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We derive an expression for the Knight shift (E) in solids, including spin-orbit and

many-body effects. We construct in k space, using the Bloch representation, the equation

of motion of the Green s function in the presence of a periodic potential, spin-orbit in-

teraction, external magnetic field, and electron-nuclear hyperfine interaction. We use a

finite-temperature Green s-function method where the thermodynamic potential is ex-

pressed in terms of the exact one-particle propagator 6, and we derive a general expres-

sion for E. Our result for the Knight shift is expressed as E =E,+E,+E„,where E,
and E, are the usual orbital and spin contributions to E modified by the spin-orbit and

many-body contributions and where E„,which is nonzero only when spin-orbit interac-

tion is taken into account, is a new contribution to E which had been overlooked in the

earlier theories. If we make simple approximations for the self-energy, our expression for

E, reduces to the earlier results. If we make drastic assumptions while solving the ma-

trix integral equations for the field-dependent part of the self-energy, our expression for

E, is equivalent to the earlier results for the exchange-enhanced E, but with the free-

electron g factor replaced by the effective g factor. A novel feature of our analysis is that
while some of the terms in E„have exchange enhancement effects similar to those of E„
except that the exchange enhancement parameters are different, the other terms in E be-

come modified similar to E,. Thus because of the mixed character of these terms, the

exchange and correlation effects on E„cannot be interpreted in an intuitive way. In ord-

er to calculate the importance of the new contribution E„,we apply our theory to calcu-

late the Knight shift of Pb in p-type PbTe with small hole concentrations. Our results,

which agree with experimental results, indicate that E is of the same order of magni-

tude and has the same sign as E, and is about 3 orders of magnitude larger than E,.
Thus E„,the new contribution to the Knight shift that we have calculated, is important

for solids with large effective g factors and should contribute a significant fraction of
their total Knight shift.

I. INTRODUCTION

A first-principles analysis of the Knight shift
(K) of solids is of importance from a theoretical
point of view for two reasons. First, since E
depends rather sensitively on both the wave func-
tions as well as features of the band structure and
Fermi surface of the metal, it provides a more de-
tailed assessment of the applicability of methods
used for band calculations than properties which
depend only on the shape and dimensions of the
Fermi surface. Second, it depends on a variety of
mechanisms involving both single-particle and
many-body eAects connected with interactions

among conduction electrons and between conduc-
tion and core electrons. The quantitative analysis
of various pertinent mechanisms that contribute to
E could thus sharpen our understanding not only
of the electronic structure of solids, but also of
electron-electron interaction effects in the presence
or absence of magnetic fields.

It is well known that the basic mechanism for
contribution to the Knight shift of metals is due to
the extra field produced at the nuclear site by the
surplus of polarized electrons at the Fermi surface
with the magnetic moments parallel to the magnet-
ic field. Since this extra field also produces the
Pauli paramagnetism, this basic mechanism may
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be termed as the spin efkct. To evaluate this spin
contribution to Knight shift (K, ) one needs a
knowledge of the spin susceptibility (X, ) as well. as
thc spin density pfodUccd by thc Fermi-surface
electrons at the nucleus. It is also well known
that the electron-electron interactions enhance X,.
In conventional treatment of this quantity, it is
tacitly a,ssumed that electronic exchange interac-
tions give rise to a spatially homogeneous CA'ective

magnetic field acting on the electronic spin. VAth

this assumption, Kg becomes proportional to
exchange-enhanced g, and a Fermi-surface average
of the electron contact density. The recent theoret-
ical calculations of K, of metals either use relativis-
tic wave functions constructed from many orthogo-
nalized plane waves (OP%'s) using first-order per-
turbation theory or nonlocal pseudopotentials ig
which the effect of electron-electron interactions in

7, have been taken into account. However, these
theories do not include the exchange core-
polarization effect' *"which can be viewed as a
consequence of a spatially inhomogeneous exchange
flcld ln thc coIc of thc ion Rnd thc cxchangc in-
teraction' ' between the polarized Fermi-surface
electrons and the paired-spin electrons below the
Fermi surface. Further, the requirement of achiev-

ing self-consistency between thc spin density Rnd

the exchange field had also been ignored. Zaremba.
and Zobin' have formulated a linear-response
theory of Knight shift in metals based on the
density-functional formalism. ' ' Their approach,
which is similar to the recent theories of muon

Knight shifts, ' ' emphasizes the importance of
achlcvlng self-consistency %'1th icspcct to both thc
charge and spin densities and includes core polari-
zation. Recently, attempts have been made'

within density-functional theory to treat correlation
effects on spin susceptibility in many-band but
nearly-free-electron-like systems, such as aluminum
and magnesium. However, when band-structure ef-

fects are important it may be difHcult to handle the
strong local-field effects within the Usual density-
functional theory.

ThcI'c Ric also additional mechanisms such as
orbital hyperfinc interaction and spin-orbit interac-
tion which contribute to the Knight shift of metals.
The contribution of orbital hyperfine interaction in
the absence of many-body effects has been fairly
well understood. ' ' In the calculation of the spin-
orblt contribution to Knight shift of metals, thc
spin-orbit interaction was included to second order
in the terms involving the electron-nuclear contact
interaction which resulted in an anisotropy of

Knight shift even in cubic metals. However,
many-body effects were also neglected in these cal-
culations.

It is well known that the spin-orbit interaction
has a pIofound cffcct on thc cncigy clgcnstatcs of
multivalley semiconductors, but Sapoval, who
was the first to obtain an expression for the Knight
shift of semiconductors, ignored this property. Bai-
ley ignored Yafet's treatment of the hyperfine
coupling showing that the hyperfine Hamiltonian
does not involve the effective g factors. Sapoval
and Leloup derived a theory of the Knight shift
in degenerate multivalley semiconductors, consider-
ing the spin-orbit interaction and the relativistic ef-

fects on the hyperfine coupling. They considered
the spinor character of the wave function and the
nontensorial nature of the g matrix and showed
that, except for a spherical valley, the Knight shift
is not proportional to the Pauli paramagnetic sus-

ceptibility. However, they did not consider the
IQany-body effects on thcsc contributions. Adler
et 0/. have developed a k p band model to calcu-
late the Knight shift of Pb& „Sn~Te in which the
spin-orbit interaction is included through the effec-
tive g factor, but they have also ignored the many-

body effects. It may be noted that in these calcula-
tions, the CAective g factors depend on the choice
of fhe basis fllIlctlolls (111 particular, oil their
phase). Unfortunately, a convention is necessary
to obtain the sign of the conduction-electron g fac-
tor, thus introducing an ambiguity in the expres-
sion for Knight shiA.

It is clear from the foregoing remarks that only
the theory of Knight shift in simple metals in the
absence of spin-orbit and many-body enects is wdl
known. Although attempts have been made to in-

clude the spin-orbit and other relativistic elects,
none of these obtain all the contributions to j'. In
fact, hitherto it has been thought that the entire ef-

fect of spin-orbit interaction on K is incorporated
through a modification of the g factor and through
a change in the orbital contribution via modifica-
tion of the one-particle eigenstates. Similarly, it
has been assumed that the entire effect of electron-
clectron interaction is to enhance the spin suscepti-
bility appearing in the spin contribution to E. The

complete effect of the electron-electron interaction
on K starting from first principles, particularly for
Inany-band systems and for strong spin-orbit in-

teraction, has not been investigated. The present
woik was carllcd oUt Rs an attempt ln this dlrcc-
tion, and we believe that we have been able to
derive a satisfactory theory for K.
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Our approach is different from the earlier
methods in the sense that we have used a finite-

temperature Green's-function formalism where the
thermodynamic potential (0) for an interacting
electron system in the presence of a periodic poten-
tial, spin-orbit interaction, external magnetic field,
and electron-nuclear hyperfine interaction is ex-

pressed in terms of the exact one-particle propaga-
tor G. We have constructed in k space, using the
Bloch representation, the equation of motion of the
Green's function in the presence of the magnetic
and hyperfine fields and evaluated 0 and hence E.

The expression for Knight shift for interacting
electrons in solids, which we shall derive, is of the
form

E =E,+E,+E„,
where K, and E,, are the counterparts of the usual
orbital and spin contributions to K, modified by
the spin-orbit and many-body interactions, and

E„ is an additional important contribution to E
due to the effect of spin-orbit coupling on the orbi-
tal motion of interacting Bloch electrons. In our
theory the effects of exchange and correlation on
each of the three components of K have been expli-
citly calculated. If we make simple approxima-
tions for the self-energy, our expression for E,
reduces to the earlier results. If we make drastic
assumptions while solving the matrix integral
equations for the field-dependent part of the self-

energy, our expression for K, is equivalent to the

earlier results for the exchange-enhanced E, but
with the free-electron g factor replaced by the effec-
tive g factor, a result which has been intuitively
used but not yet rigorously derived. An important
aspect of our work is the analysis of exchange and
correlation effects on E„,which are more subtle
and cannot be included in an intuitive way. We
show that K„,which has been hitherto neglected,
is of the same order of magnitude as E, and much
larger than E, for solids with large g factors. We
apply our theoretical results to p-type PbTe as an
example and present what we believe to be the
most complete calculation of E in a solid which
analyzes all the contributions carefully.

