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The thermal conductivity of He above the superfluid transition is analyzed using nonlinear

renormalization-group recursion relations. Experimental data are presented over a wide tem-

perature range and for various pressures. The dynamic coupling constant far from T& is a small

parameter which leads to the possibility of a rigorous test of the theory in a region ~here pertur-

bation theory is valid. Closer to T), the system crosses over to the scaling regime at a reduced

temperature t, =10,~hose smallness results from the weak dynamic coupling far from Tz.

Detailed tests of the theory are presented over the whole temperature range above T„, and con-

sistency is found with the asymmetric-spin model (R of Halperin, Hohenberg, and Siggia if

corrections are introduced to compensate for truncation errors in the perturbation expansion.

The symmetric model (E), on the other hand, shows significant deviations from the data even

in regions where perturbation theory should hold. The analysis implies a value d' & 2.6 for the

dimensionality below which dynamic scaling breaks down. This value is lower than earlier esti-

mates (d'=3).

I. INTRODUCTION

The dynamic-scaling prediction for the critical
divergence of the thermal conductivity X of 4He as T
approaches T&, was dramatically confirmed by macro-
scopic measurements over many decades in reduced
temperature. " Subsequent refinements in the exper-
iments, ho~ever, as well as other measurements in
thin cells, ' ' found deviations from the theoretical
prediction. Specifically, the experiments revealed (i)
a strong dependence of X on the cell height h even
for lt much larger than the correlation length g, (ii)
an effective exponent for A. which was slightly larger
than the dynamic-scaling prediction, and (iii) a criti-
cal region for A. (r & t, =10 3) which was much nar-
rower than the critical region for the statics
(r & 10 '). These results call for a quantitative
theoretical explanation.

The dynamic-scaling theory' originally proposed
on purely phenomenological grounds, was confirmed
by renormalization-group calculations' "which re-
lied on the continuity of an expansion in e =4 —d,
where d is the dimensionality of space. These calcu-
lations obtained a few terms in the ~ expansion, but
did not yield reliable values for the universal ampli-
tude of the diverging thermal conductivity in three
dimensions. In 1977 DeDominicis and Peliti'3 point-
ed out that the continuity argument may break down
before one reaches three dimensions, due to the in-

stability of the dynamic-scaling fixed point, to anoth-
er fixed point, which they termed "weak scaling. " In

that regime the characteristic frequency co& for the or-
der parameter vanishes with a larger scaling exponent
than the entropy frequency cv, i.e., their ratio
w = tee/te scales to zero at Tq (if dynamic scaling
holds w goes to a positive limit w ). Various theoret-
ical estimates'" '8 of the critical dimensionality d' for
breakdown of dynamic scaling all gave d' =3 +0.2.

A number of authors realized at that point that the
weak-scaling instability would be accompanied by
anomalous slow transients, ""' and the first quanti-
tative theory for A, was put forward by Ferrell and
Bhattacharjee'9 who emphasized the following points:
(i) The small value of w' implies a iarge amphtude
for the corresponding slow transient near the fixed
point. (ii) The smallness of the dynamic critical re-
gion requires a quantitative explanation. (iii) There
exists a high-temperature regime'0 ' where the small
departures of X from its constant background value
can be calculated using a perturbation expansion in

As shown in detail below, however, the
quantitative aspects of their analysis are not accurate,
since the theory was applied outside of its domain of
valid 1ty.

In a related paper, Hohenberg, Halperin, and Nel-
son'8 pointed out the difficulty of detecting the
weak-scaling instability by analyzing thermal conduc-
tivity data. These authors proposed a "quadratic ap-
proximation" in which the slow transient associated
with the instability is taken into account exactly to
first order in the sma11 parameter ~'. In order to test
this representation they proposed an analysis based
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on a numerical integration of the truncated renor-
malization-group recursion relations, treating the
nonuniversal initial values as adjustable parameters.
The present work~3 is the result of this suggestion.

Independently of Ref. 18, Dohm and Folk'4" in-

troduced a similar nonlinear analysis of the data, con-
fining themselves to the symmetric model of Halpe-
rin, Hohenberg, and Siggia" (model E). These au-
thors were, in fact, the first to carry out such an
analysis, and they reported excellent agreement with
experiment, with d' determined by the data to be
very close to 3.

The present paper takes up the nonlinear analysis
from a more general and more precise point of view;
we consider both a broader class of theoretical
models and more extensive experimental data than in
Refs. 24 and 25 (some of the data we analyze b were
previously unpublished). Our conclusion is that pre-
vious claims'9 24 25 of a quantitative confirmation of
the theory are not fully justified. Indeed, uncertain-
ties in both theory and experiment for reduced tem-
peratures t & 10~ prevent an unambiguous deter-
mination of d', or of the asymptotic critical behavior
in three dimensions. Nevertheless, the theory can be
meaningfully tested for t & 10, due to an important
effect which had not been properly appreciated in the
previous literature. This is the existence of a small
parameter~3 associated with the weakness of the bare
dynamic coupling constant (far from T&) fb =0.02.
If fb were zero, the thermal conductivity would obey
the Van Hove theory" and remain constant up to T~.
For any nonzero fb, the renormalized coupling con-
stant f(t) evolves as a function of temperature, ap-
proaching the fixed-point value f' = 0 ( I ) at T&„ in-

dependent of the initial value fb. The passage from
weak coupling (f (( I) to critical behavior ( f= I)
occurs at a characteristic crossover ~ temperature i,
which becomes vanishingly small in the limit fb 0.
Thus, the whole weak-coupling range as well as the
crossover region offer the possibility of nontrivial
comparison between experiment and theory, using
perturbation theory.

We find that the previously used' symmetric-
spin model" (E) shows perceptible deviations from
the data in the range 10 & t & 10 2 where perturba-
tion theory should hold. The asymmetric model"
(E), which takes the specific-heat singularity into ac-
count consistently, fits experiment satisfactorily in
this range. When extended to the range i & 10 ' the
theory does not agree with experiment, but the
discrepancy can be attributed to truncation errors in
the perturbation expansion"' "which cannot be
neglected when f= l. As a way of correcting for
these errors, we have introduced23 a phenomenologi-
cal three-loop term in the equations, and treated its
coefficient as an additional adjustable parameter. The
ensuing fit is excellent for model Eover the ~hole
temperture range, but it remains unsatisfactory for

model E. Another way to analyze the data is to use
the high-temperature expansion of Ferrell and Bhatta-
charjee. 2 " If proper account is taken of regular
transients, one can use the data for t & 10 ' to deter-
mine initial values at t =10 2, and then predict the
behavior for t & 10 2 with essentially no adjustable
parameters. This procedure yields excellent agree-
ment until t =10 3, ~here truncation errors become
important, as mentioned above.

Having fixed the parameters of the theory from an
analysis above T&, we may follow the procedure of
Dohm and Folk ' to predict the second-sound
damping' " below Tq, without further adjustable
parameters (a similar procedure was subsequently
used by Ferrell and Bhattacharjee in the weak-
coupling regime below Tq). We find some uncertain-
ty in the predictions due to uncertainties in the static
critical behavior. For one natural choice of static
parameters, ho~ever, we obtain excellent agreement
with experiment at vapor pressure and reasonable
consistency with available data at higher pressure.

Section II presents the experimental data of Ref. 4
at several pressures, as well as new data at vapor
pressure, and compares these with the measure-
ments of Archibald et al. and Weaver on thin
cells. The cell-size dependence of the critical thermal
conductivity in the latter experiments implies that the
measurements of Ref. 4 may not correspond quanti-
tatively to the bulk limit (the physical origin of this
dependence is not known at present). We shall only
analyze the data of Ahlers4 (cell D) and the new
data'b (cell A) because of lesser precision in the other
measurements, and because we have no way of tak-
ing the size dependence into account.

Section III reviews the theoretical situation, with
special emphasis on the dependence of the quantita-
tive results on the parameters of the theory. The
analysis of the data is carried out in Sec. IV, first in
terms of power laws, to show how misleading such
analyses can be, and then in terms of nonlinear re-
cursion relations. The different models are treated
successively, and the high-temperature expansion
tested quantitatively. Section V contains a discussion
and critique of previous work on this subject, and
concludes with a summary of the present results, as
well as a program for experimental and theorical im-
provements. Details of the high-temperature expan-
sion are described in the Appendixes.

II. EXPERIMENTAL DATA

A. Thermal conductivity measurements

Simultaneous with the development in the late
1960's of the dynamic scaling theory' " of transport
properties near the A. point and the prediction' of a
divergent thermal conductivity in He I, experimental
evidence for a strong singularity in A. was presented
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FIG. l. Effective exponent of the thermal conductivity

plotted as a function of cell height h on a logarithmic scale.

The points marked AM%' are from Archibald et al. (Ref. 6)
and the open square is from Ref. 2. The dashed line is the

1
theoretical asympotic value

2
v =0.338. The error bars cor-

respond to the error estimates of the respective authors.

by Kerrisk and Keller. Very soon thereafter, rather
detailed measurements became available from two

separate laboratories. " These results to a large
extent confirmed the predictions of the theory at a
semiquantitative level, but they also raised some im-

portant, as yet unresolved, questions. In particular,
the measurements by Archibald et a/. ' were made
in thermal conductivity cells whose spacings h were
small, but macroscopic in comparison to the correla-
tion length. Surprisingly, they showed a strong size
dependence near T&, with ) diverging more rapidly
for smaller h, corresponding to a larger effective ex-
ponent than the theory had predicted. The measure-
ments by Ahlers2 were made in a cell of very large
spacing (h =1 cm), and agreed within their resolu-
tion with the theory. To illustrate the size depen-

dence, the effective exponents derived from var-

ious measurements are shown as a function of h

in Fig. 1. It is seen that for h =0.003 cm the ex-

ponent is twice as large as the theory predicts (dashed

line), whereas for large h the agreement is much

better. The correlation length in the experimental
temperature range is less than 10 cm, and thus the

strong size dependence is not readily understood
from a theoretical viewpoint. A possible mechanism

for understanding the data is nonlinear heat conduc-

tion, which could be associated with macroscopic
lengths in the critical region. ' Of course, this inter-

pretation implies that the measured P was not the
zero-current limit of the conductivity, a point which

can be tested by further experiments.

Although the effective exponents in Fig. 1 are not
very precise, the data suggest that true bulk behavior
at a highly quantitative level may not be reached until

h 0.3 cm. This is illustrated by the solid line in the
figure, which has no significance other than being a
smooth representation of the data. The measure-
ments in the 1-cm cell can surely be regarded as be-

ing in the bulk limit, but experiments in such a large
cell are difficult because the thermal relaxation times
for the establishment of steady-state gradients be-
come as large as an hour or so. Because of limits on
the long-term thermal stability of the apparatus, the
resulting scatter in the data of Ref. 2 was thus as
large as a few percent.

Much more precise data at several pressures were
obtained in 1970 in a cell of 0.09-cm spacing (this
cell will be referred to as cell D). These data had a
scatter of only about 0.1% except at the smallest
values of reduced temperature t, where temperature
resolution of about 10 ' K was a limiting factor. In-

spection of Fig. 1, however, suggests that these data

may also not be entirely in the bulk limit and may for
that reason differ slightly from ideal behavior. In ad-

dition, the construction of this cell" made it impossi-
ble to obtain accurate measurements of the contribu-
tion from the cell walls to the total conduction, be-

cause the effective thermal length of the walls

changed when the cell was filled with helium. The
wall conduction thus had to be estimated from the
known thermal conductivity of stainless steel and the
cross-sectional area of the walls. This estimate yield-

ed liquid-'He conductivities at high temperatures and

conductivities for He gas" which agreed well with

the data of Kerrisk and Keller. " At these tempera-
tures (say 2.2 K) and when the cell was filled with

liquid He at vapor pressure, the wall contribution to
the total conduction was about 20%. Close to T& the
relative contribution from the walls becomes much
smaller because of the divergent conductivity of the
liquid. However, close to T„, the boundary (Kapitza)
resistance between the copper plates and the liquid

and any series resistance in the plates become appre-
ciable because they are essentially independent of T,

whereas the thermal resistance of the liquid vanishes
at T&. The largest correction for the boundary and

series resistances, say at t =5 && 10, amounted to
about 13% of the total resistance. It is difficult to es-
timate the uncertainties associated with the wall con-
duction and boundary resistance, but systematic er-

rors of a few percent which may vary with t might be
expected for X as determined in this cell. The mea-

surements at pressures greater than vapor pressure
were made along isochores, and the values of A. and t

were corrected to values along isobars using a pro-
cedure similar to the one employed by Greywall and

Ahlers for second-sound velocity measurements. '
A final set of measurements, previously unpub-

lished, was obtained in 1977 by Ahlers and Behr-
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inger26 in a cell of spacing h =0.26 cm (to be referred
to a ceil A). This spacing yielded thermal relaxation
times of order 5 min, and permitted high-precision
measurements. The construction of cell A is
described in detail by Behringer and Ahlers. ' Special
provisions were made to permit the experimental
determination of the wall conduction, and the mea-
sured values agreed well with the thermal conductivi-
ty of stainless steel. For the spacing of this cell, the
boundary resistance correction remained small even
at the smallest values of t. We therefore regard the
measurements in this cell as somewhat more reliable
than the data obtained with cell D. For large t, the
data obtained with cell A agree well with the results
of Kerrisk and Keller. 3 On the basis of Fig. 1, the
spacing of this cell is probably large enough for the
measurements to correspond to the bulk limit, and to
warrant a very detailed comparison with theoretical
predictions. In order to establish this point more
clearly, however, and also because of the intrinsic in-
terest of the unexpectedly large size effect suggested
by the previous data, more quantitative measure-
ments in the range h (0.3 cm are highly desirable,
and planned for the future. Accurate measurements
at small h are difficult and have to deal with a
number of experimental problems involving precise
measurements of h, accurate correction for wall con-
duction, and the determination of the boundary resis-
tance which becomes more important as h decreases.
For the present, we shall compare the results of the
theory with data from cells A and D. We will keep in
mind, however, that the experimental situation is not
as definitive as one would like for comparison with
the very detailed theoretical predictions which are

now available.
The measured values of reduced temperature t and

thermal conductivity A. for cell D at four pressures,
and for cell A at saturated vapor pressure are avail-
able elsewhere.

