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The two-fluid model of liquid *He is extended to include effects of applied electric
fields. New terms that account for electrostriction in equations of motion for superfluid
and normal fluid are derived with the aid of a variational principle subject to the assump-
tion that the Clausius-Mossotti relation for the dielectric constant is applicable. Corre-
sponding additions to conservation laws for momentum and energy are presented.

I. INTRODUCTION

An electric field applied to a collection of neu-
tral atoms will induce dipole moments in them,
subsequently interact with those moments, and
thereby produce ponderomotive®? forces on the
dielectric material. Initially the effect of the forces
is to cause relative motion of parts of the dielectric
medium. Deformation of the dielectric in this way
will give rise to elastic forces opposing the motion.
The motion ceases when the elastic forces exactly
balance the electric forces. The phenomenon of
the production of stresses and strains in this way
in an uncharged insulator is called electrostriction,’
a term which has usually been reserved for static
conditions in the past. The theory of electrostric-
tion for chemically homogenous fluids obeying
classical laws was established long ago. Inclusion
of the effects of ponderomotive forces in the equa-
tions of motion of such fluids, describing nonstatic
conditions in general, would involve only a simple
step of adding more terms? to the divergence of the
stress tensor, supplementing the pressure and
viscous terms. A name is needed for such effects.
Henceforth in this paper electrostriction will be
used with a broader meaning than before, referring
to any mechanical effects of ponderomotive forces
even under nonstatic steady-state and time-varying
conditions.

The theory of electrostriction in this generalized
sense for a quantum liquid characterized by a
two-fluid model appears not to have been given be-
fore. This paper treats the least complex system of
that type, viz., liquid *He. Only relatively simple
additions to existing theory are needed to incor-
porate electrostriction in the equations of motion
and conservation laws in this case.

In general, the Lagrangian for the system of
fluid plus electromagnetic fields is composed of
three types of terms. The first describes the fluid
even when the fields are absent. The second is as-
sociated with the energy of the electromagnetic
fields including interaction of fields with bound
charges and currents in the system. The third type
accounts for interaction between fields and any
free charges or currents that are present. Meser-
vey* has given the formula for the Lagrangian in-
cluding all three kinds of terms for a superconduc-
tor characterized by a two-fluid model. That for-
mula is an extension of a Lagrangian written down
earlier on phenomenological grounds by Zilsel® for
liquid “He without electromagnetic fields present.
Merservey’s theory can be readily adapted to
describe liquid “He interacting with electric fields
alone, the problem that concerns us now.

In this instance terms of type three are absent.
Furthermore, it is useful and instructive to consid-
er the special case in which

E=-V¢, (1)

where E is the macroscopic electric field and ¢ is
the scalar potential. Recently it has been demon-
strated that Zilsel’s Langrangian for the two-fluid
model of liquid “He alone follows from microscop-
ic theory® and that for conditions of uniform flow
this Lagrangian itself is a thermodynamic poten-
tial.” That is, under the stated conditions the
Lagrangian is a Legendre transform of the internal
energy. The primary independent variables of the
potential were exhibited in the process of establish-
ing that result. This makes it possible for one to
circumvent’ controversial issues®~!! that clouded
Zilsel’s phenomenological treatment of the two-
fluid equations for many years.
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These observations and results provide a basis
for deriving equations for the two-fluid model of
liquid “He including electrostriction in the next
section.

II. DERIVATION OF THE TWO-FLUID
EQUATIONS FOR LIQUID “He
WITH ELECTROSTRICTION

In the absence of applied fields the Lagrangian
and its differential are given by the following for-
mulas’ for liquid “He when superfluid and normal
fluid flow velocities are uniform throughout the
liquid:

L=%-Py+V, P —E', (2a)

dL = pdV —TdS +P"-dV, —udN +Py-di ,
(2b)

where E’ is the internal energy of the flowing
liquid, Po is the correlated momentum, U is the
velocity conjugate to P(,, P’ is the total momentum,
v, is the normal fluid velocity, ¥ is the volume, p
is the pressure, S is the entropy, T is the tempera-
ture, N is the number of *He atoms, and p is the
chemlcal potential per “He atom. Microscopic
theory provides explicit formulas for L, E’, Po,

i, P, p,S,and . It should be noted that the
correlated momentum Po is related to superfluid
velocity V; by