The planning of the paper is as follows. In Sec.
II, we construct in k space, using the Bloch
representation, the equation of motion of the
Green's function in the presence of a magnetic
field. In Sec. III, we derive an expression for the
Knight shift for an interacting electron system in
the presence of a periodic potential, spin-orbit in-
teraction, external magnetic field, and electron-
nuclear hyperfine interaction. In Sec. IV, we care-
fully analyze the exchange and correlation effects
on each component of K and compare our results
with the earlier results. In Sec. V, we apply our
theoretical results to calculate the Knight shift of
p-type PbTe and show that K„ is of the same or-
der as E, and much larger than E,. We also com-
pare our results with experimental results. In Sec.
VI, we summarize and discuss our results.

II. EFFECTIVE EQUATION OF MOTION IN BI.OCH REPRESENTATION

The exact one-particle propagator G(r, r ', gi) for an interacting electron system in the presence of a
periodic potential V(r), spin-orbit interaction, external magnetic field B, and electron-nuclear hyperfine in-

teraction satisfies the equation

(gi H)G(r, r ', B,M—,(i)+ J dr "X(r,r ",B,M, gi)G(r ",r ', B,M, (i)=5(r —r '),
where X is the proper self-energy operator, gi is the complex energy

(21+1)in.
I +p,

(2.1)

(2.2)

and 0 is the one-particle Hamiltonian
2

H= p+ +V(r)+ o VVX p+ —A + 2 2V V+ , gopoB o—1 eA A - e - A2
2

2m c 4m c Sm c

——M .B+poJ
MJ cr 3(o"rj)(MJ ri) g~

o"MJ5(rj ) +
rj

2MJ. rj X [p+(e/c)A)
Arq
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G(r+R, r '+R, (i)=G(r, r ',gi) (2.4)

X(r+R, r '+R, gi) =X( r, r ', gi), (2.5}

In Eq. (2.3), A(r) is the vector potential, o is the
Pauli spin matrix, go is the free-dectron g factor,

po is the electron Bohr magneton, MJ is the nu-

clear moment of the jth nucleus, and rj is the
coordinate of the electron relative to the jth nu-

cleus. The first five terms are the well-known

terms for the one-electron Hamiltonian in an exter-
nal magnetic field including spin and spin-orbit in-

teraction, the sixth term is the nuclear Zeeman

term, the seventh and eighth terms are the interac-
tion terms due to nuclear and electron-spin mag-
netic moments and have the form of a dipole-

dipole interaction energy, the ninth term is the
magnetic hyperfine contact interaction, and the
tenth term describes the interaction of the electron-

ic orbital moment with the nuclear magnetic mo-

ment.
In the absence of the magnetic field, both 6 and

X have the symmetry

where R is the crystal translation vector. The vec-
tor potential in the Hamiltonian destroys this sym-

metry, but both 6 and X can be written as the
product of a "Peierls phase factor" and a part
which has the above symmetry. ' ' In the sym-
metric gauge (A= —,BXr ), we have

G(r r ' 8 M gi}=e'"'" " G(r r ' 8 M gi)

Q6)

X(r, r ',B,M, gi)=e'"'"""X(r, r ', B,M, (&),

(2 7)

(2.8)

and the quantities 6 and X satisfy crystal transla-
tional symmetry. Substituting Eqs. (2.3), (2.6), and
(2.7) in (2.1), commuting the differential operator
through the Peierls phase factor, and then multi-

plying on the left by e '"'x', we obtain

2

[p+irih X(r —r ')]'—V(r) — o"7 VX[p+Ah X(r —r ')]— 7 V——,gppo8. 0.
2m 4m ~c~ Sm c2

1- ."—M "8—po
J

MJ o 3(0 r~)(MJ. rj) g~+ O'MJ5(rj )
r ~ 3

~ p [p+&h X(r —r ')]r
+2E~ J rj

fir)
3 G(r, r ',B,M, (i)

ih (r')&r+rxr "+r "xr')g(~~st 8 M g )G(~tt ~i 8 M g ) $(~r P')& —~'h rxr' (29}

where e~p& is the antisymmetric tensor of the third rank and we follow Einstein summation convention. %e
can write the equation of motion in a Bloch representation, i.e., in terms of the basis functions

(2.10}

where U„k is a periodic two-component function, n is the band index, k is the reduced wave vector, and p
is the spin index. Here g„k (r) are the eigenfunctions of the Hamiltonian of the noninteracting electrons

n, k,p
in the absence of the external magnetic field and the hyperfine interactions [B=O, M=O in Eq. (2.3)]. The
index p, p= 1 or 2, distinguishes the two independent eigenfunctions P„k i and f„z z which belong to a

general wave vector k and energy E„(k) if the crystal has inversion symmetry. Using the Bloch representa-

tion, Eq. (2.9) can be written as
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—ik ~ r Ut (~)
+ ll«k, ptt II k t k t ~

«p «

X gi — [p+Ah X(r —r ')] —V(r) — o"V VX [p+hh X (r —r ')]— V~v
2m 4m c Sm c

]—i go@08'(7++ MJ 8—
(Mo

J

MJ cr . 3(o"rj)(MJ rj) g«r+ 5 + (7 MJ5(ri}
rj fj

rr P [P +«)i'h X ( r —r ') ]r+ Err@ 'J r~
Arj.

3

Xe'" '" ' 'U„„-„,. „(r)U„„k„., (r")G(r",r', B,M, gi)U„, k, ,(r')e'" '
+ g d d 'd "d "' '"'U- ( )lj«k, p

~tt ptt k t k tt

Xeih (r'xr+rxr "+r "xr')y(r r «B M g
}eik".(r"—r"')U (r )Ui' (r««

(2.1 1)

ik" (r —r') ik".(r' —r")U
«p «pk"

XG(r "', r ', B,M, (i)U„, k, ,(r ')e'" '" =5„„5

By introducing change of variables R) ——r "—r ', R2 ———,( r '+ r ") in the first integration, R) ——r —r ",
R2 ———,(r+ r "), Ri ——r "'—r ', and Rz ———,(r '+ r "') in the second integration, and by using partial integra-

tion of the type

Eq. (2.11) can be written in the form

ei k ".( r —r ')&p eik
".(r ' —r ")U (r)U~t (r «) g 12)

«p «k"

g [4—&(&»rMrk)]n, k,~,n-, k,~-Gn-, k ~- n, k,~ (k»~Mrs ) I k '= k nn'5pp' r

n",p"
(2.13)

$2
H(~, B,M, g, )= (p+r~}'+V(r)+, , ~ V'VX(p+r~)+, , «t'V+ ,'g,q,B ~-

Zm 4m c Sm c

1-"——M 8+paJ
J

MJ 0 3(i7 rj)(MJ rj) g«r cr.Mi5(rJ )
rj rj

a =k+&h XVk,

M~ rj~(p+fitr. )"
+2 6'~py

Arj
+X(t(,B,M, (i), (2.14}

(2.15)

and

X„k „., k ..(a ', B,M, gi)= Jdrdr'U„k (r)e '" '' ' )X(r, r', B,M, gi)U„„k .,(r'),

G„,. k,. „,-k,(k', B,M, gi}=Jdrdr'U„„-„,.(r}G(r,r', B,M, (i)e '"" " 'U„, k, (r) .

(2.16)

(2.17)

It should be pointed out that X(tr, B,M, gi) is a
(2 X 2) matrix, an operator in k space, and has
both explicit (through a ) and implicit B depen-

dence. It also depends implicitly on the noclear
moment M. Since the U„k 's form a complete set

for periodic functions, Eq. (2.11) can be written in
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the alternate form

[gl H—(K,B,M, (I)]G(k,gl )=I . {2.18)

the nth-order diagram, and each ~ill give the same
contribution when Tr is taken. From Eqs.
(3.1)—(3.3), it can be easily shown that

Equation (2.18}is the effective equation of motion
of the Green*s function in the magnetic field. This
method of derivation of an eAective equation of
motion in the Bloch representation is a generaliza-
tion of the procedure developed by us for orbital
motion of Bloch electrons in a magnetic field. We
shall no~ use this equation of motion to obtain a
general expression for the Knight shift of solids.