B. Determintaion of R„

where

gb = o ),ks Tg/g (2.2)

oi=Si/R is the (dimensionless) entropy at Ti, and
R is the gas constant. In Eq. (2.1) Cp is the
constant-pressure specific heat per unit volume and

(2.3)

is the correlation length, where

(p=1.41 A

at all pressures, the exponent v is given by
'

R =0.675

and

r = [ T Ti(P)]/Ti(—P)

(2.4)

(2.S)

(2.6)

is the reduced temperature. In order to obtain gb,
Eq. (2.2), we have used values of a.q evaluated in

Ref. 42, and shown in Table I. The specific heat can

For comparison with the theoretical predic-
tions' ' ' the thermal conductivity A. may be reex-
pressed in terms of the effective amplitude"'

(2.1)

TABLE I. Thermodynamic parameters. (References are given in Sec. IIA.)

P
(bars) (K) (cm3/mole) (J/mole K)

Zb
(10" sec ')

0.05
6.85

14.73
22.30
29.00

2.1720
2.1009
2.0024
1,8930
1.784

27,38
25.41
23.99
22.99
22.29

6.24
5.71
5.25
4.87
4.54

0.750
0.687
0.631
0.586
0.546

2.134
1.889
1.653
1.452
1.275

P
(bars)

A

(J/mole K)
B

(J/mole K)
E

(J/mole K)

0.05
6.85

14.73
22.30

6.797
6.607
6.498
6.776

257.77
237.2
229,8
235.5

—0.022
-0.103
-0.180
—0.275

95.73
0
0
0

—0.025
—0.026
—0.026
—0.026
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be written

C, =(a/n)r- (I+Dr")+@+Et . (2.7)

and neglecting terms of higher order in I;. %e used
(BP/BT)g as determined bIr Klcrstcad, alld
(t)S/I) T) l, from Ref. 42. For pe we used Eqs.
(5.2)—(5.4) and Table IV of Ref. 44. The measured
values of T& and of V&,

"~ as well as the coefficients
of Eq. (2.7) are also given in Table I, and should
yield reliable Cp values for t &3 x10 '.

In Fig. 2 we show the values of R~ which were
derived from thermal conductivity measurements at
several pressures in cell D. The data at vapor pres-
sure are compared with the measurements of Archi-

bald et al. 5 6 and %eaver7 for several cell spacings h

in Fig. 3. The dependence of R)„and thus of ), on
the cell sparing h is evident in this figure. The

op

CELL D

& 0.0 bar
~ 6,9
a )4.7

22.3

At vapor pressure, a fit of specific heat data for
t & 0.0S gave the coefficients in Table I,"2 At higher
pressures, direct measurements of Cp have not been
made. Instead, Cp has been derived from C~ and
other thermodynamic information. 3 Therefore, we

consider it more reliable to use Cp values derived
from measurements of the thermal expanison coef-
ficient P, , using the relation"

t r

C, =T +TV — p, +0(I)+O(r'- ), (2.g)

AMN/ d=0.005crn
AMith/ d oo&2cm
AM% d=0.02ecfft
CELL D d=o.osacm

4+44
8

() l 44 +I
444+4 4 4 ILyI
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FIG. 3. Effective amplitude 8& [Eq. (2.1)] vs reduced
temperature for the data for Archlhald er al. (Ref. 6) and for
cell D. The symbols are as in Fig. 1.

results for cells A and D at vapor pressure will be
compared in Figs. S and 18 below.

In Sec. IV we shall carry out least-squares fits of
the data to various theoretical expressions. %e used
the data in Ref. 38, except that for cell A and
I (0.003 onlp ollc-tlllfd of tllc data polllts (I.c.,
points 1, 4, 7, . . .) were included in the fits (for
larger I, all points were used). In these fits we used
weights which are equal to the inverse of the square
of the probable error for each data point. For an a
priori estimate of the probable errors in A. we used
10 3A. when t & S x10, because in that temperature
range the precision of the data generally was about
0.1%. For smaller t, temperature resolution usually
limited the precision of the data, and we used
(5 x 10 /I) X for the error estimate. In principle, it
would be better to use the actual values of the tem-
perature differences employed in the measurements,
for the error estimates, but for small t these differ-
ences were not much smaller than T~t."

C. High-temperature expansion of A,

It was suggested by Ferrell and Bhattacharjee'0 "
that there exists a high-temperature expansion of A.

in the form

0,2
10-6

I

to-5
I

4

FKJ. 2. Effective amplitude R& [Eq. (2.1)] of the thermal

conductivity in cell D (Ref. 4) for different pressures, as a
function of reduced temperature.

h. = XH = A, (1 + A. t I "+XII I"+ )

%e derive this expansion belo~ for our theoretical
models, and discuss the range of validity of Eq. (2.9)
in detail. Here, we would like to examine this rela-
tion empirically by plotting ) as a function of t "with
v =0.67S. This is done in Fig. 4 for the cell-B data at
various pressures, and in Fig. S for the cell-A and
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14
l

TABLE II. Fit of thcMlat conductivity to Eq. (29) In th|;
range ~ ' = t "&1000 for cell A, and cell D at four different
pressures.

0 0.0 bar
e

8000 — ~ 147
+ 22.5

E
O
O

~ 4000-

0e
Fit Cell

D 0.0
D 6.9

D 14.7
D 22.3

(erg/sec cm K) 102K,)

0.808
0.971
0.607
0.509
0.337

10'Z,

—2.07
2 j54

—0.863
—0.813
—0.298

FIG, 4. Portion of the data of Fig. 2 plotted as X vs
K

' = t ", as suggested in.Ref. 20. The top scale gives the
reduced temperature.

14
I

105 t
7.6

1 O

0
e

5,0
I 0
~e

0
@0

Q

cell-D data at vapor pressure. In each case, the data
tend to approach a straight line at small t ", con-
sistent with Eq. (2.9) and with the observations by
Ferreii and Bhattacharjee at 22.3 bars (Ref. 20) and
at vapor pressure32 for cell D. We note that the cell-
A and cell-D data at vapor pressure (Fig. 5) extrapo-
late to very nearly the same value A. at t "=0
(r ~), consistent with the statement, made above,
that both sets of data at high t agree with the mea-
surements by Kerrisk and Keller. ' We have per-

formed a least-squares fit of the data in Figs. 4 and S
to Eq. (2.9) and obtained the parameters in Table II.
For this purpose, we used data over the range
t & 4 && 10 ', 3000 & A. & 104 erg/sec cm K roughly
consistent with the range used by Ferrell and Bhatta-
charjee in their analysis, 20 The values of A. at vapor
pressure for cells 3 and D differ by only 2'/0, but they
are considerably larger than our estimate to be given
in Sec. IVC, below, of the actual high-temperature
limit of the expansion, Eq. (2.9). As explained
there, this difference arises because the data used in
the fit are not at sufficiently high values of t for the
expansion to be valid. The actual range of validity
turns out to be t " & ~, ', with ~, ' =12S shown in
Fig. S.

D. Generation of "data" for cell D at high t

The measurements for cell D unfortunately werc
made only for t & 10 3. For comparison with the
theoretical models, it is useful to have data at larger
t. We therefore generated cell-8 data at vapor pres-
sure from the measurements in cell A for t & 10 ',
using the formula

A(cell D ) = Il (cell 2 ) + f XH(cell D ) —
A H(cell 2 ) 1

(2.IO)
E
O
EP

4000—

0
0~0 ~

0~

~ CELL A
o CELL 0

with A.H given by Eq. (2.9) and calculated from the
cocfflclents 1n Table II. 81ncc only thc small differ-
ence XH(cell D) —XH(cell A ) is extracted from the
expansion, we expect this procedure to yield a good
approximation to the actual conductivity of cell D. In
any event, we have carried out all of our analyses
below for both cells A and D and our basic con-
clusions do not depend on which set of data is used.

0 l

0 C

l

400
~-&=t"

FIG. S. Comparison of the data at vapor pressure in cell
A (Ref. 27) and cell D (Ref. 4), plotted as in Fig. 4. The
high-temperature expansion of Sec. IIIC is only accurate for
t "&~, =X~ =125 [see Eq. (3.41) below].

E. High-temperature data

In the range t & 0.0S, there are not thermal con-
ductivity data for either cell A or D. We shall, there-



GUENTER AHLERS, P. C. HOHENSERG, AND A. KORNSLIT

TABLE III. High-temperature data a vapor pressure. (References are given in Sec. IIE.}

V

(cm3/mole}
gb(T)

(10" sec ~)

2.3
2.4
2.6
2.8
3.0
3.2
3,4
3.6
3.8
4.0
4.2

27.48
27.56
27.77
28.02
28.36
28.76
29.25
29.81
30.56
31.18
32.00

10.59
9.56
9.16
9.49

10.17
11.09
12.39
13.79
15.52
17.65
20.53

0.838
0.891
0.973
1,055
1.136
1.218
1.305
1.430
1.473
1.570
1.666

2.523
2.800
3.312
3.867
4.462
5.103
5.809
6.740
7.328
8.222
9.161

1419
1462
1550
1630
1700
1763
1816
1861
1903
1942
1974

fore, usc the measurements by Kerrisk and Keller, "
which agree well with cell A near t =0.05. These au-
thors fitted their results to an empirical equation
which gives A. (P, T). The extrapolation of this equa-
tion to vapor pressure seems less reliable than a
graphical extrapolation of the measurement on a par-
ticular isotherm to vapor pressure. Therefore, we
used thc latter procedure, with measured values of A.

reported by Kerrisk. The results are given in Table
III.

%hen needed, we also used specific-heat measure-
ments at large t by Hill and Lounasmaa. ' These data
are for the specific heat at saturated vapor pressure
C,. Whereas the difference between Cp and C, is

negligible below 2.2 K, it becomes appreciable at
higher T. Values of Cp werc therefore calculated"8

from C, and other availablc thermodynamic informa-
tion and are listed in Table III, along with values of
the molar volume V, the dimensionless entropy 0-,

and a finite-temperature generalization of the cou-

pling constant gb of Eq. (2.2), to be discussed below.

III. THEORY

A. Definitions and review of earHer work

+-,' Cpt, 'm'+ yt, m ) y)'), (3.1c)

~,(l) I (l) C,(l)
~.(l) ) (1)

(3.2)

Egco 2( l) Kdgt2A, '
o)~(l)o (l) X(l) ReI'(l)x'

and two static coupling constants

(3.3)

(3.4)

d is thc dimensionality of space, A.b, gb, Fb, ub, Cpb,

and yb are real constants, while 1"b is complex. The
noise functions 8 and f are Gaussian and satisfy the
usual fluctuation-dissipation relations; the fields
P(x, t) and m (x, t) are assumed to have spatial
Fourier components less than some cutoff A, = $0'.
%hen thc renormalization-group procedure is applied
to (3.1) one obtains the usual' n =2 result for the
static properties, and one can express the dynamical
behavior in terms of two rcnormalized frequency ra-

tios 5'

Our starting point" is a dynamical model involving
the complex superfluid order parameter Q(x, t), and

the entropy variable m(x, t) (a real field), satisfying
the equations of motion49

(3.5)

In Eqs. (3.2)—(3,S) the scale parameter l is defined
by the relation

5Fb, 5I'b
+tI

Sm
'I

= Xt, 'r7' +2gt, Im f" „+(,em
dt Sm 8$"

(3.1a)

(3.1b)

~=tge ', (3.6)

where to is an arbitrary scale, and x is the dimension-

less inverse correlation length

(3.7)
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The constant Eq is given by

(3.8)

w(i) = w'(i) +iw"(I)

satisfy nonlinear recursion relations'3

(3.9)

Z„-' =2~-'~'/'r( —,
' e),

where in Eq. (3.8) (and only there) I'(a) is the gam-

ma function. The quantites h, (/), 1"(0, Cp(i), y(/),
and u(i) are suitably renormalized versions of the
corresponding bare parameters, whose precise defini-

tions depend on thc particular rcnormalizatlon pro-
cedure employed.

The parameters f(i) and

Ag(w) = —+1 1

2 1++

A2{w) =L(w)+G(w),

&2(w) =L(w) —G(w),

L(w) = w'(2+ w) ln
1 (1+w)'

4 1+w w 2+w

(3.19)

{3.20)

(3.21)

(3.22)

Pf( f, w, u—,u),
dl

= —P„(f, w, v, u)

(3.10)

(3.i i)

G(w)=, 4(1+2w) in
1 (1+w)'

8 1+w ' 1+2w

(3.i3)
with

O.14)

wh««he p functions are only known as power
series in the dynamic coupling constant fand the
static couplings u and v, whose coefficients are ob-
tained to all orders in the ratio w In thc present
work we shall assume that u has reached its fixed-
point value u, i.e., that ~ is given by a pure power
law (3.7). The coupling constant v, Eq. (3.5), is re-
lated to the specific heat by"

e, dlncp dlnCp
4p 4dl 4d ln~

and will be taken from the measured temperature
dependence of Cp, except at high temperatures when
(3.12) ceases to be valid (see Appendix A).