Po=Nm7v, , (3)

where m is the mass of a “He atom. The problem
discussed in previous work® of determmlng
whether PO, an extensive quantity, or V,, an inten-
sive quantity, is the proper primary independent
variable in L has been resolved in favor of Po, but
the arguments will not be given here. It is useful
to introduce Lagrangian densities / and 7 having
the following properties:

ML -
=T ar=rl 4)
dl=Idp+pdl , (5)
dl=— ;%dp— Tds+ ] -dv,+V,-dd , 6)

where

(7

NI

P
v (8)
It has been established that the Lagrangian density

T:

I in Eq. (4) can be expressed in the form postulated
by Zilsel,® viz.,
I=p[3(1—x)v}+3xvi—e], 9)
where
M, p,
=T P (10)

M, is the normal fluid mass, M =Nm is the total
mass of “He, and p, and p are normal fluid density
and total mass density, respectively. The condition
that superfluid density p, satisfies p=p, +p; is im-
plicit in Eq. (9). The intrinsic internal energy per
unit mass is e. Formulas for p, and e are available
from earlier work.>” That same work led to defi-
nition of intrinsic chemical potential per unit mass,
z, and formulas for z and dz. It was found that

dz:%dp—sdT—%xd(Vn—Vs)z- (an

The equation of motion for superfluid is particu-
larly simple when expressed with the aid of Eq.
(11), as we shall see later. The formula for / was
derived for conditions of thermodynamic equilibri-
um and uniform flow, but in applications here it
will be assumed to hold also when those conditions
are met only approximately and locally.

This Lagrangian density can be used in Eckart’s
variational principle!>>!? to derive equations of
motion if dissipation is neglected. Conservation
laws for mass and entropy, viz.,

—aﬂ+€-(pf)=o, (12)
ot
and
9—%‘3[51+v (psV) =0, (13)
where

(14)

~

PT:(psVs +ann)=P(ﬁ+7n

are imposed as constraints with the aid of
Lagrange multipliers a and B when the indepen-
dent variables of the Lagrangian density are varied.
When an electrical potential* ¢, treated as an addi-
tional independent variable, and a gravitational po-
tential'> per unit mass ¢ are present, Eckart’s prin-
ciple takes the form



0=8ft:dthd3r

The volume of integration is fixed in space without
regard to any possible motion of the fluid, and
variations in all relevant quantitites are specified to
vanish on the boundaries of the space and time re-
gions appearing in the integrals.

Before proceeding further it is necessary to com-
ment on certain properties of the permittivity € in
the third term of Eq. (15). We shall assume that
helium atoms have an electrical polarizability @
that is independent of density, temperature, and
other conditions of the liquid and that it is a given
constant. Furthermore, we will suppose that the
Clausius-Mossotti relation'* is applicable so that

b+ E(_Ts)?
I—pf+>(~V9) =

&=1_ _pa (16)
€+2 3em’

where €, is the dielectric constant. Then €,, and in
turn €=¢y¢,, depends on the density p but not on
any other primary independent variable of the
Lagrangian density.

The Euler variational equations generated by Eq.
(15) are :

TP _3 . zae Oda
8p: 1 ; $+5(—Ve) +5
e aﬁ -
+(u+v,,)'Va+s¥+sv,,°VB=O,
(17)
8s —T+%£:—+V,, V=0, (18)
8vp: G+Vp+Va+sVB=0, (19)
8: V,+Va=0, (20)
8p: V-[e(—V$)]=0. 1)

Equation (21) is just Maxwell’s equation V-D=0
in a form applicable when the free charge density
is zero.

Taking the curl of Eq. (20), one finds

VXV,=0, (22)

a condition derived here and in Zilsel’s theory, but
treated as a postulate in Landau’s phenomenologi-
cal theory.!” It may be worth noting that accord-
ing to Eq. (19)

a | 4 e +7,)]
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.

This restriction on flows is also implicit in the ear-
lier treatments of Zilsel,> London,* and Jackson’
without electric fields present.