K,~= lim
a-0 V
M -+0

a xg,
r Gg,+Tl

III. DERIVATION OF GSNSRAI. FORMUI. A
FOR KNIGHT SHIFT

A. Method of derivation

The Knight shift (K) at the nucleus j is calculat-
ed from the expression

a'n
E~ = — lim

V 8 o aB~aMJ„'
M~0

(3.1)

(3.2)

where Q( T, V,p, B,M) is the thermodynamic poten-
tial for an interacting electron system in the pres-
ence of a periodic potential V( r ), spin-orbit in-

teraction, external magnetic field 8, and electron-
nuclear hyperfine interaction. Using finite-temp-
erature Green's-function formalism, n can be
evaluated from t.uttinger-Ward expression

0=—[Trln( —Gg, }—TrX(Gg, )Gg, +$(Gg, )] .1

axe, aGg,
+Tr

aMJ„aBP
(3.4)

Equation (3.4) can be written in the alternate form

KJ~=KJ +EJ„
where Kqz (qp denotes quasiparticle), the contribu-
tion due to the first term in the right-hand side in

Eq. (3.4), has exactly the same form as that of
noninteracting Fermi system, except for the re-

placement of the "noninteracting G~,
"

by the exact

G~, for the interacting Bloch electrons. K„~, the

sum of the second and third terms in Eq. {3.4), is

the contribution due to exchange snd correlation
effects. In order to evaluate K from Eq. (3.4), we

expand

X(K,B,M, (I ) = X(k,B,M, gl )

BX(k,B,M, (I )—iII p V+
ak

gn
P(G~, ) = lim Tr g X'"'(G~, )G~, .

A, -+1 „2n (3.3)

Herc G~, and X~, are the abbreviated notations for

the exact one-particle Green's function and proper
self-energy defined earlier, Tr is defined as g& tr,
where tr refers to summation over a complete one-
particle set, and the functional $(G~, ) is defined

33,34

X(k,B,M, (1)=X (k,(I)+BOX'"(k,(I)

+ gM „X.'"(k,gl)
J

+g B„Mq+J '""(k, (I}+
J

(3.6)

Here X'"'(Gg ) is the nth-order self-energy part,

+here only the interaction parameter A, occurring
explicitly in Eq. (3.3) is used to determine the or-
dcI'. Ill fact, $(G( ) ls dcflllcd thfollgll tllc decom-

position of X'"'(G~, } into skeleton diagrams. There

are 2n G~ lines for the nth-order diagrams in
I

$(G&,). DifFerentiating P{G&,} with respect to G~,

has the effect of "opening" any of the 2n lines of

(3.7)

(3 8)

H {K,($ ) =He( k, g/ ) +H ( k, g/ ), (3.9)

e ~ is the antisymmetric tensor of the third rank,
and ore follow Einstein summation convention.
From Eqs. (2.14), (3.6), and (3.7), we obtain
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where Hp(k, gi) is the Hamiltonian in the absence of magnetic and hyperfine fields,

Hp(k, gi)= (p+fik) +V(r)+ 2 z
ir '&'VX(p+irik)+

2
2V' V+X (k,gi),

2m 4m c 8m 2c2

and H'( k, gi) is the operator

H'(k, gi) = — h~p—II (k,gi)Vk+ , gpss—pBqo "+BOX'"(k,gi)
m

2~v

MJ,XJ '"( k, gi ) +B„MJ.„Xi '"'( k
& gi ) ihip—Ml„Vk

——MJ.
i

Mj. cr 3(o"rj)(MJ. rj) g~ o"Mi5(ri )

rj r,
' J J

(3.10)

MJ ri~(p+fik)r
+ 2E~py

Ari

a PMi ri
2ie—mrs i V'k

ri
(3.11)

where we have retained terms uy to first order in both magnetic and hyperfine fields, and II lm is the velo-

city operator in the absence of B and M,

11(k,g, )=(p+ek)+, o X V V+ —p-„X'.
4mc k

We make a pertUrbation expansion

G(k, gi)=Gp(k gi)+Gp(k gi)H Gp(k gi)+Gp(k gi)H Gp(k gi)H'Gp(k gi)+

where

G p (k, gi) = f4 —Hp(k, gi)]

(3.12)

(3.13)

(3.14)

and is diagonal in the basis U„k . Here we retain terms up to first order in both magnetic and hyperfine

fields.
It can be easily shown that '

VkGQ(k gi) = Gp(k, g/)II Gp(k g/)
m

From Eqs. (3.11) and (3.15), we obtain

2

G(k, g, )=G (k,g, )+G . i h pII —G II + , g ppB„Fi'—

(3.15)

+ g — MJ 8+Bi,M—J„XI. +ppMJ+i
i

(rj"G pII~ II~Gprz")—
+2i—p pEv~~h ~pMJ

m ri

2

p, h ~M„(D'GII G II~+II. G D'GIII+II G II.IiG D").
m

+ , gpp pBqMJ „(Di"GpF—"+F"GpDJ")

'Gp+ (3.16)
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where

v v 1 2, v
D)

——XJ + XJ'
pp

(3.17)

o "5(rj)+
f~

+2~vpg

r~( p+fik )1 XPv+X1v
g 2 J J

J
(3.18)

p] ~a+ y~ ~
SpPp

(3.19) where the trace is taken over one-particle states
only. By partial integration, we obtain from Eq.
(3.22)

and we have retained terms up to first order in
both magnetic and hyperfine fields. We note that
we have neglected all second- and higher-order
terms in magnetic and hyperfine fields since we are
interested in calculating the field-independent
Knight shift.

Qqp= . tr P(g) ln(H —g)
1

—J, k(0) (3.23)

B. Evaluation of Eqp

We shall derive an expression for Eq& from Eqs.
(3.4) and (3.16) by assuming that the self-energy is
independent of frequency, which is valid in the
statically screened exchange approximation. In
order to carry out the frequency sums appearing in

E&~z, we use the identity

1~ 1 1 dg 1—Yln lnP, H g, 2~i ~—,~~~ ~~+1 H —g
'

&s

(3.20)

where the contour c encircles the imaginary axis in
an anticlockwise direction. We define

Since the first term is zero, we have

Qqp ——— . tr J $(g)G(g)dg . (3.24)

The advantage of using Eq. (3.24) is that after sub-

stituting the perturbation expansion for G(g) [Eq.
(3.16)], the free energy can be easily evaluated.
The results are the same as obtained by using the
inverse Laplace transform technique, ' but the

present technique is simpler.
The one-particle trace is evaluated over the

periodic part of 1(„z which are eigenfunctions of
Ho(k). In this basis Go is diagonal and is given

by

Gp ——(g —E„q) . (3.25)

y(g)= ——ln(1+e ~~ ") .1

From Eqs. (3.2), (3.20), and (3.21), we obtain

Qqp
—— tr ln H—dP(g)

27B & d

(3.21)

(3.22)

After evaluating the trace, we perform the contour
integration as prescribed in Eq. (3.24). We use the
identity II„„=Owhere p is a spin state conjugate
to p. We also adopt the convention that running
index means that the sum over all the bands and
all the spin indices shall be taken except that all
band terms equal to n have been explicitly separat-
ed out. After considerable algebra, we obtain
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Qqp g P(E )+2i 2haP q P(E )+i 2h P f(E )+ —,goPOBpFPf(E )

f'(E, ) 3f(E„) Q(E„)+ g '~
2 hapPDMjv Djnp, np'IInp'mp, "IImp , n"p + 2 +

i mn Emn E „
f(E„) 2$(E, )

~npmp'~mp'qp" jqpnp E E +
qn mn Emn ~qn

T

f(E„) 2$(E„) 2$(E„)—rr~ .D" . -rrp-npmp Jmp qp qP np E E E2 E 2
qn mn mn qn ~qn Emn

f(E, ) 2$(E„)
jnp, mp' mp', qp" qp", np

qn mn EqnEmn

f(E„) 2$(E„)+II pn p J p, mp ~mp', np 2 +
Emn Emn

p „ f(E„) 2$(E„)
nnp, npnnp, mp Jmp, np 2 + 3

Emn Emn

c& .at' . —rr ~ c&
~+ &p jnp, mp' mp', np np, mp' jmp', np

mn

c& vt'. „—n~ .c& . „
A~"~ ' ' ' ' f(E„)+ — MJQ„+—B„MJ+jnp""np f(E„)

mn

+ 4 goPWj/p(Djnpnp Fnp'np'+Fn, p, np'DJ'np', np)f'(En )