Given the functions f(l) and w(i), the thermal
conductivity is given by"'

fj g ( 1/2gs/2~-e/2

(3.24)

P = cgf— (3.26)

Equations (3.16) and (3.17) have corrections of order
f', and f' times powers of v in the curly brackets,
and Eq. (3.26) has corrections of order f2, and f
times powers of v. Thc constant c~ can be calculated
using either a four-dimensional13 or a three-
dimensional" formalism, which represent different
approximations to the real three-dimensional system.
The respective values arc

c3 =
2

—
8

m =0.1071 1

(3.27a)

(3.27b)

q" =—(6 ln ——1)u' =—(6 ln ——1)e' =0.014518 3 So 3

(3.25)

and we shall analyze the experimental data with both
choices. Our final formula for X is thus Eq. (3.13)
with ~=1, and R~ given by

The above theory constitutes a well-defined prescrip-
tion for calculating the thermal conductivity A. in
terms of the experimentally determined quantities gb,
go, v, and Cp (cf. Table 1), and the functions f(i)
and w(i) obtained by solving (3.10) and (3.11).
Thus, if v is obtained from the experimental Cp via
(3.12), there are three unknown integration con-
stants, fo, wo, and wo', representing initiai values at
some temperature. These correspond to the freedom
of choosing thc bare paramctcrs A.b and 1 y

= I p

+/1 y.
Equations (3.16)—(3.26), which define model F„"

P =—w[8~(w') f +82(w') f' —q" +4m —
/r I

(3.17)

I

/t = f —4vw —4i{few')'/'—
1+% %V

Equation (3.13) generalizes Eq. (2, 1) to arbitrary d.
The factor P(i) has a perturbation expansion in f, u,
and u, analogous to the one for the p functions.

%e shall use the form of perturbation theory ob- .

tained by De Dominicis and Peliti, "and Dohm, "
which to second order in f reads""

't

Pf f a+A)(w') f +32(w——') f—'+q" , Re(wh)—
t /

(3.i6)



GUENTER AHLERS, P. C. HOHENSERG, AND A. KORNSLIT

w = w'; w"=0 (3.30)

which implies h =0 in (3.16) and (3.17). In applica-
tions of the theory to experiment it was suggested in

Ref. 11 that one could calculate w and f using the
model E equations, but insert the experimenta1
(singular) specific heat in Eq. (3.13). This approxi-
rnation, which has been adopted by other au-

thors, ' ' is a good one near the fixed point, but as
shown below, it fails over a sizable portion of the ex-
perimental range. %e shall denote the model with a
constant Cp as "model Eo" and the phenomenologi-
cal model with a singular Cp in (3.13) as "model
E,."

Let us end this subsection by reviewing the domain
of validity of our theoretical prediction for the ther-
mal conductivity. First of all we must discuss the
validity of the model, and then how accurately we are
calculating the thermal conductivity within the model.
The question of the precise relationship between ex-
perimental quantities such as the thermal conductivty
A. and corresponding calculated quantities, is a com-
plicated one in general. One reason is because the
physical quantities are the bare ones (in a theory with

finite cutoff A, ), whereas the field-theoretic formal-
ism calculates the renormalized functions (with

A, = ~). Near the critical point the distinction
amounts to a multiplicative normalization factor, but
away from T, the relationship is more complicated.
In order to make quantitative comparisons between
experiment and theory we shall take the following
phenomenological point of view: %e assume that the
renormalized functions represent the corresponding
physical variables, i.e., the unknown normalization
factor is adjusted at a given (high) temperature. In-

stead of being defined by the bare parameters Ab, I"b,

Qb, Cpb, etc. , the model mill be characterized by the
formal high-temperature limit of the corresponding
renormalized parameters, e.g. ,

(3.3 I)

It is these high-temperature limits A. , I, Cp, etc. ,
which we wish to identify with the "background"
values extracted from analyses of experimental data.

If the background values were constant, this pro-
cedure would be quite unambiguous, but in fact they
have a (smooth) temperature dependence coming
from the variables which are not included in our
starting model (first sound, quasiparticles, etc.). A

more accurate starting point is therefore a model

are appropriate to liquid "He, in which the specific
heat Cp has a singularity at T&. In Ref. 11 a simpler
model was also discussed, the so-called symmetric
model (E), in which Cp is constant. The equations
for model E are obtained from model F by setting

(3.29)

where the bare parameters are themselves (smooth)
functions of temperature. It follows that this depen-
dence will also manifest itself in th high-temperature
limits such as (3.31). In Sec. IV C we shaH analyze a
model which takes account of such a smooth tem-

perature dependence,
Concerning the purely static transients, the situa-

tion is rather favorable, since our formulas express
the dynamics essentially exactly in terms of the static
parameters Cp and ~. These formulas arose from a
second-order expansion in the static couplings u and

v, but it seems clear that apart from corrections of
order of the static exponent'0 q, the theory can be
reexpressed in terms of the exact Cp and ~. %e shall

take these quantities from experiment, the first from
direct thermodynamic measurements, and the
second via scaling from the superfluid density. 6 Of
course, Eq. (3.7) neglects the static transients, but
the theory itself is expressed in terms of the func-
tions «(r) and Cp(t) which could, in principle, in-

clude all static transients.
Let us now turn to the question of the validity of

our calculations within the model. %e have used
perturbation theory in the dynamic coupling constant

f, so the theory is valid whenever f is small. " At
the fixed point we have f'-4 —d, so the expansion
is only valid for d =4. It turns out, "homever, that
for arbitrary d, f is always small for temperatures suf-

ficiently far from the critical point. How far depends
on the bare coupling constant fq, and for 4He the re-

markable fact is that f(l) is already small above a re-

duced temperature r, =10 ' (r, depends on pressure
and decreases with increasing pressure).

In summary, we can thus state that the theory is

quantitatively correct for r r„but since f is

without doubt of order unity in three dimensions, all

powers of f are in principle needed for an exact criti-

cal theory (in the range t & t, )

B. Fixed point and the weak-scaling instability

p„(f',w') =0,
pf( f",w') =0

(3.24a)

(3.32b)

At the three-dimensional fixed point we must
make an uncontrolled extrapolation of the smaH- f ex-
pansion to the domain f= 0(1). In the present
problem there are essentially two methods available
for this extrapolation; these are the usual ~ expan-
sion, "' ' "and a self-consistent method' ""which

solves the truncated (nonlinear) equations for the
fixed point directly in three dimensions. A compar-
ison between the two methods has been given ear-

lier, ' "and in view of the similarity of the results we

shall use the more convenient self-consistent method
to find f' and w". These are obtained by solving the

equations
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The results as a function of d were presented in Ref.
18, where it was found that for d = 3

adding the term

(3.34)
f"=0.827, w'=0. 018 (3.33)

1.4—

1.0—

i.e., the model is almost at the instability point for
dynamic scaling (w" =0), which occurs here for
e'=4 —d' =1.02. For lower dimensionality, one has
weak scaling, U for which Eq. (3.13) must be modi-
fied, as discussed elsewhere. ' '

In view of the proximity of the result (3.33) to the
weak-scaling instability, it is interesting to explore the
effect of the truncation of Eqs. (3.16) and (3.17) on
the answers. We have done this in an ad hoc way, by

with Bi a constant, to the right-hand side of (3.17),
leaving (3.16) unchanged, The ensuing values of e"

and w" (a =1) as a function of B3, obtained from
(3.32) are shown in Figs. 6(a) and 6(c), and show a

surprisingly large variation for values of B3 less than
unity. In fact, with our particular choice of a 83
which is w independent, we find that for 83 )0.16
there is no more weak-sealing instability for any d
near 3. This is shown in Fig. 6(b), where the
minimum value of w(l) (minimized over e and I for
fixed B3) is shown as a function of B3. The corre-
sponding value of e is shown in Fig. 6(a) (right-hand
scale). Although the above results are only sugges-
tive and are not to be taken literally, they show that a
modest contribution from higher-order terms in
(3.16) and (3.17) can change the quantitative picture
at the fixed point. Nonetheless, it is reasonable to
assume that the value of w' will be small in three
dimensions, so that the arguments given earlier" "
about the importance of transients will still come into
play,

0.8—

C
'g 0.4—

0.0—

0.8—

(b)

C. Behavior at high t

A limit in which our models have simple behavior
is r ~ (or K ~ oo), where it turns out that pertur-
bation theory is valid for all d. Let us first discuss
this limit from a purely formal point of view and then
consider its physical relevance. For simplicity we dis-

cuss model Ep (Cp = Cpi, ). We rewrite Eqs. (3.10),
(3.11), (3.16), and (3.17) in the form (h =0)

r

= —1+f —+ +0(f2), (3.35a)f dK 2 1+W

(c) zdw 1 1 +O(f ),2

w dv 2 1+w (3.35b)

'4l

04 where we are using the variable K [Eq. (3.6)], and we

have set q" =0 for the moment. In the limit K

we set

0.0—

0.4
l

-0.2
l

0.0
l

0.2

f=fK=f [1+fiK—+O(K )]

w=w [1+wiK '+O(K )]

(3.36)

(3.37)

FIG. 6. Effect of the phenomenological three-loop term
with coefficient 83 [Eq. (3.34)I, on the fixed-point parame-

ters of the theory. In (a) the left-hand curve gives the
dimensionality d =4 —~ for breakdown of dynamic scaling

(w =0), and the right-hand curve gives the e value at
which e reaches its (positive) minimum when dynamic scal-

ing does not break down. Part (b) shows this minimum

value of ~ (minimized over e and l), and part (c) gives the
value of ~ for d =3(a=1).

and find
1

1 1fi = f- —+—
2 1+w (3.38)

1 1
Wl = f~

2 1+w
t

(3.39)

with f„and w constants of integration. Thus the
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coupling constant f=f~—' behaves as

AV

f= f- I+f'+O(.-),
K K

(3.40)

i.e, it vanishes at high temperatures. The thermal
conductivity in model Eo is given in Eqs. (3.13) and
(3.15), and has the form

0.2

1+—+O(K )
K

(3.41)
0.1

= gb ( Cpbto+alf (3.42)

(3.43)

where Cpb in (3.42) is the constant value of Cp.
Note that the correction P [Eqs. (3.15) and (3.26)]
affects the first-order term A. ~, whereas it only enters
in second order near the fixed point. " In the three-
dimensional theory

1 1
Cd=

2
—87K

so

20

0
E

o 10

I

t

/

I

0
0

0
0 0 0

X)=sf rr (3.44)

in agreement with the calculation of Ref. SS (see Ap-

pendix A).
Model F may be analyzed in the same way, but

care must be taken to treat the specific-heat singulari-

ty consistently. In particular, the experimental specif-
ic heat '" has a minimum above T&, which leads to
an effective exponent a„Eq. (3.12), which becomes
negative at that point, so that our Eq. (3.5) cannot be
used. We believe that this minimum in Cp is due to
regular terms, which should not contribute to the
vertex v defined in (3.5) and (3.12). In order to ob-

tain a usable v we have, somewhat arbitrarily, re-

placed the effective exponent calculated from the ex-

perimental Cp by a function which goes to zero
smoothly at high temperatures and remains positive.
The specific heat obtained from this function by in-

tegrating (3.12) then represents an approximation to
the singular part of the physical specific heat. This
procedure, which is illustrated in Fig. 7 and described
in more detail in Appendix A, is the one we will al-

ways use in what follows.
Having a function v which is everywhere positive,

we may now integrate model Fout to high tempera-
tures. In Appendix B it is sho~n analytically that the
first-order result for the thermal conductivity at high
temperatures, Eq. (3.41), remains unchanged in

model F. This comes about because the ~ ' correc-
tions to Cp precisely cancel the change in the
behavior of w(~) and f(~) resulting from the u

terms in (3.17) and (3.18) [the constant Cpb in (3.42)
is replaced by the high-temperature limit Cp of the
specific heat].

The phenomenological model E which inserts the

0
10 4

I

10 2

t

I

10-1

singular specific heat into (3.13) but sets u =0 in

(3.17) and (3.18) (model E,) has a high-temperature
limit of the form

1
&/2

1+—+O(~ ')
K Cp

(3.45)

which is quite far from the correct answer for param-

eters appropriate to 4He. A comparison between
models Eo, E„and Eis shown in Fig. 8, where it is

seen that model Eo is a good approximation to F at
high temperatures whereas E, is better near the fixed
point.

FIG. 7. (a) Effective exponent 0., of the specific heat
[Eq. (3.12)] vs reduced temperature. The curves are ob-
tained by differentiating the experimental specific heat given
by Eq. (2.7), with parameters listed in Table I for the dif-
ferent pressures. The dashed lines are extrapolations
beyond the range where the specific-heat data were used to
obtain (2.7). The solid line extending the P =0 curve to
high temperatures is Eq. (A3), as discussed in Appendix A.
(b) The specific heat Cp obtained by integration of the o.,
(P =0) curve in part (a). The solid and dashed lines are
obtained from the corresponding curves in part (a) for
P =0, and the dot-dashed line is obtained from Eq. (A4).
The solid circles are Cp data from Ref. 42 and the open cir-

cles come from Ref. 47 (see Table III).
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MODEL F

10~ t
11.8 4.25 2.52 1.5 t

T

0.)