Elimination of Langrange multipliers a and 8
from Egs. (17)—(20) leads to simple equations of
motion for superfluid and normal fluid. One can
infer from earlier work'® that

T:%—Ts —z+%vs2—xvs2+xvn‘7s : (23)

Combining Eqgs. (1), (23), (18), (19), (20), and (14)
with (17) and then simplifying, one finds

da Je | 1

—_ _ EZ_ -
o =2 T9 3 T
Equation (24) is essentially one of Josephson’s
equations,'” but now it refers to liquid “He instead
of superconductors. Taking the negative gradient
of Eq. (24) and using Eq. (20), one arrives at the
equation of motion for the superfluid. It is written
below in useful alternative forms:

v2. (24)

a — _
==Y z+¢—§Ezg—;+%va , (25)
D, Y
=_%v*p+sv'T+gx€w,,_vs>2
_Ve4+V |1E20€ (26b)
o

The convective derivative following the motion of
the superfluid in Eqgs. (26a) and (26b) is defined by

D; 3

Dt = +V,°V . 27
Combining Eq. (11) with (26a) yields Eq. (26b).

Derivation of the equation of motion for the

normal fluid from Egs. (17)—(21) is nontrival, but
it involves only steps that differ little from those
already in the literature™!*!® provided that Eqs.
(23), (14), and (11) are first taken into account.
The final result is
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where the convective derivative following the mo-
tion of the normal fluid is defined by

D, 3 -
=24, V. 29
Dt at+V" v 29)

In Eq. (28) T is a source density of normal fluid
(rate of production of normal fluid per unit
volume) and a sink density of superfluid. It satis-
fies the following continuity equations for the two
fluids:

W =
——+ V- (p,Vy)=T, (30a)
ot
a —>
;: +V(p;Vy)=—T. (30b)

Gravitational and electrostrictive terms enter the
equations of motion for superfluid and normal
fluid only in the combination ¢ — —;—E %(3e/3p).
This observation makes it possible to write down
immediately the conservation laws including both
effects from laws derived earlier for gravitational
forces alone.!> Momentum conservation is now ex-
pressed by

3, o = = . =
E(pn Va+psVs)=—V(py VyVn+psVsVs)— Vp

— = |1 286
— sE“— 31
pVe+pV |3 3p (31)
Energy conservation is expressed by
d
5 (3Pata+ 3P0 +pe)
- Y LI )W
=—V{ PnVnVn+ 7PsVs Vs +(pe +p)W
+p(Fy— W Ts + (¥, —¥,)'] }
W T4pw-V |LE2EE (32)
—pw +p 2 ap :

In Eq. (32) W is the local center-of-mass velocity
that satisfies

PW =PpVy+psVs » 33)

and e is the intrinsic internal energy per unit mass,

—(v,,—vs)“—ﬁﬁ-i-?

. . T 3

12
ox Bl (28)

[
the same as in Eq. (9).
The electrical term in Eq. (31) can be written as

= |1 de =1 de 1 =
_EZ_ — 2 Y ___EZ
PV |3 % V[ZEpap ~E“Ve, (34)
where
- e =
€= 3 Vp . (35)

When Egs. (34) and (35) are taken into account,

one can readily see that Eq. (31) is consistent with

the expression for ponderomotive force given by

Landau and Lifshitz? and by Stratton'® for classi-

cal fluids. It is also noteworthy that the Clausius-

Mossotti relation, Eq. (16) implies
Jde, 1 (e,—1)e,+2)

dp B p 3
Therefore, when v, =v, =0 and $=0, one finds
from Egs. (31) and (34)—(36) that the pressure gra-
dient satisfies

_ €FE?
Vp——
P 2

(36)

— €) - 2
Ve + VIE e, ~1)(e, +2)] .

(37)

Equation (37) agrees with a result found by
Neidhardt and Fajans® for liquid *He under equili-
brium conditions.

The theory of electrostriction developed here for
liquid “He can be extended to dilute solutions of
He in “He. That theory and also possible applica-
tions of it is to cryogenic devices are planned to be
reported in future papers.
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