2
(D" F" ~ +F" D' )jnpmp' mp, ', np np, mp' jmp'np,

goP J P n
mn

(3.26)

where

TJ fg 0XJ
1"=2i p(pf~~~aha—p 3 +) hapMJ, —

m pj
(3.27}

As indicated earlier, sums will be taken over all indices n, m, q, p, and p', but num, q. In the above we
have also used the notation

E „=E (k)—E„(k) . (3.28)

In Appendix A, we derive the following identities:

D. II~ IIrc
h M ~ jnp, mp' mp', np np, np &(Eap iv~ ~2 n

m k ~mn

$2
i h pMJ„

mk

np, mp'amp', qp" qp", np
2

Emn Eqn

~jnp, mp' 'mp', qp"' qp", np
2

EqnEmn

Jnp, np np, mp mp, np+
mn

jnp, mp'"mp', np"np, np

E.'.
c& .n~. „+ &p Jnp, mp' mp ,np'

j E2 n
mn

(3.29}
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and

w2 .D" . rr~"p mp jmp "p "p "p gt(E )ap jv~ Kn 2 J n

k ~mn

f2
i httpMj„

mk

"np, mp' mp', qp"~jqp", np ' np, np"np, mp'~jmp', np
2 3

Em. Eq. Emn

3 2
Emn EmnEqn

n~ .c&
+ tip np, mp' jmp', np

J E2 n
mn

It can be easily shown from time reversal symmetry that

II„P p(k)=+II, „(—k)

and

(3.30)

(3.31)

F„„(k)=—F — ( —k) .

Using h p
———hp and the above, we have for nonferromagnetic crystals

f(E„) 2$(E„)
2 itapIInp, mp IImp ,'np '+ 2 + g p goIj'PPFnp, np'f (En ) =0

n, m, p,p', k mn mn

num

From Eqs. (3.1), (3.26), (3.29), (3.30) and (3.33), we obtain

(3.32)

(3.33)

+i"qp = X
l

Po&apju

D tffjnp, np tip, ttlp ttlp, np t

2 gOI jnp, np' np', np J n
mn

l+ Po&apju,
m

jnp, np" anp', mp" mp", np np, mp'~ mp', qp"~Jqp", np
2

Emn EmnEqn

nplmp jmp, qp qp lnp jnplmp mp tqp qp tnp

Eqn Emn Eqn Emn

~np, n~jnp, mp' mp', np np, np np, mp' jmp', np

2 2
Emn En

2 ~jnp, mp'~ mp', np+~ np, mp'~Jmp', np —3,pv+ 2 goop E ~jnp, np'
mn

P,
2l (&j /&j )np, mp'IImp', np IInp, mp'("j j j )mp'np,
„jjo(5.p—5„—„5.pbpg)—

EPp
E'aP~

gy 2, v
J

ak

gy 2, v

mp, np np, mp
np, mp' mp', np

~mn
f(E„) (3.34)

where we have used the identity

g ~app~vttg 5vpspg 5vp pg
a

and omitted the nuclear Zeeman term. %e note that in the absence of electron-electron interactions,
F=0,D"=X"and En and 0 reduce to the corresponding values for noninteracting Bloch electrons.

(3.35)
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C. Derivation of X„

We shall now derive an expression for K«~. From Eqs. (3.4), (3.5), (3.7), and (3.16), we obtain

I

=—Tr XJ'""(k,g()GO(k, g()+ —,gopoXJ'"(k, g))GO(k, g()E"Go{k, g()
I

@a@,XJ'"(k,g()GO(k, g()II Go(k, ())II Go(k, g)) (3.36)

As before, we assume the self-energy to be independent of frequency. We carry out the frequency sums as
per prescription of t.uttinger and Ward

1 1 1 1 1 dg.
p (g g )m 2~& I'0 (g E )m p(g-p)+ l

We obtain from Eqs. (3.36) and (3.37)

(3.37)

&Po
+JCOD' ~,, g goPO~JNP, NP~NP, NP + ~CD-+

k

~JNP, NP ~NP, mP mP, NP NP, mP JmP, NP NP NP

Emn Emn

x'. " .rtjnp, mp' mp', np np~np+ E J L NP

1+ —
2 go@0

~'np, mp™jmp',np+ ~jnp, mp' mp*, np

Emn

~jnp, np &&np, mp iimp, np ++np, mp ~Jmp, mp mp, np
2 2

Emn Emn

~np, mp ++mp, mp ~Jmp, np jnp, mp mp, Np Np, np
2 2

~mn Emn

np~mp Jmp inp np~np Jnpsmp mp ~mp Ngp ~np jnp&mp Ngp ~gp gp ~np
2 2

Emn Emn

np, mp mp, gp Jgp, np

Em. Egn

II~ X'" -H-8 llP1 PPNP, IJP IMP, lgP
X 3,P&

E Jnp, np J N

mn

{3.38)

We note that in the absence of electron-electron interaction, E„becomes zero as it should. However, as
we shall see, in the presence of electron-electron interaction, there are significant cancellations between Eq„
and E«„ terms.

D. General expression for the Knight shift

It has been shown in Appendix 8 that
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i@0 Lnp mp ~jmp np Lnp np Xjnp mp mp npLLnp np

tlat mn mn

lPO

m
E~p

k

p 2, v ~ 2, v p
2~np, mp'~j mp', qp" ~qp", np ~ 2~jnp, np' np', mp" ~mp", np

E .Eqn

+ —-
gy 2,vj
Bk

ax" '

mp' np np mp gka
f(En) . (3.39)

We shall now obtain a general expression for the Knight shift of solids (K) in the presence of both many-

body and spin-orbit effects. In order to simplify our results and present them in a familiar form, we use

some partial integration results and make simplification of X terms as outlined in the appendixes.
In Appendix C, it has been shown that

jjo&app
n, k,p

np, mp'LLmp', qp" jqp", np np, mp'amp', qp" Lqp", np ~jnp, mp' Lmp', qp" L qp", np

EqnEm. Eqn Emn Eqn Emn

3 P P g 3
2i 2 (rj «q )np, mp'1lmp', np 1lnp, mp (rj «'j )mp ,np'
„»(~—jap. ~.A. )

mn

e 2 2 ( j ~ )np, mp'(Lj jrj )mp', np+(Lj «j )npmp ("j, ~ ')mp', np
~vp(1lrj )np, np+ j oeapp

37tlC n, k,p mn

+ jjo&app g
n, k,p

L Lnp mp VLmp qp cLjqp np L Lnp mp ~jmp qp L Lqp np TLjnp mp L Lmp qp L Lqp np

Emn Eqn Emn Eqn Emn Eqn

(3 40)

From Eqs. (3.5), (3.34), (3.38), and (3.40), we obtain the general expression for the total Knight shift which

we separate into three different contributions to E as was done in the case of magnetic susceptibility and

write

—+ps ++go ++iso ~

where EJ-," is the spin-contribution to the Knight shift

(3.41)

n, k,p,p

1 2 v l 2 jnp, np' np', m p" L mp", np
2 gopPjnp, np'+np', np+'jj'oeapp g ' f'(Enk ) i

m,p" mn

mQn

(3 42)

E&"," is the orbital contribution to the Knight shift

2

3plC
n, k,p

T ~

np, np

2@0

n, k ,p, m, p'
num

(rj 11 )np, mp (L& Irj )mp np (Lj Irj3)np mp'(rj fl )mp', np f(E„-„),
mn mn

(3.43)

and Kj is a new additional spin-orbit contribution to the Knight shift
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2
a p a v p a p v

jp, p' p'. p" p" p+ p p jp p' p' p
Emn

a P Ov a Ov ~P+(flnp, mp'limp'qp"Xjqp", np+~np, mp'Xjmp ,qp'" ~~qp", np

gpv II a II p+ Xjnp, mp'~mp', qp" ~qp", np) Eqn mn

v p p v
(+Jnp, mp' 'mp', np++sp, mp'Xjmp , np )'

+ —,gojjo
' '

~
' ' f(E. i, )

mn

(3.44)

We note that in Eq. (3.44), repeated indices imply summation. We can also write EJ, in the alternate form
T

Kjs 2PO g Xjnpnp' gn, n(k)~np', np+ ~np', np f ni;) ~

pp
(3.45)

wllcrc tllc cffcctlvc g niatrlx gn n( k ) is dcflncd tllfollgll thc cquatloil

~~np, mp" ~~mp", np'

gn, (kn)+np, np'( k ) =goo'npnp'( k )+ ~app gIll Emnm, p
mQn

(3.46)

From Eqs. (3.43) and (3A5), we note that K, and

E, are the usual spin and orbital contributions to
E modified by the spin-orbit and many-body in-

teractions. In fact, it has been hitherto thought
that the entire effect of spin-orbit interaction on E
can be incorporated through a modification of the

g factor in the spin contribution (K, ) and through
a change in the orbital contribution (K, ) via modi-
fication of the one-particle eigenstates. Howeve. ",
we have obtained new contributions (K» ) which
vanish with spin-orbit interaction. E„can be in-

terpreted as the contribution to the Knight shift
due to the effect of spin-orbit interaction on the or-
bital motion of Bloch electrons.