10
O

10
- O.i

FKJ. 8. Thermal conductivity A. (normalized by its t =1
value) vs reduced temperature on log-log scales. The
parameters are typical ones for 4He, namely, cd =0,107,

f =2.14 &10 2, ~' =0.493, and for model F, @"
=—0.220. Thc thrcc models arc defined ln Scc. III A and In-

volve different treatments of the specific-heat singularity.

-0.2—
0 20 40 60 80 100

1-P

FIG. 9. Function A.2(~) defined in Eq. (3.46), as a func-
tion of x ' = t '. The parameter values are the same as in

Fig. 8, but in addition the quantity q, Eq. (3,25), is set
equal to zero. The dot-dashed curve has the same f and

w, and corresponds to the asymptotic value obtained for
model Eo in Ref. 55. The top scale gives the reduced tem-
perature.

The analysis of Appendix 8 shows that the
second-order correction to X and the O(x ') term in

fwill be different in models E and I'. Indeed, if we
define X2(K) as the deviation from the first-order ap-

proximation, i.e.,

(3.46)

then it turns out that A.2 does not vary linearly in ~
in model F, over an appreciable range of K. In any
case, models F and Eo give different answers, as
shown in Fig. 9 where A2 is extracted from a numeri-
cal integration of our model Fwith parameters ap-
propriate to "He. It must be noted, however, that
our equations do not give ) 2 exactly for either model,
in view of the absence of the f' terms in our expan-
sion for P, Eq. (3.26). In Appendix 8 we have ex-
tracted A.2 from the calculation of Ref. 55, which is
claimed to be exact to second order in ~ ' (this calcu-
lation is appropriate to model Eo if we set Cp =—Cpb).
The result is also indicated in Fig. 9 and the slope
differs by a factor of 2 from our model Eo answer,
%e see no reason, however, to assume that the
correct X2 in model Fwill be well approximated by ei-
ther model Eo or E„or by the approximate treatment
of Ref. 55 (see Appendix 8). For our purposes, we
consider Fig. 9 to give a reasonable estimate of the
size of A,2, in order to define the domain of validity
of the expansion.

The physical relevance of the high-temperature ex-
pansion comes entirely from the fact that it is an ex-

D. Nonlinear behavior

Having discussed the fixed-point (~ 0, l +~)
and high-temperature (a ~, l —~) limits of the
model. , let us study the nonlinear evolution between
the two regimes, as a function of the initial values.
These are the only unknown parameters left in the
problem and they determine the constants P

and f of Eqs. (3.41)—(3.43), but they drop out of
the fixed-point values w' and f'. We shaH in gen-
eral denote the initial values of w and f at the arbi-
trary temperature to in Eq. (3.6), by"

w(l =0) —= wo= wo +two (3.47)

(3.48)

Let us study the behavior of the model as a function
of the initial values for. the choice to = 1,

to=1; K=1, Wo=wot', fo=foi=fot (3.49)

which we consider to be reasonable approximations

pansion in K,IK rather than in tt '. Moreover, as
shown in Sec. IV 8 below, in He x, = Xt =

s f m is a
small parameterss of order 10 2. The situation is thus
analogous to that which occurs in superconductivity,
where there is a large Aslamazov-Larkin" region
where weak-coupling methods apply (~, & a && 1).
In that case the small parameter is ktt T,jEr, whereas
here its physical origin in the bare theory is more ob-
scure.
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v =0, e"=0, (3.50)

to the bare values wp and fq. (We shall discuss the
question of regular transients in Sec. IVC below. ) For
the present purposes, it is sufficient to consider
model Eo, for which

(3.51)

where c3 =0.107 [Eq. (3.28)], and leap is a constant
which need not concern us here. For the particular
choice (3.49), we have

)Ipi = Ap(21K wp~fpi) (1 c3fpt ) (3.52)

Our analysis of the experimental thermal conduc-
tivity to be described in Sec. IV shows that typical
values of the parameters up~ and fp~ which lead to a
model E fit are

wp~ =1.3, f~ =0.01 O.53)

leading to A.p~ j) p
= 1.95. We have therefore integrat-

0,5

1,0

0,5

FIG. 10. Numerical study of model Eo equations for dif-

ferent values of the initial condition foi of the coupling con-

stant f(t) at t =1, for fixed initial value woi of the ratio

w(t) at t =1. Although the fixed-point (t 0) is the same

in all cases, the crossover from high-temperature to critical

behavior occurs at a reduced temperature t, which depends

strongly on f0~. Part (a) shoes the thermal conductivity A.,
part (b) the coupling constant f, and part (c) the frequency

ratio w.

0-

FIG. 11. (a), (b) Behavior of model Eo for fixed initial

coupling constant f0~ and varying initial value Ao~ of A. at

t =1. The crossover temperature from "background" to
critical behavior is seen to be independent of Aoi. The

quantity Xo is an arbitrary normalization constant.
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FIG. 12. Dependence of the thermal conductivity in

model Ep on the fixed-point value e, for fixed initial

values of fp~ and ep~. The value of w" was varied by in-

clusion of the three-loop term (3.34}, as illustrated in Fig. 6.
The crossover temperature t, is independent of ~', which

only influences the effective exponent in the critical region
t (t~.

FIG. 13. Calculation of Fig. 10(a) repeated for model F,
which includes the singular specific heat, and the imaginary
part of the ratio w The crossover behavior is qualitatively
the same as in Fig. 10(a).

IV. ANALYSIS OF EXPERIMENTAL DATA

ed the model Ep equations numerically, for t ( tp,

using various initial conditions at tp =1, which vary

around the typical values (3.53). The numerical
results were generally well behaved, though for some
values of initial parameters instabilities appeared.
Since these occurred for choices which were rather
far from the physical values (3.53), we did not
investigate these phenomena further. In Fig. 10 we

vary fp~ at fixed wp~ and study the temperature
dependence of the three quantities A. , f, and w on a
wide temperature range. It is seen that the crossover
from high-t to fixed-point behavior moves in as fp~ is

decreased. In Fig. 11, on the other hand, fp~ is

fixed and wp~ varied, in such a way that Xpt [Eq.
(3.52)] is changed. For this case the crossover tem-
perature remains roughly constant, and only the
shape of the curves changes. In Fig, 12 we include
the phenomenological three-loop term (3.34) in the
model, and thereby change the value of ~', leaving

fp~ and wp~ the same. The values of A, are only
modified significantly for t ( 10 —10 ', and the
crossover temperature is quite independent of ~'.
Finally, in Fig. 13 we repeat the calculation of Fig.
10(a) using model F, with a reasonable starting value

of the imaginary part, ep~ = —0.2.5 The behavior is

seen to be qualitatively similar to that in model Ep.
The present study thus demonstrates unambiguously
that the small dynamic crossover temperature in 4He

results from a weak bare coupling constant
( fp& =fq), and not from a large background k, '9 or
from a small ~', ' "as previously claimed.

Having elucidated the qualitative features of the
theory, we shall apply it to the experimental data in

order to test its predictions, and to extract nonuniver-
sal parameters from experiment. In each case we
have compared the theoretical predictions for R„(t),
Eq. (3.15), with the experimental Rq(t) discussed in

Sec. II.

A. Power-law fits

We shall first discuss a number of traditional
power-law analyses, in order to test various earlier
results' and suggestions. " The two theoretical
forms we shall consider are

and

R), ——(2m') ' ' (1 —t ')+Ri, t '+R3)t ' .
(x)/v)

(4.1)

C),

2m'(xi/v)
(I —R,„t '+R„t ') . (4.2)

Equation (4.1) (the "quadratic" approximation) was

suggested by Hohenberg et al. "since it represents
the exact asymptotic behavior of model E in the limit

x~ ~ w' 0. The "linear" approximation, Eq. (4.2)
was employed by Ferrell and Bhattacharjee' to fit the
thermal conductivity, but in contrast to (4.1) it does
not remain finite in the limit x~ 0, t WO. Both
forms (4.1) and (4.2) were shown by Dohm and
Folk" to be inaccurate approximations to the exact
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model E behavior over the whole temperature range
10 6 & r ( I (the quadratic approximation was found
to be rather accurate for 10 ( r ( 10 ').

In order to test these expressions we have carried
out fits of the experimental R~ values to Eqs. (4.1)
and (4.2) for r & 3 && 10, treating R~q and 83„as
adjustable, and assuming C), and x~ to be either adju-
stable or fixed by theory. ' The results are shown in

Fig. 14 for cell A, and in Table IV for cells 2 and D.
An examination of the numbers obtained suggests
that a power-law fit over a restricted range gives lim-
ited quantitative information on the physical parame-
ters. Indeed, if one fixes the universal quantities C),
and x~ from theory, as in fits 1, 3, 5, and 7 of
Table IV one obtains a rather poor fit to the data, as
indicated by the deviation 0-. If one lets C), and x~

be determined by the data (fits 2, 4, 6, and 8 of
Table IV) the fit improves markedly, but the values
obtained for C& and x~ are rather far from the ex-
pected values" (especially for the quadratic case).
These results could be interpreted as favoring the
linear fit (4.2), but such a conclusion seems to us er-

roneous for the following reasons: Firstly, as noted
also by Dohm and Folk,"the values of the correc-
tion amplitudes R~~ and R3), obtained in the fits are
rather large (see Table IV), whereas one would a
priori expect them both to be of order unity. Second-

ly, expressions (4.1) and (4.2) are approximations to
model E, and one may ask how accurate the model
itself is in this temperature range. The answer to be
given in Sec. IV 13 is that model E (more precisely
model E„see Sec. III A) does not fit the data very

well for 10 & t &3 X10 . A model E, fit is shown
in Fig. 14(a) for comparison (the initial values fo and

wo were adjusted at to = 3 && 10 '), and the result is

only slightly better than the quadratic approximation;
it is in fact worse than the linear approximation
[curve 3 in Fig. 14(b)]; these comparisons are mean-

ingful since each of the fits has two adjustable param-
eters.

03-

o.z
X

Q.z
lO

I

IO IO

FIG, 14. Power-law fits (dashed lines) of the data in cell
A to (a) Eq. (4.1) and (b) Eq. (4.2) in the range t & 0.003,
treating the correction amplitudes R~z and 83& as adju-
stable. The solid lines have the leading amplitude Cz and
the correction exponent x~ in (4.1,2) as additional adjustable
parameters. The numbers on the curves (1—4) refer to en-
tries in Table IV, where the values of the parameters are
listed. The curve marked E, in part (a) is a nonlinear nlodel

E, fit analogous to the ones in Fig. 17 below, but for
t & 0.003, and is shown for comparison.

TABLE IV. Power-law frts to Eqs. (4.1) ("quadratic") and (4.2) ("linear" ), with tm»=3 &10

Fit Cell Type 103cr

A

D 0.0
Do.o
D 0.0
D 0.0

Quad.
Quad.
Lin.
Lln.
Quad.
Quad.
Lin.
Lin.

0.62'
1.16
O.63'
0.82
O.62'
0.77
0 63'
1.03

0.010'
0.45
0 068"
0,29
O, O1O'

0.10
O.O68'

0.038

0 533a

0 533a

O.648'
0.648'
0 533a

0 533a
O.648'
0.648'

—0.16
—6.02

1.08
3.64

-O.13
—0.24

0.95
1.02

2.91
10.07
12.17
28.98

2.41
2,61
8.60
6.45

8.5
0.9
2.7
0.9
2.3
1.2
3.8
12

'Parameter held constant in the fit.
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The general conclusion we draw from these
power-law fits is that their quality says little about the
correctness of the starting expressions, and that the
parameter values they yield are not physically mean-
ingful. At the very best, these fits can be considered
as a purely empirical representation of the data over a

limited temperature range.

B. Nonlinear fits

10

hC

g 10

l. Estimate of bare parameters

Let us first estimate the bare parameters of our
model from the "background values" (or high-

temperature extrapolations) of h. and Cp, and from
the mode-coupling constant gb. At vapor pressure
the data in Fig. 5 extrapolate to roughly 1400
erg/cm sec K at high t, which (dividing by ks) yields39

kb=10" (cmsec) ' (4.3)

For Cpb we take the minimum value 10 J/mole K,
which must be divided by the molar volume
V =27.4cm'/mole and k~ to yield

Cpb =2.6 x 10 cm (4.4)

Thus the background thermal diffusivity is

A. b/Cpb = 3.8 && 10 cm'/sec

The mode-coupling constant is (see Table I)

gb = o„kttT„/t=2. .13 X 10" sec '

(4.5)

(4.6)

~b CPb
Nb = 0 42I b

A, b

(4.8)

and

2L
gb 50

fb =fbi =
z

——0.021'b
2m' XbI b

(4.9)

where we have used (p =1.4 A. We thus see that if
1 b is of order unity the bare coupling constant will be
of order 10, whereas ~b will be of order unity.
This means that the crossover temperature is

t, =10 3 (see Fig. 10), so that the high-temperature
limit discussed in Sec. III C will have been reached at
~ =1, and the constants f„, X„, and w„are well ap-

proximated by their values at K =1. Comparing the
curve for h. marked fp~ =0.01 in Fig. 10(a) to the ex-
perimental data shown in Fig. 15, we already see that

To find wb and fb Eqs. (3.2) and (3.3) we still need
the order parameter diffusivity I'b, which is not
known, but we expect'

I'b ——(t/mH, ) I'b 1.56I'b x 10—— cm /sec, (4.7)

with I b of order unity. According to Eqs.
(4.3)—(4.7) we thus have

I

)Q 2

FIG. 15. Thermal conductivity in cell A (solid circles) vs
reduced temperature (on log-log scales), along with the data
of Kerrisk and Keller (Ref. 33, open triangles). The solid
line is a fit using model

upwith

four adjustable parameters in

the range 10 ( t & 10, namely, fp, ~p, ~p', and B3 (see
entry 3 of part b of Table VI). The dotted line is obtained
by using gb(T), Eq. (4.12) in the formula for Rz (2.1) in

place of gb.

the theory predicts the overall temperature depen-
dence of A. semiquantitatively over five decades,
without adjustable parameters other than a normali-
zation at t = O(1). In the remainder of this section
we shall make more quantitative tests of the theory,
and attempt to extract reliable values of the parame-
ters.

