
tangent at the point of inflexion is —0.43, close to
the value t = Bo/B—i ———0.48 found here.

In closing this section it is useful to discuss
some limiting forms of Eq. (3.9). For «» pa,

=ln (3.13) pa
L TH=1~2 (3.16)

where Bo=B(0). The last line holds in the critical
region t « tD. Comparison with Eq. (3.2) imposes
on tD and Bo the constraint

3
tD ——tzexp[ ——,(Bo—I )] . (3.14)

60

hC—40
I

O
E~ Zo

0~ I I l

-6 -5 -4 -2 0
log(o t

FIG. 4. Specific heat at saturated vapor pressure vs

logarithm of reduced temperature t=(T/Tq) —1, The
dashed line shows the noncritical background, with

linear temperature dependence. The surplus specific
heat above background is identified as the critical por-
tion. The best fit, shown by the solid curve, determines

the upper cutoff parameter of the theory.

Once Bo is chosen, t~ is fixed by the known value

of to.
The specific-heat data for saturated vapor pres-

sure (not significantly different from Cz) are repro-

duced in Fig. 4. We have found that Eq. (3.13)
gives the good fit shown by the solid curve when

the numerator being essentially the volume of
phase space available for the Auctuations of the
order parameter (in this lowest-order e expansion
model). Equation (3.16) is obtained more directly

by approximating the strength of the fluctuations

by

g(p, «)=a (3.17)

2
pa

LTH =»
K

(3.18)

for K gapa, corresponding to a scaling behavior
with critical exponent a=0. Equation (3.9) is thus
a crossover function which smoothly connects the
two extreme cases of Eqs. (3.16) and (3.18). It is
based on the simple physical idea of phase-space
limitation, as quantitatively represented by the Be-
bye cutoff pa. This is similar to the approach that
has been applied successfully to the crossover
behavior of the fluctuation-enhanced viscosity in a

and taking the factor g outside the integral. As
the temperature is lowered the correlation length
« ' increases and the fluctuational contribution to
the specific heat as expressed by Eq. (3.16) rises ra-

pidly. But in the crossover region K=pz, Eq.
(3.17) is no longer a satisfactory approximation.
Now the more correct Ornstein-Zernike formula,
which limits the fluctuation strength by p as well

as by K, has to be used in the integration, leading
to Eq. (3.9). This results in a slower rise than indi-
cated by Eq. (3.16). Further lowering of the tem-

perature brings ultimately the much weaker true
critical variation
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classical fluid. '

This type of approach is adequate for describing
the general overall trend, but cannot be expected to
yield a precise crossover function, accurate in every
respect. An important shortcoming of Eq. (3.9) is
revealed by the Taylor's series for sc &&p&.
Separating off the scaling form by subtracting Eq.
(3.18) yields the corrections to scaling

2
Pa v 3v

LIB— ln
z

—1 =2
2

——
4 +

pa 2 pD

(3.19)

Equation (3.19) would predict the leading correc-
tion to have the temperature dependence t ' with
A~ ——2v=1.33, whereas the renormalization group
yields' 6i ——0.5. This discrepancy in the value of
b, i indicates that Eq. (3.13) would not be appropri-
ate for close comparison with the first deviation
from scaling, as the true correction to scaling
should be more singular. ' Such a fine detail will
not show up, however, in a plot such as Fig. 4 of
the specific heat versus temperature over the entire
temperature range. Therefore we believe that Eq.
(3.13), although an approximation, is nevertheless a
sufficiently accurate crossover function to be useful
for describing the general trend of the "quenching"
of the critical specific heat as the temperature is
raised. The determination of a more accurate
crossover function will require the extension of the
renormalization-group calculation to take into ac-
count in a realistic way both the Debye cutoff and
the molecular-field-type precritical rise. '

IV. SUMMARY

We have derived the velocity of first sound near
the A, transition of "He by imposing the isentropic

condition at the outset. The derivation has also
been simplified by considering the variables
T Tx—(P) and P instead of the conventional T and
P. The conventional derivation of the PBF result,
Eq. (2.13), requires cancellation between (d VydP),
and parts of TVaplCp. While this cancellation
can be proven in the thermodynamic limit treated
in this paper, it is not guaranteed in the finite-
frequency version of Eq. (2.13), which is required
for studying the dispersion and attenuation. '

Consequently we have provided a derivation of Eq.
(2.13) in Sec. II B that does not depend on any can-
cellation and lends itself to frequency-dependent
generalization. This method of deriving the sound
velocity is relevant not only for the A, transition
but also for the liquid-gas transition ' ' and the
bjnary-ljqujd consolute-pojnt transjtjon.

The technique of obtaining the sound velocity
presented in Sec. II B has been used to obtain the
first correction to the PBF result in Sec. II C. The
result is very simple. The calculation is more
direct and concise than that of Ahlers. The
large-scale cancellation of the various terms in his
calculation is taken into account ab initio by
clamping the entropy. Also we obtained an ap-
proximate crossover function for the specific heat.
The crossover effigy:t is important at higher pres-
sure where the range of validity of the asymptotic
logarithmic form is smaller.
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