It is interesting to note that the efFects of ex-
change and correlation (other than the usual
effective-mass corrections) which comes through
X'" appear only in E, and E„and not in Eo, and

also only certain terms in E„get modified. In
fact, the leading term of K„[pr oproti onlato
—3Xjnp „p in Eq. (3A4)], which is approximately
proportional to the g factor, does not become
modified by exchange and correlation (except via
modification of the one-particle eigenstates). An
important point is that had we considered the
quasiparticle contributions only, we would have ob-
tained exactly the same expression for E in Eqs.
(3.42) —(3.44) with the modification X"~D",

where D"=X"+(1/po) 2 '" and 2 '" has been de-

fined in Eq. (3.7). Thus in the quasiparticle ap-
proximation, both spin vertex 0." and the hyperfine
vertex X"become modified. The efFect of E„„is
to cancel precisely all the corrections to the hyper-
fine vertex and keep the renormalization of the
spin vertex. The source of the apparent asym-

metry between the spin and hyperfine vertices is in

Eq. (3.4), which depends upon the order of dif-
ferentiation in obtaining K. But our final result is
independent of this order of differentiation. This
can be easily checked by obtaining a relationship
between the two quantities X *"and X ' .

%e shall now show that in the absence of spin-
orbit coupling and with inversion symmetry, every
term in E„vanishes. In the absence of spin-orbit
coupling, every o„and X„vanishes because of
the orthogonahty of the orbital functions. Hence
the fourth up to the eighth terms vanish. If one
chooses B to lie in the z direction, one has
ger'„p „p = a„,„,+ o'„, „,=0 This, coupl. ed with

the fact that in the absence of spin-orbit coupling

~ng, m&
= IIng, mg

and III p is antisymmetric, makes the first term
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np, mp mp, np ' (3.48)

One can show from time-reversal property that

U„', ( —k)= —U„,(k) .

From Eqs. (3.47) —(3.49), we have

(3.49)

vanish. If in addition to the absence of spin-orbit
coupling, the crystal has inversion symmetry

teraction is to enhance the Pauli spin susceptibility
appearing in E,. The complete effect of the
electron-electron interaction on E for many-band
systems including spin-orbit interaction has not
been investigated. In order to calculate these
many-body effects from Eqs. (3.42) —(3.44), we
shall first consider the exchange self-energy in the
band model. The exchange contribution to the
self-energy is local in r space

11„, ,(k)=-11,„„(—k) .

Similarly we can show that

[XJ'(k)]„, , = [XJ'( —k )]

Prom Eqs. (3.50) and (3.51), we have

11„,„,(k)11„', ,(k)X,",„,(k)
2

Emn

(3.50)

(3.51)

X(r, r ', gi)= ——gv, a(r, r ')G(r, r ', gi —gi ),

(4.1)

where we have made a simple static screening ap-
proximation to obtain vdr(r, r ') from v(r, r'). In
this approximation the self-energy is independent
of gi and we have

2
Emn

(3.52)

X(r, r ')= ——gv, ff(r, r ')G(r, r ', g&) . (4.2)
Pg,

'

Since the reduced Brillouin zone is invariant under

reflection, when there is inversion symmetry, this
term exactly cancels the II„&«(k)XJ« ~z (k)
X II~& «(k)lE~„ term. Thus all the terms in K»
vanish in the absence of spin-orbit coupling if the
crystal has inversion symmetry.

E„should be considered as contribution due to
spin-orbit effects on the orbital motion and dis-

tinguished from the spin-orbit contribution to the
effective g factor for the following reason. There
are two types of contributions of the magnetic and

hyperfine energies of a one-electron eigenstate,

terms linear in B which split the spin degeneracy
and terms linear in M which do not. Both terms,
of course, contribute quadratically (product of B
and M), to the thermodynamic potential. The
linear terms in B are included in the g factor and

are always independent of the sign of the g factor,
i.e., independent of the sign of the splitting of the

spin degeneracy. The quadratic terms which arise
from a perturbation of the one-electron wave func-
tions by both the magnetic and hyperfine fields are

responsible for both E, and E„.

We assume that vdr(r, r ') is field independent, i.e.,
neglecting the field dependence of screening, we ob-

tain

X(r, r ') = ——g vdr( r, r ')G( r, r ', gi) . (43)

and

G(r, r')= g 6« ~(k)1(„k (r)g' k .(r') .
n, m, k

PP

(4 5)

Substituting Eqs. (4.4) and (4.5) in Eq. (4.3) we ob-

tain

QX«p(k)g„k (r)1(' i, p,(r')
n, m
Pip

X and 6 can be expanded in terms of Bloch states
as follows:

X(r, r')= g X«~&(k)g„z (r)f* i. ,(r')
n, mk
P~P

(4.4)

IV. MANY-BODY EFFECTS ON THE
KNIGHT SHIFT

A. Exchange self-energy in the band model

We note that it has been generally thought' ' '

that the dominant effect of the electron-electron in-

= ——g g v,rr(r, r')G, (k')

P~P

Xg, -„,-(r)g', -„,-(r ') .

If the effective electron-electron interaction is spin-
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independent, then p=p, p'=p' and we have ]to evaluate X„p p we make the further approxima-
tion

X„p p(k)= ——g (nm
~
u,ff(k, k') ~pq)

k', gi
uq

X Gpp qp
(k', (& ),

where

(nm
~
v,ff(k, k') ~pq)pp

(4 7)

(nn
i u,ff(k, k')

i pq )pp (nn
i u,ff(k, k')

i pp )6:Unp&pq

From Eqs. (4.7) and (4.9), we obtain

X„p „p (k ) = ——g unp( k, k')Gpp pp ( k', gj) .
~ k', g pi

(4.9)

, r' v,~ r, r' (4.10)

Xg k (r)1t'-k (r') . (4 g)

We shall now evaluate X„p„p and X„~ p which
occur in the expressions for E, and K„. In order

Substituting the value of G from Eq. (3.16) in Eq.
(4.10), summing over gi, expanding Xi as in Eq.
(3.7), and comparing the first-order terms in mag-
netic fields, we obtain

X„'p"„p(k)=—g u„m(k, k')Xm'pmp(k')f'(E k }——,@pe u„m(k, k')gmm(k')ompmpf'(E k }
m, k' m, k'

4

p„g „(k,k') ' ~P ™[f(E -„.) —f(E -„,)],
qQm

(4.1 1)

where the effective diagonal g matrix g" has been defined in Eq. (3.46). In order to calculate X„p mp (k),
we assume

(nm
~
vnff(k, k')

~ pq)pp vn(mk——, k')5 n5pqm.

From Eqs. (4.7) and (4.12), we have

(4.12)

Xnp. mp'(k} 2 v m(k k )Gnp, mp'(k kl}
~ k', gi

(4.13)

X„',",(k) = —gv-„(k, k )X„',",,
k'

Substituting the value of G from Eq. (3.16} in Eq. (4.13), summing over gj, and comparing first-order terms
in magnetic field with such terms in Eq. (3.7), we obtain

f(E„k ) f(E k )-
E.m

2 ppgvnm ( k, 'k')gnm enp mp
k'

f(E„-„)-f(E-„)
E.~

(4.14)

where we have defined the nondiagonal effective g
matrix gn~m as

I

alternate form

+Js +Jfs ++jfs (4.16)
g„" (k)cr„"p p(k}=goer„"p p(k)

rr II~2i ~np, qp" ~qp", np'+ &ed
q,p" Eqm

qQm

where

+jCs =
z p0 g gn, n (k )+jnp', np'~np', npf (En k }

5~ k,pip

B. Exchange enhancement of KJ;

(4.15) =Qlkfg' „, (4.17)

We shall first investigate how EJ","becomes ex-
change enhanced. We can write Eq. (3.45) in the

is the spin contribution to the Knight shift for
noninteracting Bloch electrons but with the free-
electron g factor replaced by the effective g matrix,
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Kj'g, „ is the spin-contribution to K from the nth
band, and

V ~ V ~sP
Kjis = P'o ~ +jnp, np ~np', np ~

)is k sPsP

(4.18)

is the contribution due to exchange and correlation.
First, we consider individual band enhancement
and neglect interband interactions. We make an
average exchange enhancement ansatz, assume v„
—:v„~ 5„~ which is equivalent to the assumption
that X'" is independent of k, and neglect terms
proportional to f to obtain from Eq. (4.11)