2. Limited-range fits

0.003 & t (0.01 (4.10)

and have used the data from cell A. The parameter
tp was chosen at tp =0.01 and the adjustable parame-
ters were wp = wp and fp for model E„and wp, wp',

and fp for model F.
The fits were obtained by (i) integrating the equa-

tions numerically with given initial values, (ii)
evaluating the deviations between experiment and

In order to test the different models we shall fit the
data over a limited temperature range selected so that
regular transients are unimportant, while at the same
time the coupling f is small. Having determined the
parameters from this fit, we then integrate the equa-
tions outside of the limited range, and compare the
resulting Rq [Eq. (3.28)] with experiment. We have
chosen the range
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theory, and (iii) adjusting the initial values so as to
minimize the squared deviations. The fits yielded the
best values of the adjusted parameters, the probable
errors in these quantities, and the deviation o. from
the fit, expressed as the square root of the variance

N N

X (g expt g theo r )2 pr / X pr
N —E; l i~1

where W~ is the weight attached to point i (see Sec.
II 8), N is the number of data points, and K the
number of adjustable parameters. In carrying out
such nonlinear fits with a number of parameters it is
important to initiate the process with fairly accurate
starting values, so as to converge in a reasonable
number of steps (a typical run with two adjustable
parameters would require 5 to 10 iterations, but runs
with 4 parameters might involve 25 or more itera-
tions).

Results of limited-range fits are sho~n in Fig. 16
for both model E, and model F. It is seen that the
model E, curve deviates from the data as soon as one
goes outside the range of fit, ~hereas the model I'
curve continues to agree for almost a decade on ei-
ther side. More significantly, the deviations in model
E, occur for values of f (also shown in Fig. 16)
which are small, and for which the perturbation ex-
pansion should be valid. For model I', on the other
hand, the deviations occur only when f is of order
unity, where the truncation errors in Eqs. (3.16),
(3.17), and (3.26) cannot be neglected. Quantitative
information on the limited-range fits is given in the
tablesss (entries 1 of parts a and b of Tables V and VI
and entry 5 of Table VII).

Figure 16 also shows an interesting difference
between model E, and model E, in that ~'= ~ is
monotonic in the former but ~' has a maximum in
the latter. This difference in behavior is quite gen-
eral, and can be traced to the effect of the term 4v in

TABLE V. Fit of A„[Eq. (2.1)] to the predictions of model E, [C~ from Eq. (2.7) v —=0,
~"—=Qj, for two values of the constant c~ in Eq. (3.28). The range of data used in the fit is indi-
cated in column 3, and the values of the parameters at t - to are in columns 6 and 7. The constant
83 is the phenomenological three-loop term, Eq. (3.34). The standard deviation 0- of the At is de-
fined in Eq. (4.11).

Cell to 103(T

{a) eg=eg=0. 25

1

2

3
4
5
6
7
8
9

10
11

A

A

A

D 0.0
D 0.0

A

D 0.0
D 6.9

D 14.7
D 22.3

A

0.003 & t & 0.01
t&10 2

t&10 2

t&10 2

t&10 2

t&10 3

t&10 3

t &3x10
t &3x10~
t &5 x10~
t & 0.003

10 2

10 2

10 2

10 2

10 2

10 3

10 3

10 3

10 3

10 3

10 2

08

Qa

—0.056
Qa

—0.072
(ja

(ja

Qa

Qa

Qa

Qa

1.454
0.746
0.799
0.570
0.649
0.734
0.491
0.658
0.716
0.844
0.735

0.171
0.332
0.310
0.42&

0.367
0.366
0.838
0.802
0,660
0.521
0.368

2.0
6.6
6.1
7.4
5.0
3.7
1.4
0.9
1.1
1.8
3.4

(b) eg = e3 =0.107

1

2

3
4
5
6
7

9
10
11

A

A

A

D 0.0
D 0.0

D 0,0
D 6.9

D 14.7
D 22.3

A

0.003 & t & 0.01
t&10 2

t&10 2

t&10 2

t&10 2

t&10 3

t&10 3

t &3x10~
t &3x10~
t &5 x10~
t & 0.003

10 2

10 2

10 2

10 2

10 2

10 3

10 3

10 3

10 3

10 3

10 2

(j8

(ja
—0.015

Qa

—0.056
Qa

Qa

(ja

Qa

08

Qa

2.169
1.066
1.084
0.809
0.862
0.922
0.698
0.938
1.019
1.197
1.055

0.122
0.260
0.2SS
0.344
0.316
0,674
0.775
0.695
0.564
0.435
0.282

2.0
6.5
6.S
6.1
5.3
S.1
1.9
1.0
1.4
1.3
4.7

'Parameter held constant in the fit.
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0.5

CELL 4

0.8
R)

0.4—

oz
OA

02

(b) MODEL F O.9

I

lO IO

OA,

~%II++ y0 yyO 0

0.5

-O. l

FIG. 17. Least-squares fit of 8& in cell D to model E, in

the range t & tm, „for t~» =10 (dashed line) and

tm» =10 (solid line). The adjustable parameters are fo
and eo at t = tm, „and their values are sho~n in entries 4

and 7 in part b of Table V.

I I

IO IO

-0.5
o-I

FIG. 16. Fits of the effective amplitude Az for ceil A to

(a) model Eg and (b) model Fusing data in the limited

range 0.003 & t & 0.01, between the vertical arrows, The
theoretical curves for Rz(t), f(t), and e(t) = ~'(t)
+i~"(t) so obtained have been extended to the full tem-

perature range of the data. The fits correspond to entry 1 in

part a Table V for (a) of the figure and entry 1 of part a of
Table VI for part (b) of the figure.

Eq. (3.17), which dominates at high temperatures
and comes in with opposite sign from the contribu-
tion of f. Thus model E is qualitatively incorrect
above, the temperature of the maximum in e .

3. Fits over a Iarge temperature range

%c have repeated the previous analysis including

data over a larger temperature range, which was ei-

ther 10 6 & t & 10 ' or 10 6 & t & 10 '. Let us first
describe thc analysis with model E, at vapor pressure.
R.esults for cell D w'ith tmax =10 and tmax

were presented in Fig. 1(a) of Ref. 23, with an er-
roneous fitting procedure, ' and the corrected results
are shown in Fig. 17 of the present paper. The new

curves still support the earlier contention that a satis-

factory model E, fit is only obtained for a limited

portion of the data. Quantitative information on the
fits for cells A and l3 is given in the tables, in en-
tries59 2, 4, 6, and 7 in part a of Table V and entries

2, 4, 6, and 7, in part b of Table V from which it is
seen that the deviation o- increases when t,„ is ex-
tended from 10 ' to 10 '.

Turning to model F, results of fits over the range
10 & t &10 are given in entries 2 and 4 in parts a
and b of Table VI and also show prcceptiblc devia-
tions from the data, despite the addition of the adju-
stablc parameter ~0'. We attribute these deviations
to the breakdown of perturbation theory in a region
where the coupling constant f is of order unity.

Measurements of A. at higher pressures have only
been made in cell D, and over a limited temperature
range (see Fig. 2). Results of model E, fits to these
data are given in entries 8—10 in parts a and b of
Table V. The fits are quite satisfactory over this lim-

ited range, but at the highest pressure onc suspects
that an improvement might be possible.

Generally speaking, the minimum o [Eq. (4.11)]
to be expected is of order R &h„where R & is an aver-

age value of 8 ~, and 4, is the root-mean-square
scatter of the experimental points. Since R& =0.3 we

expect a minimum o- in the range 3 x 10~ to 10 for
a scatter of 0.1 to 0.3'k. It is therefore clear that
none of the fits discussed so far have attained this
limit, except perhaps those at P =6.9 and 14.7 bars,
for which data only exist over a narro~ temperature
range. Moreover, if we examine the values of f(r)
obtained in the fits, we see that in most cases the
bulk of the data are in regions where f is of order
unity, so the truncation of Eqs. (3.16) and (3.17) is
not expected to be an accurate approximation. It is

therefore useful to study the effect of this truncation
numerically, as wc do in Sec. IV 84.
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TABLE VI. Fit of thermal conductivity to experiment as in Table V, except that model F is used,
with a singular Cp and the effective exponent v, Eq. (3.12), nonzero.

Cell Range fp
I

wp fp
II

wp 1030.

(a) cd=c4=0.25

A

D 0,0
D 0.0
D 6.9
D 14.7
D 22.3

0.003 & t &0.01
t&10 2

t&10 '
t&10 2

t(10 2

t &3 x10~
t &3x10~
t &5 x10~

10 2

10 2

10 2

10 2

10 2

10 2

10 2

10 2

, Qa

Qa

0,225
Oa

0.139
0.139'
0.139'
0.139a

0.396
0.332
0.314
0.294
0.306
0.378
0.327
0.354

0.510
0.620
0,608
0,666
0.612
0.371
0,379
0.237

-0.168
+0.415
—0.355
+0.192
-0.149
-0.199
—0.050
—0.056

1.0
F 1
1.0
5.8
1.3
1.0
1.1
0.6

(b) cd =c3 0.107

1

2

3

5

6
7
8

9
10

A

A

D 0.0
D 0.0
D 6.9
D 14.7
D 22.3

0.003 & t &0.01
t(10 2

t&10 '
t(10 2

t&10 '
t &3 x10~
t &3x10~
t &5 x10~
t&10 '
t&10 '

10 2

10 ~

10 ~

10 2

10 2

10 2

10 2

10 2

10 2

1

oa

Qa

0.220
Qa

0.173
0.173a

0.173'
0.173'
0.224
0.224

0.595
0.400
0.567
0.348
0.480
0,622
0.559
0.637
O.S9S'
0.481'

0.407
0.634
0.424
0.713
0.487
0.269
0.233
0.133
0.407'
0.0208'

-0.170
+1.360
—0.568

0,717
—0.307
—0.384
-0.179
—0.248
—O.785
—0,368

1.0
9.1
1.2
8.0
1.2
0.9
1.1
0.5
2.5
2.2

'Parameter held constant in the fit.

TABLE VII. Fit of thermal conductivity to experiment, using model E as in Table V, except that
model Ep is used in fits 5 and 6 (i.e., the singular Cp is replaced by the constant Cpy). The initial

value wp' of the imaginary part of the ratio w and the parameter e =4 —d are also varied in a

number of the fits.

Fit Cell Cp Range tp wp fp Wp 103o-

1' DQ0
2

3 A

4 DOQ
5 A

6 A
7d D 00

Cp,

Cp,
Cp,

Cp,

t&10 '
t&10 2

t&10 2

t&10 2

0.003 & t &0.01
t&10 2

t(10 3

10 3 0.25

10 2 0.107
10 2 0.107
10 2 0107
10 2 0.107
10 ~ 0.107
10 3 025

Qb

0.186
0.132
Qb

—0.233
ob

0.482 O.844 Qb

1.165 0.235 -1,406
1.159 0.236 3.574
0.966 0.273 -3.000
0.329 0.427 Qb

0.371 0.378 -1.340
0.46S O.8S6 Ob

1.3
6.0
4.8
3.0
1.8
1,8
1.7

'e in Eq. (3.16) adjusted, yielding ~ =1.02.
"Parameter held constant in the fit.

'Cp&=9.792 J mole K '.
d~ in Eq. (3.16) fixed a« = I.O6.
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4. Phenomenological three-loop term

%e solve the recursion relations numerically with
the term B3wf' added to the right-hand side of Eq.
(3.17) as in Sec. III ', and treat B3 as a further adju-
stable parameter in the fits. The results of this pro-
cedure fof model Eafe shown ln Fig. 18(a) (solid
lines) for the vapor-pressure data in both cells A and
D The corresponding quantitative information is
given in entries 3 and 5 in parts a and b of Table VI
(for the 2 values of cq). The addition of the parame-

06

0.2
X

ter 83 improves the fits to essentially their lo~er lim-

it, and yields coefficients 83 of order 0.2, i.e., values
which are consistent with theoretical expectations (a
number much higher than unity would be unphysi-
cal). The results in the tables show that the three-
loop term affects the initial values wo and fo only
moderately so that setting 33=0 in the finite -83 fit
does not destroy the agreement in the weak-coupling
range t 10 ' [see dashed line in Fig. 18(a)].

The values of 83 obtained in ce11s D and A for the
two values of cq are of order 0.14—0.23 (see 3 and 5

in parts a and b of Table VI) which leads to
e'=0.15 -0.27 in three dimensions, and d'=2. 6
(see Fig. 6). The leading correction exponent x~ can
also be calculated, and it is in the range 0.08 & xt/v
& 0.13. As mentioned previously, 6 we do not con-
sider our estimate of d' to be totally reliable, but our
analysis sho~s that the value d'= 3 obtained by
neglecting higher-loop terms, '8 2 '5 is even less
trustworthy.

%e can once again demonstrate that the improved

fit obtained in model Eis not merely due to the addi-

tional parameter, by repeating the above procedure
using model E, (see entries 3 and 5 in parts a and b
of Table V and entry 3 of Table VII). In this case
the quality of the fit only improves slightly with ad-

justment of 83 or ~0', so we conclude that the
specific-heat variation is the crucial element in the
success of model I'". According to the theoretical
analysis of Sec. III C we know that this is the case at
sufficiently high temperatures (see Fig. 8) and the fit

OA

)Q' )Q-5
I

Q-4
I

Q IQ O.3

FIG. 18. (a) Fits of the data in cells A and D at P =0 to
model Eincluding fo, eo and wo', as well as the coefficient

83 of the phenomenological three-loop term as adjustable
parameters (so1id lines). The dashed line is calculated by
setting 83 0 in the equations, but retaining the initial

values obtained in the fit to cell A with 83 &0. The fits are
listed in entries 3 and 5 in part b of Table VI. The open tri-
angles are data generated by the procedure discussed in Sec.
ll D. (b} Model Ffit to the data in cell D at P =22.3 bars,
with 83 fixed at its value obtained for cell D in part (a), and
the initial values fo, eo, and eo' adjusted. The dashed line
is calculated by setting 83=0 as in part (a). The parameters
of the fit are given in entry 8 in part b of Table VI.

& 229 BAR

0.2
o-10 )o-8 IO

FIG. 19. Model Ffits to the data in cell D at various pres-
sures. The adjustable parameters are the initial values fo,
~0, and eo', the coefficient of the three-loop term has been
fixed at its values 83 0.173 obtained at I'-0. The values
of the parameters are listed in entries 5—8 in part a of Table
VI.
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demonstrates the importance of a consistent treat-
ment of Cp everywhere. Indeed, we have also car-
ried out a fit with a constant Cp (model Eo), and find
better agreement than in model E„but worse than in
model F (see fits VII.S, 6). Another interesting test is
to fix wo and fo at their values obtained in the
limited-range fit 1 in part b of Table VI, and to adjust
~0' and 83 using all the data, which results in a fit
with a. intermediate between models E, and F (see
entry 9 in part b of Table VI).

Having determined the contribution of three-loop
and higher terms phenomenologically from measure-
ments at vapor pressure, we now wish to analyze the
higher-pressure data, assuming B3 to be universal. '

The results using model I' are shown in entries 6—8
in parts a and b of Table VI and in Figs. 18(b) and

0.8

19. The quality of the fit is excellent in all cases,
thus verifying the consistency of our procedure.
Moreover, for P =22.3 bars (entry 8 in parts a and b
of Table VI) the improvement over model E, (entry
10 in parts a and b of Table V) is nonnegligible even
though no additional adjustable parameter is used
(B3 is fixed from elsewhere, and wo' can be shown
not to improve the fit by itself, cf. 2 in Table VII
and in part b of Table V). Figures 18(b) and 19 show
the quality of the fit as well as the very slow approach
to a universal R& predicted by the present analysis.

It is interesting to compare the B3=0 curve at va-
por pressure [Fig. 18(a)] with the corresponding one
at P =22.3 bars [Fig. 18(b)]. At the higher pressure,
the B3=0 curve agrees with the B3 ~ 0 curve over a
larger temperature range than at vapor pressure.
This is because the bare coupling constant is smaller
at high pressures (see Table I) so the effect of three-
loop terms comes in closer to T&.

In Fig. 20 we show the functions f(I) and w'(I)
obtained by our model F fits at the different pres-
sures. When inserted into Eq. (3.28), these func-
tions yield an excellent representation of the thermal
conductivity data over the temperature range
10~ & tt & 10 '. In order to facilitate use of these
functions for other purposes (e.g. , to calculate
second-sound damping or light scattering), we have
tabulated them for both cq= c4=0.25 and cq c3
=0.107 and published the numerical values else-
where. "

0.4
C. Behavior at high temperatures

W

0'

0.8

06

OA

O.Z—

0—
IO IO

In Sec. IV 8 the thermal conductivity was discussed
in the range 10~ & t & 10 ', and we now wish to
consider the high-temperature region 10 ' & t & 1.
The designation of this region as "high-temperature"
is appropriate because it corresponds to t ) t„where
I,, =10 ' is the crossover temperature. Figure 15
sho~s the experimental thermal conductivity in cell
A, as well as the high-temperature data of Kerrisk
and Keller, "along with our best model F fit (entry 3
in part b of Table VI). As expected, the agreement
with model F is good out to t =10 ', and it continues
to be good until t = 5 &10 ', but the theoretical
curve is flat for higher t, whereas the data have a
smooth rise, coming from regular transients. The ex-
planation for this dependence might be sought in the
variation of the mode-coupling parameter gq in Eq.
(2.2). Indeed, let us replace this constant by

FIG. 20. Functions f(t) and e'(t) resulting from the
model FCits listed in entries 5—S in part b of Table VI.
%hen inserted into Eqs. (3.13) and (3.2S), with c&=0.107,
these functions give an excellent fit to the data in cell D.
Values of I are given on the top scale.

a(T)ksT
t (4.12)

where cr( T) is the experimental entropy, listed in
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A. (n) = A. 1 + — [1 + k2(x) ]
8~

(4.13)

Table III. Then the model F fit is only slightly
changed for t & 10 ', whereas the predictions for
t & 10 are very different with a variable coupling
constant (dotted curve in Fig. 15). Although the
agreement is no better than for a constant gI„ the cal-
culation shows that regular transients are an impor-
tant effect for t & 10, and that the model with con-
stant bare parameters gq, A.b, I b cannot be expected to
apply in this region.

%e therefore wish to consider a model with bare
parameters which are specified but unknown analytic
functions of the absolute temperature, ga( T), A.a( T)
and I a( T), and to carry out the renormalization-
group procedure on this more general model, which
we shall call model F(T). [The static parameters will

for the moment be assumed to be known (including
all transients), either from experiment or theory. ] A

complete formulation of the renormalization group
for model F( T) seems to be rather difficult, but we

can use the high-temperature expansion of model F
discussed in Sec. III C to find an accurate approxima-
tion to A. in the region where F( T) differs from F
(t ) 10 ) and neglect the difference closer in.

Specifically, we take Eq. (3.46) for the thermal
conductivity in model F

JUSTEO

f EXTRAP

FIG. 21. Thermal conductivity vs reduced temperature on
log-log scales, as in Fig. 15. The solid line through the tri-
angles for t ) t~ is the high-temperature At [Eqs.
(Cl)—(C4)]. The solid line for t ( t~ is a model Fpredic-
tion using parameters obtained from analysis of data for
t ~ t~ only. The dot-dashed line for t & t~ is the extrapola-
tion to high temperatures of.this model Fprediction. The
dashed line is a modification of the model Fprediction ob-
tained by adjusting the three-loop coefficient 83 and the ini-

tial value +0~ (fit 10 in part b of Table VI).

where f—=f~, and identify X„and f„in model Fas
) a and fa, as mentioned in Sec. II A. This means
that for model F( T) we may write

where we neglect the regular T dependence of the
correction Xq(n), since this term only contributes sig-

nificantly close to T&. The notation in Eq. (4.14) is
intended to separate the regular temperature depen-
dence (denoted by T) from the singular dependence
which occurs via K. Equation (4.14) forms the basis
for a fit to experimental data over the ~hole tem-
perature range t & 1, treating the analytic functions
X ( T) and f„(T) as adjustable. We shall summarize
the main steps of this analysis herc, and give thc de-
tails in Appendix C. The basic idea consists in
choosing a matching temperature t (we pick
t =10 '), where the high-temperature expansion
(3.41) is valid, but where the regular T dependence is

no longer important. In the region t & t we carry
out a fit of the data to model F( T) via (4.14) with as
many adjustable parameters as necessary. " For
t ~ t models Fand F(T) are assumed to have
identical behavior, so one can use the model F(T)

calculation at t = t to obtain initial conditions for
model F. In this way one obtains a prediction for the

thermal conductivity in the critical range t & 10 using

only data outside this range. The results are shown by
the solid curve in Fig. 21, which agrees with the data
in the whole weak-coupling region. The deviations
for t & 5 & 10~ are presumably explained by trunca-
tion errors in the theory, as discussed above. Indeed,
if we fix wa and fa at t =10 2 at their values deter-
mined from the high-t fit, we may then introduce the
three-loop term 83 as before, and adjust it (as well as
wa') to obtain the fit given by the dashed line. The
actual procedure we use is somewhat more involved
than described here, and it is discussed in more detail
in Appendix C.

D. Second-sound damping

As was noted by Dohrn and Folk'" and subse-
quently by Ferrell and Bhattacharjee, "the determin-
ation of the background values P ~ and I q permits a
calculation of the second-sound damping below T&

without adjustable parameters. %'c have done this
with our parameter values, using the model E formu-
la derived by Dohm and Folk'4 for the damping con-
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stant of second sound
J%

D2=2R2c2gz (4.15)

P.60

In (4.15) c2 is the second-sound velocity, 's gr = err "

is the transverse correlation length withe

(r =3.57 x 10 ' cm,
and the amplitude ratio is given by'

o
fL 2u (I 2u ) y( (I) f(I))

w'(I) f(l)

ppe & HANSON 8 PELLAM

o AHLERS

O. I2—

—2t = ~oe-"" (4.18)

with p defineds4 in Eq. (19) of Ref. 28, gt, /gr =0.33,
and I now related to the reduced temperature by

O
IO-6 IO IO

I

Io'
I

IO

u = gb ks( —2r) /16'tr (oCp c2 (4.19)

as implied in Eq. (A15) of Dohm and Foik,"we
would reduce A2 by roughly 0.06 (independent of I),

If we fix u' at its second-order value u'=0. 04 used
in (3.25), we may calculate R2 from (4.17), with the
functions w'(I) and f(i) obtained in the fits to the
thermal conductivity above the transition.

The results for our best-fit functions at vapor pres-
sure (entries 3 and 5 in part a of Table VI with
cq=0.25) are shown in Fig. 22(a) and yield excellent
agreement with the data of Ahlers, 9 Hanson and Pel-
lam, 65 and the more recent higher-precision data of
Robinson and Crooks. ' The corresponding values of
D2, Eq. (4.15), are shown in Fig. 22(b) where the
rise away from T~ is seen to be correctly reproduced.
The result of Dohm and Folk28 obtained by the same
procedure but with different parameters [Fig. 7 of
Ref. 25, dot-dashed lines in Figs. 22(a) and 22(b)] is
somewhat less accurate, especially away from T&.

Ferrell and Bhattacharjee obtained a slightly steeper
D2, which goes below the Dohm and Folk prediction
and below the data for

~
I

~ ) 10 '.
We may also use the finite-pressure fits in cell D

(Table VI part a fits 6—8), to predict the pressure
variation of the damping, as shown in Figs. 23(a) and

23(b). The pressure dependence at I =—10 ' is

shown in Fig. 24, together with values extracted from
light scattering data. The agreement between ex-
periment and theory is quite good, except32 at. I' =2
bars, where the light scattering intensity is weak and

systematic errors might be expected. The prediction
of Ferrell and Bhattacharjee, that the precritical rise
in D2 is smaller at high pressure than at vapor pres-

sure, is reflected in the variation in Fig. 23(b) for

iri (3 X 10~. For larger iri the background dom-

inates and D2 increases with increasing pressure,
It should be noted that the excellent agreement we

obtain in Fig. 22 depends crucially on using the
fixed-point value u" =0.04 (obtained from the e ex-
pansion in second order) in (4.17). Indeed, if we re-
placed u' in (4.17) by

~ —Pa
dP
tA

E -BO

t2
3.2

-3.6
IO

I

IO IO

I

IO IO

FIG. 22. (a) Comparison of theoretical values of the ef-
fective amplitude 82, Eq, {4.17), of second-sound damping
at saturated vapor pressure with experimental data. Solid
line: based on f(I}and ~'(I) obtained from a model Ffit
to X in cell A (fit 3 in part a of Table VI). Dashed line:
based on f(I) and w (I) obtained from a model F f1t to h. in

cell D (fit 5 in part a of Table VI). Dot-dashed line.'based
on f(I) and w'(I) obtained from a model E, fit by Dohn
and Folk and given in Fig. 7 of Ref. 25. Open circles: data
from Ref. 31, Crosses: data from Ref. 65 (see also Ref. 29
for the conversion of the measured second-sound attenua-
tion to D2}, Solid circles: data from Ref. 29. Representa-
tive error bars for data from Refs. 29 and 31 are shown only
on a few points to avoid crowding the figure. (b) The
second-sound damping D2, Eq. {4.15), corresponding to the
values of R2 sho~n in (a).

thus reducing the critical value A2 by almost a factor
of 2. Another possibility is to define 82 from Eq.
(4, 15), and to calculate D2 from Eq. (18) of Ref. 28,
which leads to

gb'(oCP+ d (f(I),w(I))
2rr (—2r) "(Cp)' 2c2gz[w'(I)f(l)]' '

(4.20)
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FIG. 24. Second-sound damping D2 as a function of pres-
sure at a reduced temperature t =—10 3. Open circles:
based on f(t) and w'(I) obtained from the model F fits to A.

in cell D (fits 5—8 in part a of Table VI), Solid circle: based
on f(l) and w'(I) obtained from model F fit to A. in cell A

(fit 3 in part a of Table VI). Open diamonds are from Tar-
vin et aI., Ref. 30(b) terror bars given by Greytak, Ref.
30(a)]. Open triangles are from Vinen and Hurd, Ref. 30(c)
(error bars are approximate and were not given by the origi-
nal authors).