X =X '" (4.22)

P
m = 21 Ogmmmp, mp' ~ (4.23)

of the eAective Pauli spin susceptibility in the ex-
pression for Knight shift, is only valid if one makes
drastic assumptions while solving the matrix in-
tegral equations for X„&"„z. However, the neglect
of interband terms, i.e., coupling between the

Xpp pp for different occupied bands, might be too
drastic for systems such as Be, Cd, etc. We now
consider exhange enhancement of Ej in a two-
band model. We define

-]p 1 n
~np, np =2'~ Pognn 'np, np

1 —an

where

(4.19)

(4.24)

~n= —y unm(" " )f (~mk ) (4.20) From Eqs. (4.11) and (4.22) —(4.24), we obtain
(neglecting f terms}

is an average exchange enhancement parameter for
the nth band electrons at the Fermi energy. From
Eqs. (4.16)—(4.19), we obtain

Xn Unn+nXn +~nm+m Xm +Unn~n+n

+~nm&m&m (4.25)

&".
s nK""=g

n l —a5
(4.21)

which shows that the contribution from the nth
bands gets enhanced by a factor (1—an } '. We
note that the intuitive result of Eq. (4.21), which

gives rise to the well-known Stoner enhancement

+ "mmmm&m

Equations (4.25) and (4.26) can be solved self-

consistently and we obtain

(4.26}

and

2

Xn=
"nn n n+ "nm mNm "nn "mmanNnNm+ I Vnm I anNnNm

"nnNn ummNm +("nn "mm I "nm I
)NnNm

2

Xm=
"mmamNm +umnanNn unnummamNnNm +

I nm I
mNnNm

unnNn ummNm +(unnumm I unm ! }NnNm

(4.27}

(4.28)

From Eqs. (3.45), (4.17), (4.27), and (4.28), we obtain

Kj'C „[1 uN ~(a /a„)u„—N J+Kg [1 u„„N„+(a„la )u „N—„J
KJ',"=

"nnNn ummNm +("nn "mm I unm I
}NnNm

(4.29)

We note that even in a simple two-band model, the
exchange enhancement of Ez, is different from the
simple form obtained in Eq. (4.21).

incorporated through effective-mass corrections
and through modification of the Bloch functions.
These corrections are essentially small and can be
neglected.

C. Electron-electron interaction effects on KJ.,

From Eq. (3.44), it may be noted that there are
no exchange and correlation effects on E~, How-

ever, the effects of electron-electron interaction are

D. Exchange and correlation efFects on KJ;,

In order to calculate the exchange and correla-
tion effects on the mixed spin-orbit contribution
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Kj„,we write Eq. (4.14) in the form

p
pn, mp'(k) anm~np, mp'+ 2 j (pnmgnm&np, mp

where we have defined a new interband exchange
enhancement parameter

Equation (4.30) can be written in the alternate
form

~i@, 1 nm p, p,
~np, mp 2 PO gnm~np, mp1 —anm

From Eqs. (3.19) and (4.32), we obtain

(4.32)

f(E„-„) f(&-p)a„=—g u„(k,k') n™ k

Enm

(4.31)

p nm p p+ np, mp' =0'np, mp'+ gnm +np, mp' ~

go(1 —a„) (4.33)

Using Eq. (4.33), we have, considering only two
bands n and m,

~ ~np, np~ ~np, mp'~gmp', np
2

Emn

jnp, mp" mp", qp'" qp'", np 1 2 jnp, mp'~ tnp', np +~ np, mp'amp', np

E E
'

+2gopo
' 'E

mn qn mn

1 i [gnm(k)anp, mp'+jmp', np+gmn" k)xjnp, mp'~mp', np]

2(1—a„)
2lPO [(r /rj )(P+Rk)s]np p II pqp Il~qp'

&a@c&ySv 2PB
(4.34)

where we have taken a„=a „. From Eqs. (3.44) and (4.34), we have

+jso =+jso, ] +iso, 2
vp vp vjM

where

(4.35)

and

2
PO

~jso, i

n, k,p

gnm ( k )~np, mp'+}mp', np gnm ( k )+jnp, mp ~mp', np+ ' ' f(E' )
Emn mn

(4.36)

v a p a ~ piso, 2 = ~ capp[ 3+jnp, np'IInp', mp"limp", np+Iinp, ngjnp, mp'Iimp ,npl'
m, k,p, mn

a p Gv a Qv p+(~np, mp ~mp ,qp"'Xjqp"', np+IInp, mp'Xjmp', qp" IIqp", np) E E

[(r~"/rj)(p+fik) ]„p pII p qp-IIq~-„
f(E„) .E2 (4.37)

Thus we note that the effect of electron-electron in-
teraction is different for the different terms of Kjso
and involves the calculation of interband matrix
elements of X'*". K&~ i becomes exchange en-
hanced through the interband enhancement term
o.'nm. In a sense, this exchange enhancement is
similar to EJ, although the enhancement parame-
ters are different. However, EJ",", 2 does not become
modified by exchange and correlation. The effect
of electron-electron interactions on these terms is
incorporated through an effective mass and
through the modification of the Bloch functions.

In this sense Eg 2 is similar to E&",". We note that
the leading term of Kz",", 2 [proportional to
—3Xjn n

~ m Eq. (4.37)] is the dommant term in
KJ~~. We also note that exchange and correlation
effects on Ez~ could not be incorporated in an in-
tuitive way because of the mixed character of these
terms.

V. KNIGHT SHIFT IN p-TYPE PbTe

As an example of the importance of the new
contribution K to Knight shift of solids with
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L &+&P=i cos8+8 t+sin8+S

L6,P=cos8 Zl +isn8X t,
L &+zP=i sin8+R t cos—8+S t,
L&,13=srn8 Zt cos8 X—1', (5.1)

Lg P= (S+ t iS —1),1

2

large effective g factors, we have calculated the iso-
tropic Knight shift of Pb in p-type PbTe which
has large spin-orbit coupling Rnd small energy

gaps. The wave functions used in the calculation
have been obtained by using k p perturbation
theory on the twelve double-group basis functions
for the six levels at the L point obtained by
Mitchell and %allis. The double-group basis
functions in the notation of Mitchell and Wallis

L4. P= (X+I i—X t) .
1

2

Here the n and P indices denote the partners of a
Kramcrs pair, thc spin functions f Rnd 5 rcfc1 to
eigenstates of S, in a coordinate system with x
along the [112],y along [110],. and z along [111]
axes of a valley. R ls an atomic s state, Xy Rnd Z
transform like atomic p functions with m, =+1
and m, =0, respectively, and S+ transform like
atomic d functions with m, =+1. sin8-, cos8- are
the amplitudes of the single groups in the double-

group basis functions. %c note that there is some
controversy about band ordering at the I.
point. ' %'e have chosen the Lin-Kleinman or-
dcflng slncc, using this ordering, Bermck Rnd

Kleinman have obtained good agreement for en-

ergy gaps, efFective masses, and g values.
%c have flllst d1agonRllzcd exactly thc coIl-

duction-band (L6za, L &zP) and valence-band wave
functions (L~~a, Lq~P) to obtain

and

1+8'
28'

v 2(&/m )sk, ~Z(a/m)rk

EG&W(1+ W)
" E,v'W(1+ W)

i

v 2(A'/m)&k, ~2(A/m)tk
L62o,'— 1.6)a+ --— LsdEgv W(1+ W) EG&w(1+ W)

v 2(fi/m)sk, &2(fi/m)tk
Le& +

EG&w(1+ W)
" E,v'W(1+ W)

1+W + v 2(R/m)sk, W2(A'/m)ik+I 6]A+ L62& ——
EG&w(1+ w) E,&w(1+ w)

(5.2)

Here EG is the energy gap,

2''~' 2 2 4A's'
W= 1+ —

2 ~-(k~+ky)+ 2 2 k,
m EG m EG

t = —sin8+sin8 P3& —cos8+cos8 P~3,

s = —sln8 cos8 Pl ) +cos8 sln8 F21

k+ —— (k„+i'),1
+

2
Q P s

(5.3)

(5A)

(5.5)

(5.6)

and P~&, P2&, P3&, and 8~3 are the nonzero momentum matrix elements between single-group states dd'ined

in Ref. 40. The interaction of the g's with the far bands L6~a, Lq~P, L62a, L~qP, Lq13, and L5a have been

obtained by using k-p perturbation theory. The new valence-band energy E„(k) is obtained as

2@i W 1+W

M5 M6 4 M7 Ms

W(1+ W) W ' W(1+ W) W
(5.7)
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1 ——E''~csin 8 —61 cos 8

—2v 2b, l sin8+-cos8+-, (5 9)

where e c, b;„and 6~1 are energy parameters.
Furthermore,

2~2~'-,
tan28+ =

&o+~r
(5.10)

From Eqs. (5.8)—(5.10), it can be easily seen that
e 1 and el do not change if the signs of both
sin8+ and sin8 are changed simultaneously.