V. DISCUSSION AND CONCLUSION

A. Comparison with earlier work

FIG. 23. (a) Effective amplitude R2 calculated from func-

tions f(l) and w'(I) obtained from model Ffits to the ther-

mal conductivity of cell D above T& at several pressures (fits

5—8 in part a of Table VI). The numbers in the figure are
the pressure in bar. (b) The second-sound damping D2 cor-

responding to the values of R2 shown in (a).

Use of (4.20) causes a further reduction of R2, by

about 0.03. These various choices of u correspond to
different ways of extrapolating the static e expansion
to three dimensions, and could presumably be made
consistent among one another by a more accurate
static theory.

Another point to remember is that we are using a
model Eo formula" for A2 with model F parameters.
We therefore do not know precisely how to insert the
proper factors of the singular specific heat, or the
O(v) corrections to the function P. (Above T„we
have done the former correctly, but not the latter. )
Pending resolution of the various experimental and
theoretical ambiguities, we can say that the second-
sound damping appears to be well described by the
theory.

K, = (a/B, )',
can be transcribed into our notation as

&e = rc = (Kdgb 40/ f Cp)/(Xb/Cpb)

(5.1)

= (fb/ f ) ( Cp/Cpb) wb (5.2a)

This relation was obtained' by equating the critical
part ak' ' of the characteristic frequency, to its back-
ground value B,k'. The smallness of t, was then
asserted to come from the critical behavior of the
specific heat in the denominator of (5.2a) and from
the large value of A, b. The discussion in Sec. III,
however, demonstrates that the critical region is

As mentioned in the Introduction, Ferrell and
Bhattacharjee' "correctly identified various features
of the critical dynamics of He, such as the effect of a
small ~' on the amplitude of slow transients near the
fixed point, and the existence of a high-temperature
perturbation theory in K . Their quantitative evalua-
tion of these effects, however, and their explanation
of the small t„are incomplete so that the precise
agreement they found between their theory and ex-
periment depends on unphysical choices for the
parameters. Indeed, as regards the smallness of t„
Eq. (2) of Ref. 19,
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determined by

t,"=,=( /8)(Egg»'go/A. »1»)=( /8) f» (5.2b)

and the next term corresponds to

P, = —5.88 x10 'K '

f rr a2 a2Z=Z„1+ "
1 ——+0-

8K K K

where

a2 =0.145f Cp /w
'

Cp

(5.3)

(5.4)

The term in K
' agrees precisely with our result

(3.41) and (3.44) (for both model Eo and model F),

rather than by (5.2a). In particular the critical specif-
ic heat has essentially nothing to do with t„since
similar values of t, were found in Fig. 10(a) for
model Eo (with constant Cp) and in Fig. 13 for
model F with singular Cp. Finally, Eq. (5.2a) is con-
tradicted by the results in Fig. 11(a) where t, is

shown to be insensitive to the value of A.q or wb at
fixed f» (we assume Lot =~», wot =w», fot=f»).

Another restriction on the critical region was assert-
ed' ' to come from the small value of w'. In fact,
Fig. 12 above shows that w' determines the effective
exponent of A. for t & t„but does not influence the
value of t, . Ferrell and Bhattacharjee' calculated the
effect of w' on the asymptotic behavior of the ther-

mal conductivity by using the "linear" approximation
in Eq. (4.2) above. As discussed by Dohm and
Folk ' and by us in Sec. IV A, this approximation is

not valid in the temperature range of the data, so the
relatively good fit found in Ref. 19 and in Fig. 14(b)
above cannot be considered evidence in favor of a

small w'.

In the high-temperature domain, Ferrell and Bhat-
tacharjee have used a quite separate formalism' ""
to calculate the small departures of the thermal con-
ductivity from its background value via perturbation
theory in ~ '. In Eq. (B25) of Appendix B, we show

that the high-temperature result of Ref. 55 is, in our
notation

for model Eo, with Cp= Cp, f =0.020, and
w' =0.493, as depicted by the dot-dashed line in Fig.
9. The difference between our model Eo result for A.2

(dashed line) lies presumably in the fact that A2 was

calculated exactly to leading order in Ref. 55,
whereas our evaluation does not contain all second-
order terms, since the f2 correction is missing in

(3.26).
Ferrell and Bhattacharjee, ' in fact, consider not

model Eo but a simplified version of model Fin
which the specific heat is taken from experiment, but
its effective exponent o., =4v/v is neglected.
Although this model is analogous to our model E„ it
has the advantage of giving the right leading correc-
tion in (5.3) (i.e., Cp correctly drops out). The term
in K, on the other hand [Eq. (5.4)], is multiplied by

Cp /Cp, and thereby reduced in absolute magnitude.
Since the treatment of the specific-heat singularity in

Ref. 55 is not systematic, the prediction for the K

correction cannot be considered reliable, except in or-
der of magnitude.

In applying the high-temperature theory to the ex-
perimental data, it is essential to note that the expan-
sion is not in ~ but in (~,/~), with ~, = (n/8) f»
&& 1. Ferrell and Bhattacharjee observed that this
variation is consistent with the experimental data, but
they gave no theoretical argument to support it.
Moreover, they applied the expansion in the region
200 & K

' (800, which is well beyond the range
x ' & 20 where one or two terms suffice (see Fig. 9).
%e may estimate the accuracy of the procedure of
Ferrell and Bhattacharjee, ' "

by comparing the value
of t we obtain from a fit at vapor pressure to Eq.
(2.9) for t &4&&10 5 (X =1472 erg/seccmK, fit 1 of
Table II) on the one hand, to the value we find in

Appendix C using Eq. (4.13) for t &10 ' (h.„=1267
erg/sec cm K, fit 4 of Table VIII) on the other hand.

TABLE VIII. Fit of thermal conductivity in cell A to Eqs. (C1)—(C4) of the text, in the range

t ) t~, with )2(K) —=0.

Fit o

(erg/cm sec K)
10 f~o

1268 +9
1382 +25
1236 +3
1267 +12
923 +28

1235 +5

839 +22
691+39

1385+23
1286 +46
199+50

1389+30

pa

pa

—680 +28
—600 +45
—103 +27
—684+34

2.4 +05
0.7 +0.4
2.6+02
2.1 +2
5.0 +0.3
2.6 +0.04

pa

pa

pa

pa

2.4+3
pa

32
34
9

10.5
3,9

10

10 3

10
10 3

10 2

10 ~

3x10 3

'Parameters held constant in the fit.
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This comparison shows that the neglect of regular
transients and the use of the expansion beyond its

range of validity lead to errors of 15—20% in the
value of A. . The terms in ~ ' also differ by the
same amount in the two fits, leading (coincidentally)
to agreement for the ratio P ~

=8 X 10 . In Ref. 55
an approximate evaluation of the higher terms [Eq.
(4.2) of Ref. 55], was used to extract the values
A.b =1300 erg/seccm K and I b =8&=1.1 && 10
cm2/sec, at P =22.3 bars, corresponding to
X~ =5.7 x 10 . It is not clear, however, how accu-
rate this value is, since it results from an uncon-
trolled approximation to A 2 (~) [Eq. (3.46)], which

neglects the effects of the important quantity v, Eq.
(3.12).

Turning now to the paper by Hohenberg, Halperin,
and Nelson, ' we have already discussed the inade-

quacy of the quadratic approximation for a quantita-
tive fit over the whole temperature range. This point
was first made by Dohm and Folk, ' who compared
various power-law truncations to an exact integration
of the model E equations. It should be noted, how-

ever, that the quadratic approximation was shown"
to be quite accurate for t & 10 ', and it only failed
for higher temperatures. Moveover, the reason for
this failure lies in the small value of the initial cou-
pling fo~, rather than in the fixed-point value w" as
implied in Ref. 25. The quadratic approximation is

thus adequate to treat the problem of a small w' (as
claimed in Ref. 18), but it fails for t & t„wherever
this crossover may be.

Independently of Ref. 18, Dohm and Folk' ' car-
ried out an analysis of the thermal conductivity using
the full nonlinear equations, and a fitting of initial
values analogous to the procedure we employ.
Although the point of view and general methodology
of Dohm and Folk are similar to ours, the quantita-
tive results differ, and we can only agree with their
semiquantitative conclusions. These are that the full

nonlinear renormalization group is necessary to
describe the thermal conductivity over the whole
temperature range 10~ & t & 1, that f decreases
away from T~, and that the result ~" && 1 inferred
from the e expansion, " "is consistent with experi-
ment. The quantitative claim of Dohm and Folk' "
that the data can only be fitted for ~3 —d'~ & 0.1 (i.e.,
w" =0) is, in our opinion, unreliable for the follow-

ing reasons:
(i) The initial values fo and wo at to =10 3 were

adjusted to fit data in the range 10 & t & 10 ', for
various values of d —d', and the best fit was ob-
tained for ~d —d'~ & 0.1. The difficulty with this
procedure is that the theory is most sensitive to trun-
cation errors in this temperature range, since f is of
order unity there. In fact, the best fit of Dohm and
Folk in this range deviates significantly from the data
when extended to r & 10 3 (see the solid line in Fig.
17).

If data out to t =10 ' are included in a model E,
fit, one finds that the overall quality of the fit
deteriorates (see fits 2 and 4 in parts a and b of Table
V). Treating d' as an adjustable parameter does not
improve the fit significantly in model E„and d'
remains near 3 (see fits 3 and 5 in parts a and b of
Table V).

(ii) In practice, fo and wo at to= IG, say, are
more reliably determined from data in the weak-
coupling regime t & 10 . To do this, however, one
needs an accurate weak-coupling theory, and this
necessitates use of model Fand not model E,.

(iii) A problem with the analysis of Dohm and
Folk" is that the adjustment of d' was made by
adding constant ( f-independent) terms to the curly
brackets in Eqs. (3.16) and (3.17) above. This effec-
tively changes the value of e, to 8, say, in Eq.
(3.16), whereas e was kept equal to 1 in calculating X
from (3.13). Thus h, had a spurious dependence on

(E—&)/2 for t » t„which would affect the accuracy
of the calculation in the weak-coupling regime, even
with model J'". The procedure we use to adjust d' in-
volves an f-dependent term (3.34) which becomes
negligible for t & t, .

Thus, although Dohm and Folk correctly em-
phasized the importance of the high-temperature lim-
it, the anlaysis they carried out is inaccurate in the
range t & t, where the theory is in principle systemat-
1c.71

B. Conclusion

We conclude by first stating the principal results of
the present investigation:

(i) The critical dynamics of ~He is characterized by
a crossover from a weak-coupling regime at high re-
duced temperatures t, « t « 1, to a scaling regime
near Tq (t « t, ) with t, =10 3. The smallness of
the crossover temperature t, comes about because the
bare dynamic coupling constant is anomalously small
(fq =0.02), and not because of a large background
Xb or a small ratio w' (Figs. 10—12).

(ii) The dynamic renormalization group based on
model Fof Halperin et al. " can be meaningfully test-
ed in the crossover region 10 & t & 10, using
parameters extracted from an analysis in the range
t & 10 ' and from static experiments. The agreement
between the nonlinear theory and measurements of
the thermal conductivity is excellent in the crossover
region (Sec. III C).

(iii) Closer to the transition (t & 10 '), the trunca-
tion errors associated with perturbation
theory"""" in the coupling constant f become
nonnegligible, and the theory does not make accurate
predictions. Moreover, the experimental situation is
at present also unsettled in this region, since different
experiments have yielded different results (Sec. II A).

(iv) The theoretical prediction, "based on a two-
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loop expansion, that the fixed point is close to the
weak-scaling instability (w" =0), is roughly con-
sistent with the data, within the 20—30'!o uncertain-
ties of the theory.

(v) Treating the coefficient of a higher-loop correc-
tion as an adjustable parameter, an excellent fit is ob-
tained over the whole range 10~ & t & 1, with
~' =0.2. This means dynamic scaling would only
break down for d ( d'= 2.6 (Sec. IV 134).

(vi) Model Eo in which the specific heat is a con-
stant agrees with model Efor I 0'5 x10 . The
phenomenological model which includes the specific-
heat singularity approximately [model E, (Refs. 11,
18, and 25)] only agrees with model F for t & 10 5

(Fig. 8). The experimental data rule out both models

Eo and E„ in favor of model F.
(vii) Earlier claims' ' 5 and suggestions'8 that a

quantitative fit can be obtained with model E„and
that the data prove that d =3, are not valid.

(viii) The damping of second sound can be calcu-
lated and compared with experiment without any ad-
justable parameters. " The agreement with most
existing data is good, as regards both temperature
and pressure dependence. An ambiguity remains,
however concerning the absolute magnitude, since
different estimates of the static parameters below T&

yield answers which differ by a factor of 2.
Our analysis reveals a number of improvements

which can be made in order to provide a more
stringent test of the theory.

(i) The experiments should be repeated, and ex-
tended to high temperatures over a range of pres-
sures. Clearly the discrepancies revealed in Figs. 3
and 18 between different measurements at vapor
pressure must be elucidated.

(ii) The perturbation expansion for model F should
be completed to include all terms in f' (including u)
in Eqs. (3.16), (3.17), and (3.26). If possible, calcu-
lations or estimates of the higher-loop contributions
should be attempted.

Noted added in proof: Very recently, Dohm and
Folk" have calculated the missing 0( f') terms in

Eqs. (3.16) and (3.17), though not the ones in

(3.26). They have iepeated the analysis of the
present paper with the new P functions, and have
found good agreement with the data without the
necessity of introducing a three-loop term. This
means that the experiments are consistent with
d' =3. Of course, completion of the 0 ( f') calcula-
tion in Eq. (3.26) or a calculation of higher-loop terms
can change the picture, since the value of d' is deter-
mined by data in a temperature region where f = 1.

(iii) Specific-heat measurements should be extend-
ed to higher temperatures and pressures, and
analyzed in terms of regular and singular contribu-
tions.

(lv) T11e static renofmaltzatlon group should be ex-
tended to find a quantitative estimate of corrections

to the asymptotic power law for ~, and more reliable
results below T&.

These improvements are all more or less straight-
forward extensions of what has been done so far, and
they would permit a more rigorous test of the theory.
It appears to us advisable to analyze high-pressure
data first, since the weak-coupling regime extends
closest to T„ in that case [see Fig. 20(a)]. For the
study of the asymptotic critical behavior and the
determination of e", on the other hand, data at va-
por pressure appear more promising.

In conclusion we wish to state that in our opinion
the considerable labor that has gone into the present
analysis and that the next stage should entail, are
~orth the effort, since this system may be the best
candidate for a definitive test of the renormalization-
group theory.
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As discussed in Sec. II, the experimental specific
heat has been fit to a function of the form

C, = (~/~) r-.(1+Dr")+a+Et, (Al)

with parameters listed in Table I for the pressures of
interest. The effective exponent in Eq. (3.12) is
given by

d lnCp
0!g =4@v=

d lnt
(A2)

and may easily be calculated from (Al), as shown in
Eq. (B14) of Ref. 18. The function a, (r) is a
smooth function in the range 10 6& t &10 2, which
varies from 0.3 to 0.1, at I' =0, for instance (see Fig.
7). The function (Al) grows at large r and would
lead to a negative n, at t =5 x10, as shown by the
dashed curve in Fig. 7(a). If instead of (Al) we take
the experimental Cp, which has a minimum at t =0.1
[Fig. 7(b)], then o., becomes negative at that point.
A correct treatment of the static renormalization
group, which separates the regular from the singular
transients as we do in Appendix C for the dynamics,
would yield a positive 0., everywhere, since the rise
of Cp at high temperatures is presumably due to the
regular terms (see below). In the present work which

APPENDIX A: TREATMENT OF THE SPECIFIC HEAT
AT HIGH TEMPERATURES



NONLINEAR RENORMALIZATION-GROUP ANALYSIS OF THE. . . 3163

n, = ni/t +n2/t', (A3)

neglects various static transients, we have taken a
shortcut in evaluating the high-temperature specific
heat; this treatment should be sufficient to obtain a
consistent picture of the dynamics in that range,
though not a fully quantitative one, for which an ac-
curate theory of static transients is necessary. Our
shortcut involves choosing for the effective exponent
at high temperatures the function

%'e now introduce the variables

f=fK
Cp/Cp = X,
w = w/X = w'+iw"

X=Kd' '(X/w'fK)' '=(w'f) 't'Kd' ',
in terms of which Eqs. (Bl)—(B3) become

(B4)

(Bs)

(B7)

Cp„=9.792 J/mole K (As)

obtained by matching at t =0.03.
A more systematic analysis, similar to the one we

carry out in Appendix C for the dynamics, would fit
the specific heat over the whole temperature range to
the function

Cp=[A(T)/n][K "(1+DK ) —1]+B(T)
(A6)

with analytic coefficients

and matching n, (t) and dn, /dt to the equation for n,
obtained from (Al) and (A2) at t =0.03, to find
n~ =8.07 X10 and +2= —3.73 &10 . The function
so obtained is shown by the solid line in Fig. 7(a),
for t )0.03. Its integral gives the singular specific
heat Cp [solid line in Fig. 7(b)] which has the form

Cp = Cp exp( n~ /t + n2/2t')

with

= —A~(w') f+, Re(wh) +0( f2)f dK W
(ag)

t

= —B~(w')f—,Re(wh) +0(f2), (B9)
dK

= =-~+o(f') = — +o(f') .
dK 2 2K

(B10)

Now according to Appendix A the effective exponent
v decays to zero at large K on some scale K, = 0(1).
The large-K solutions for Eqs. (Bg) —(B10) may then
be written in the form

w'= w„'[1+w', (K)],
f=f„[1+f,(K)],

(B1 1)

(B12)

where the functions w[(K) and f~(K) go to zero
when K

' 0. The decay of these functions is on the
scale of K„since for small f the dominant term on
the right-hand sides of (Bl) and (B2) is h, which de-
cays as v. The thermal conductivity is given by

A (T) =Ap+Ait+A2t +

B(T) = Bp+B(t +B2t2+ (Ag)

A. = A.ph. (1 —cdf)
with

(B13)

d lnCpe, =4ve=-v
d ln~

(A9)

Then the effective exponent is defined by a derivative
at constant T,

Xp kBgbCPoo 40

so Eqs. (B7) and (Bl1)—(B14) imply

X=X„[1+(X)/K)[1+j2(K)]]

(a14)

(als)

This function is expected to remain positive and to
vanish at large t, similarly to the solid line in Fig.
7(a), and to Eq. (A3).

APPENDIX B: HIGH-TEMPERATURE EXPANSION:
THEORY

&i=f ( —,
—c ) = —,f~, (B16)

for cd =0.107, as in Eq. (3.44) of the text. The func-
tion X2(K) goes to zero, but on the scale K„since wI
and ft contribute to this function.

For our numerical illustration we have taken a
model F fit to cell A. Specifically, we use to=10
wp =0.563, fp=0.428, wp' = —0.412, 83=0.204,
cd c3 0.107, and find by integating to t = 10

= —1 —A ~ ( w') f+, Re( wh ) + 0 ( f ), (B1)

= —B,(w') f—4v —h +0( f2)
w dK

(B2)

Let us first set q =0 and e =1 and rewrite Eqs.
(3.10), (3.11), and (3.16)—(3.25) (model F) as =2.265, f =2.00 x10 2

w' =0.493, w" = —0.220

Cp„=9.79 J/mole K,
lip = 563.0 erg/cm sec K

= 1275.2 erg/cm sec K

(a17)

dCp

Cp de (a3) Thus, A. decays to its asymptotic value on the scale
K, = f m=0.008 (t, =K,' "=7X1—0 ), for both
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f f~c+g

w = w/XK~

(818)

models Eo and F. The correction X2 shown in Fig. 9
was obtained from an exact integration of the model
F equations. It is seen that this function has curva-
ture on the scale ~, ' = O(1) for model F. In model
Eo [obtained by setting u=—0 and w„"=0 in Eqs.
(81), (82), and (86) but keeping the same f and

], Fig. 9 shows that l12(K) varies on the scale
~,/~, and only has curvature for ~ ' = ~, ' =125.

The model we have treated here, in which q~=0,
is physically the correct one at large x since according
to Eq. (3.25), 71" depends on the static coupling u

which is also expected to decay at large ~ (on the
scale a, ). In our fits to the thermal conductivity,
however, we have kept the small quantity q fixed,
and so for consistency in the analysis wc must also
consider the model for q~ ~0 and constant. For
completeness we shall also treat the case e &1 in

(Bl) [see (3.16)]. The preceding analysis may then
be repeated, with the following modifications:

In the case of model I', a2 is decreased by x ', but
remains positive, so that A.2 remains negative, There
is no reason to believe the calculation of Ref. 55 for
model I', however, since v has not been treated con-
sistently.

APPENDIX C. HIGH TEMPERATURE REGIME-
ANALYSIS OF DATA

%C consider a high-temperature theory in the re-

gion t & t and a critical theory for t & t with a

matching point t at which both theories are sup-

posed to bc valid. The behavior in the high-

temperature region is strongly influenced by the reg-

ular transients which appear in the bare theory,
whereas these transients are neglected in the interior
(critical) region. For r & r we have

Z(T, ~) =Z„(T) I+ "„[I+)1.,(~)]a1f (T)
~1+g

where according to Eqs. (820), (3.21), and (3.27b)
1

) =) „1+ '„[I+i&(~)]
K5+/

(a20) a1= [2(1+71")] '--, +-, m=0. 386

z1 f„[[2(~+——v)")] ' —cd] . (a21)

Equation (820) demonstrates that I1 must go to a
constant at high temperatures for all values of ~,

Let us compare the above treatment with that of
Ref. 55, in which a coupling constant is defined in

Eq. (2.4).

and the small correction I1.2(a) is assumed to be in-

dependent of regular transients. (In fact, we shaH

ncglcct A2 completely 1n thc h1gh-tcIYlperaturc rcglon,
but in a more accurate analysis it could be included in

a self-consistent way. ) We now set

gb f-2

Cpl K e EdKX
(822) (T) =h, 0+)1 1t+lt 2r +

f-( T) =f-o+f-1 r +

(c3)

(c4)

a2 = (—m ——+0.016)8
15~2 32 4

which may be rewritten, using (822) and
K3=(2m') ', as

t'

(824)

with

z=z„1+ " [1 —a,~-'+O(K-')], (825)
8~

a = —(———m —0.016)16 1 1 fao
15 4 32

The term of order K
' agrees precisely with our result

(3.44) for both model Eo and F. For model Eo we

have X =1, and in the case studied in Fig, 9, Eq.
(8.26) yields a~ =5.88 x 10 ', corresponding to the
dot-dash curve, which is presumably exact as K

' 0.

(826)

[in rewriting (822) we have used the fact that
f„=Edg12/hI'„, and w„. = I „Cp„/A.„].Thus Eqs.
(2.12), (2.13), (4.2), and (4.3) of Ref. 55 with b =1
read

g2Xr C
) =)„I+ " '" ll+a,'g'+O(g')], (a23)

77 oo

t =102,
= h. 0= (1267 +12) erg/seccmK

f„=f 0= (2.08+0.16) &10 '

(C5)

(c6)

These parameters will now be taken as the high-

and fit the data for A. in the range t & t & 1 to

(Cl) —(C4) with It2=0, treating the coefficients I1~,
and f„„in (C3) and (C4) as adjustable parameters.
The results of the fit are shown in Table VIII, for
different values of I. and with different numbers of
coefficients retained. Fits 1 and 2 of Table VIII show
that A. 2 is necessary for a good fit, whereas we con-
clude from fit 5 in Table VIII that f 1 should be dis-

carded, even though its inclusion improves the fit.
This is because f 1 turns out to be much larger than

f„o and its inclusion changes the other parameters
substantially. %C shall therefore retain fit 4 in Table
VIII, with
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temperature limit of the critical theory which
describes the data in the interior regr'on t t .
Specifically, we set X =)tp~ and f„=fp~ = fp~,
which yield [see Eqs. (B7), (B13), (B14), (C6), and
(C7)]

wp] = A(/2n'Api fp] =0.48 +0.04 (C8)

wlIt =0.492; fp] =0.0194 (C9)

obtained by integrating fit 3 in part b of Table VI to

The initial value wo~ is not known, but we will pick
various values and study the sensitivity of )t(t) to
this parameter. Choosing woi =0, we may integrate
the model F equations starting at t =1 with (C7) and
(C8) as the other initial conditions, and 83 =0. The
ensuing X(t) is shown as the dot-dashed line for
t ) t and the solid line for t & t in Fig. 21. If we
pick wpI =0.3 the curve for A, (t) is shifted downward
slightly so that it deviates from the data at t =10 '
but then crosses again near t =10~; for woi = —0.3
the curve is shifted upward slightly and deviates from
the data somewhat earlier than in Fig. 21. The accu-
racy of our initial values may be appreciated by com-
paring to the values

)(tT, ~) =)(tT„,~), (CIO)

i.e., regular transients should be negligible. Then the
prediction for t ( t is obtained from mode1 F with
f„=f„p and h.„=)t„p,which fixes w„'. The value of
w" is not determined in the above procedure, so it
must be picked arbitrarily (or from some other argu-
ment) and the sensitivity of the results to the choice
of w" tested numerically.

t =1 (these numbers result from a fit to the data in
the range 10~ & t ( 10 with four adjustable param-
eters. ) It is seen that (C7)-(C9) agree within the
standard deviation of the high-temperature fit. In fact
the value of X = Apt extracted from (C9) agrees with
(C6) within 2%. This means that if we use wpt and
fpt as given by (C7) and (C8) and adjust weal and 83,
we will obtain an excellent fit to the data in the whole
range 10~( t ( 10 2 (dashed line in Fig. 21, and fit
10 in part b of Table &I).

The above procedure could be improved by includ-
ing the correction ) 2 in (Cl) in a self-consistent way,
and adjusting the functions X (T) and f (T) with
the following requirements: (i) Equation (Cl)
should fit experiment in the range t ) r (ii) A. t
t = t, the thermal conductivity should satisfy
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