The matrix elements of II, p7, and X and new

energy gaps were substituted in the general expres-
sion for Knight shift [Eqs. (3.41)—(3.44)] to obtain
the Knight shift K(k) at an arbitrary k. The
result was then summed over all k states. In an
arbitrarily oriented external magnetic field 8, nei-

ther the matrix elements of o nor the Fermi popu-
lation factors are identical in the four valleys at the
(111)zone edges. Thus the sum over the four

where M j,M2, etc., are functions of mofnentum

matrix elements, energy gaps, etc. Similarly, the
matrix elements of II, 0, and X have been expand-
ed in powers of k and obtained in terms of the cor-
responding values at the band edges. The ampli-
tudes of the single group in the double-group basis
functions (sin8+-, cos8+-) and the momentum matrix
elements and the energy gaps at the band edges
were obtained from Bernick and Kleinman.
However, we have taken sin8-+to be positive in-

stead of negative since otherwise the longitudinal

(Kl ) and transverse (E, ) Knight shifts have oppo-
site signs. %e note from the following argument
that this change of sign neither alters the numeri-

cal results nor the band ordering. The energy ex-

pressions of Mitchell and %'allis are

e+-, =Cocos 8+-—6-+, sin 8-++2@25~1sin8~cos8+-

(5.8)

valleys in PbTe must be carried out, valley by val-

ley, for the assumed direction of B. However,
since the cubic symmetry of the lead salts requires
that the final result of isotropic Knight shift be in-

dependent of the orientation of B, one may choose
8 in any direction. Therefore, we have simplified
the problem by taking B along [001], in which case
the four valleys are fully equivalent. For conveni-

ence, E was calculated for the valley around the
1 ]

polllt 2 with coofdlllatcs (21rlu)( 2 y 1 y ~ ) Slncc
there are four inequivalent I. points, the total
Knight shift is obtained from the formula

K =4( —,K + —,K'), (5.11)

where E' is the longitudinal and E' is the trans-
verse Knight shift for any valley. For numerical
calculations in p-type Pbre we have ignored ex-

change effects, which is justified in view of the low

density of carriers.
Before presenting our numerical results we

would like to point out that the negative (positive)
sign of K in p (n)-type PbTe has been attributed to
llcgatlvc (posltlvc) g factors ill corresponding sys-
tems. However, it is well known that whereas
the sign of g factor is not uniquely determined, the
sign of K is. Thus a calculation of E provides a
stringent test of the accuracy of electronic wave
functions in the solid.

The results of our calculation of the contribu-
tions from each valley to the longitudinal and
transverse components of Knight shift in p-type
PbTe for two diferent hole concentrations are
given in Table I. The spin, orbital, and mixed
spin-orbit contributions to the Knight shift have
been calculated from these results using Eq. (5.11)
and have been tabulated in Table II along with the
experimental results. From Table II it can be seen
that the orbital contribution to the Knight shift is
about 3 orders of magnitude smaller than the spin
and mixed spm"orbit contnbutlons. It may be not-
ed that the new contribution K„,which has been
missed in the earlier theories, has the same sign as

TABLE I. Longitudinal and transverse contributions to components of the Knight shift of ~Pb in p-type PbTe for
each valley {for two different hole concentrations).

Hole
concentration

{cm )

E, E,' E, IE„

7.1x10"
1.8x 10»

—1.98x10-'
—2.15x 10-'

—4.13x10 "
—4.37x 10

—1.74x 10-'
—6.19x10-'

—1.06x10-'
—3.78 x10-'

—4.2x10-4
—7.6X10-4

—1.21x 10-'
—2.46x 10-'



3110 TRIPATHI, DAS, MISRA, AND MAHANTI

TABLE II. Spin, orbital, and spin-orbit contributions to the Knight shift of 'Pb in p-type PbTe and comparison
with experimental results.

Hole
concentration

(cm )

E„/E, +tot &expt

(Ref. 44)

7.1X10"
1.8 X 10'

—3.74X 10-'
—4.03 X 10-'

—5.12X 10
—1.81 X 10

—8.9 X10 1.37X10
—1.68X10-' 4.5 X10-'

0.23
0.41

—4.63 X 10-' —4.7 X 10-'
—5.71X10 —6.1X10

E, and contributes a significant fraction of the to-
tal Knight shift. It is also interesting to note that
ratio E~ /E, increases with the hole concentration.
The physical reason for this is the increase in the
strength of the spin-orbit interaction as one goes
away from the L point in the Brillouin zone. The
quantitative agreement of our result with the ex-

periment is quite encouraging if we note that ex-

change enhancement effects will increase with hole
concentration, bringing theory and experiment into
better quantitative agreement.

VI. SUMMARY AND CONCLUSION

solids with large effective g factors.
In order to calculate the relative importance of

K„we have applied our theory to calculate the
Knight shift of Pb in p-type PbTe with small
hole concentrations. Our results indicate that I(

contributes a significant fraction of the total
Knight shift and this contribution increases with
the hole concentration, as it should, since the
strength of the spin-orbit interaction is increased as
one goes away from the L point in the Brillouin
zone. Our results agree quite well with experimen-
tal results.

In this paper we have presented what we believe

is a reasonably complete theory of the Knight shift
in solids, which includes the effect of electron-

electron interaction on the Knight shift for many-

band systems including spin-orbit interaction. %'e

have analyzed all contributions carefully and ob-

tained new contributions to the Knight shift (K„)
which have been missed in all the earlier theories.
We have also calculated the effects of exchange
and correlations on K„which are important for
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APPENDIX A

In order to prove the partial integrations in Eqs. (3.29) and (3.30) we first wish to obtain expressions for

Vk & p p and Vkaj p p %e have

VkII„= Vk f dr U„'-„—(V/HO)U

f d'(VkU k p)(V~Ho)Um k p+ f dr rik, p(VkV~Ho)Um, k,p

+f dr U„'-k, (VgH, )VkU -„,, (Al)

Since U„k are a complete set for periodic functions, we can insert the identity
~

U k „)(U -k „~ in the

first and third terms. Therefore, we have
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Vk Il„p mp
———g f d r (V'k U„' p ) U k „f d r 'U,'

k „(VgH p )U
q,p"
quan

+g f dr(V'kU„'q )U„k „f dr'U„'k ., (V/HO)U
p

+ g f dr U„'g (V(HO)U k - f dr'U'k -VkU k
qqp

q+Nf

2

+ g f dr U'
q (VkHo)U -„„dr'U*

k „V'kU k, +—& p&„p p+I;p
P

(A2)

%'e also have

Vk f dr U„k HoU k, =0,
from which we obtain

Eq f dr(VkU k )U k +En f dr U*k VkU k + Ilnpqp'=0 (AS)

Vk fdrU„"q U k, ——0,
from which we obtain

f dr(VI, U„'k )U -„,= —f dr U„"-„VI,U -„

From Eqs. (AS) and (A7) we have for quan

~np, qp'dr U*- vkU -,=—
7l, k,p q, k,p

qn

(A7)

(AS)

Qnp, np'—=f dr U„, k,pVk U, g,p'

From Eqs. (A2), (AS), and (A9) we obtain

a P P a 7' ~p
(Qnpnp" IInp", m, p' llnp, mp" Qmp"mp )+~5a, g'np, mp'+ ~np, mp'

p
(A10)

In a similar fashion we can prove

ppeqp Djqp, p ~ D~p, ~qp ~eqp, p'

m E~q m E~q
quan qQm

ry
~~

J
(Qnp, np"Djnp", mp' +jnp, mp"Qmp", mp')+2~vga

p rj
+

np, mp' np, mp'
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qapp ~ ~~ mp~qp qp ~np ~ &~ mp ~qp sp ~np ~&ma ll p ll jj, „na„}k mp', np
q,p mq q, p p
q+m quan

+~~aP4p', np+ ~ ~mp', np
Pl ~p

The partial integration can be done in the following way. %e consider the following difFerentiation:

'D"nj.,Mj,V„'"'", '"'y(E„)

g ~ ~ A np, qp Jqp, mp=~~aP jV
q~p Enq
quan

15 Jnp, qp qp, m p ~ (Qnpnp"D, jnp mp ", D'jnp, mp"Qmp", mp')
qp" mq p
q+m

r".
J I
3

+-
np, mp

gy™2,v
J

Bk

rrj'. „mp, np ~(E )
np~mp Emn

DJnp, mp' E.'.
rr~ rrlimp'qp flqp, "n"p +, A ~mp', qp" ~qp", np

Jl Pl Emq q pit
ffl Enq

q+m

C P P ag (Qmp' mp" ~mp" np ~mp' np Qnp n"p}+"~~agmp' np 4(En)
p

~Jnp, mp' ~mp, np mp, mp
3En

jnp, mp' m p', np np„np
3

„D-„.n~ „II„„
~(E )

tl jnpimp mp np np npf (E )
Pl

where we sum over all the band indices but nQmQq We note .that the sum ha~F ~ is zero because of the

antisymmetric nature of hap. We simplify the sum by interchanging band indices (except n} wherever neces-

sary and then group together the diagonal terms in the band indices q and m with the nondiagonal terms.
Since we have a summation over k, which can be changed to an integration, the volume integral over the k
space can be changed to a surface intergral, and since the integrand is periodic in k, the surface integral van-

ishes. Thus the sum is zero and so the term proportional to f(E„)will be equal and opposite in sign to all

the terms proportional to $(En ). Finally we obtain

~2 D H Hn
~ I ~ jnp, mp' mp , np np, np '&(E

ap jV~ K2 J n
fPl k mn

i haPMj„
k

np, mp Jmp, qp qp, np
2E-Eqn

Jnp, mp mp np np np

E.'.
'

~Jnp, np 'anp, mp 'aamp, np
3

Emn

p
+AJ"p Jnp, mp mp, np

Emn

~Jnp, mp' a a mp, qp ~ aqp, np
2

EqnE „

where the sums are over m, p', q,p", but m, q+n Following a sim. ilar procedure we can prove Eq. (3.30).



THEORY OF SPIN-ORBIT AND MANY-BODY EFFECTS ON THE. . .

APPENDIX 8

3113

We shall now prove Eq. (3.39}. We write, interchanging a and P in Eq. (A10),

„rr -n~-
np, mp'= ~

tt Pl Enq pyg

q+n q+m

P „~„, ~ „P„ PPl ~pg {Qnp, np" +np", mp' ~np, mp"Qmp", mp'}+~~agnp, mp'+ ~np, mp'

p

{Bl)

and, in a similar fashion as Eq. (All), we can prove

P 2, v

pp, » ~ R mp', qp'" jq'p"', np" + ft
jmp', np"

Emq q pttt Pl
q+m q+n

rrP
amp', qp"'~ ~qp"', np"

nq

P 2,v 2, v P ~ 2, v~ (Qmp', mp'"~jmp'", np" amp , p n'Q'p""n, p"n)'+ p
~j'

mp', np"

Using Eqs. {Bl)and (82), we have

rr~ r '".
l(),jt np, mp' jmp', np &(E"

~aPp k

n n rrI'ri ~op, qp-~qp-, mp A ~ p, qp"~qp", mp'

q p" nq q p" Emq
q+n q+m

19 c Q PX (Qnp np np, lllp ~np, mp Qtllp", mp' }+~~llPnp, mp'

P

g 2tv
Jmp, np f(
Emn

n~
np, mp

mn

P 2, v
mp, qp ~Jqp t np

It t Pg

q+m

~P
& ~jmp'qp'""qp"' np" p -2 v+ X g (Qmp', mp"'~jmp"', np"

ttt Elf Enq ttt

q+n

2v P 8 —2v
~jmp, np Qllp, lip )+ jt ~j

Bk mp', np"

rrp'8 ~ ~np, mp'~jmp', np" ~ ~np", np"+—
2

f22 Emn

g2v gP+- np, mp' jmp', np np, npf (E }
Pl Em.

~2t v ~P
f(&„)

Emn

(B3)

«

By a procedure similar to that followed in Eq. (A14), we obtain from Eq. (83)

rrI' r,". n
60,Pp

np, mp' jmp', np np, np ~t I ~
k

J L~n J +0!Pp ~
mn EmnEqn E2

BX '
rr 0'
~~np, mp' p8k lllp «np f(@En

(84)
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Similarly, we have

rr rr~
&aPp

jnp, mp' mp', np np, np ~„~
k Em.

J (En j &app, ~
mn

rrI' r. '"np, mp" jmp", qp' qp', np

EmnEqn

2v ~P
jnp, np' np', mp" ~mp", p m

E2

gy2, v
J

H
gk p mp, np

np, mp'

Emn
f(E, )

(B5)

By summing Eqs. (84) and (B5), we obtain Eq. (3.39).

APPENDIX C

We shall now prove Eq. (3.40). Using Eq. (3.18), we write

a P v 1
(llnp, mp'limp', qp"+jqp", np+~np, mp'+jmp', qp" llqp", np++jnp, mp'limp', qp qp ",np)"

n, k,p lt
m, q~p, p

n, k,p
m, q,p', p"

("np, mp' mp', qp" jqp", np+~~npmp jm, p ,'qp fl'qp"", np++jnp, mp'limp qp L~q',p ,"npi"

a P 1v a lv P 1v a P 1+ ( llnp, mp'limp', qp"+jqp", np ++np, mp'+jmp', qp" ~qp", np++jnp, mp mp' q'p" ~qp", np)
Eq.Em.

(C 1)

Denoting the second term in Eq. (Cl) as T~, we can write it in the alternate form

n, k,p
m, q, p', p"

mp mp p~ Jqp~, np~ Jnp mp mp~qp~ J'qp~ n p

Eqn Emn

(C2)

2lm a X1v p+ 2
( jnp. mp' jmp', qp""jqp", np)

where we have used the well-known relation

~ npmp' lm
rnp, mp' .

nm

(C3)

Using the completeness of the periodic functions, we write

np X'v rrI' X'v
=z, +z,"j~ np, mp'Xjmp', np ~ "jnp, qp" ~qp", mp' jmp', np

X1v

asap

x'" rrI'
XJnp, mp rJ H mp, np XJnp, mprJmp, qp-Hqp-, np

jnp, np" ' ~np", mp'Xjmp', np

Em.

Xjnp, mp'~jmp', np" np", np

(C4)

(C5)

and

a 1v P ~ a lv P ~ a 1v PjXj rj )np, np ~ rj Xj )np, mp' jmp', np+~ jXj np, np' gnp', np
m, p' P

(C6)

From Eqs. (C2) and (C4) —(C6), we have
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n, k,p
llf, P,P

o p 1v 1v a pim (rj ~ )«p, mp'Xjmp ,«'p+Xj«p, mp (r'j 11 )mp ,«'p

2

+ 2 l JlfP, nP' jnP', mP"~jmP", nP+~jnP, llfP' jmP', lfP" J'lfP", lfP+S J Xj J IlfP, lfP S j ~j SnP, lfP' JlfP', lfP

c ~1% p
ri p p' i p' p" 1 p" p~

%'c can also write

rJlfp, lfp'«j ~j ~np', np ~ jnp, np' jnp', rnp"amp", np+ ~ rjnp, np'r lfp', np™jnp",np
llf, P p

(Cg)

i "i '«p «p""j«p" «p
= X i«p mp'"imp' «p""i«p" «p+ X i«p. «p'"i«p', «p""i«p" «p

Nf, P p

From Eqs. (C7)—(C9), and using the commutation relation

r"
P 1v ~ J[rj,Xj ]=2l E~p

rJ

and the identity equation (3.35), we obtain

(C9)

(C10)

I, p 2

Nl
POFapp TI = Po&epp

lf) k~P
Nl) p

(rj ll )«p, mp 3 +u p J

J mp, np

L v
J
3
J npmp

p("j lI )mp'«p,

2m 2 rj+ qz»(~.A. ~p~pn) X—
lf, k,p,p' . J, lfp, lfp'

r pr I
J J

3 + rJ'np, lfp'

lfP, lfP J lfp, lfp

(Cl 1)

We also have, using Eq. (C3),
4 3 p p s 32lpo (rj I"j) p p'& p' p & p p'("j Irj) p' p— „(5An &p"ops)—

«, k,p
FNlf

Nl, p

2lfl
p

rJ rJ= „z»(t'A. 5.A. ) X—
lf, k, ,p,p J, lfp, lfp

rpr I
'

J J
3

rJ

ryJ
3

lfpnp, J

r"
rp, rp
JlfP, lfP JlfP~lfP

, lfp, lfp J lfp, lfp

(C12)

From Eqs. (Cl), (Cl 1), and (C12) and using the identity (r~"rjp)«p „p 0 for rid, w——e obtain the desired result
in Eq. (3.40).
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