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We derive an expression for the Knight shift (K) in solids, including spin-orbit and
many-body effects. We construct in K space, using the Bloch representation, the equation
of motion of the Green’s function in the presence of a periodic potential, spin-orbit in-
teraction, external magnetic field, and electron-nuclear hyperfine interaction. We use a
finite-temperature Green’s-function method where the thermodynamic potential is ex-
pressed in terms of the exact one-particle propagator G, and we derive a general expres-
sion for K. Our result for the Knight shift is expressed as K =K, +K;+Kj,, where K,
and K; are the usual orbital and spin contributions to K modified by the spin-orbit and
many-body contributions and where K, which is nonzero only when spin-orbit interac-
tion is taken into account, is a new contribution to K which had been overlooked in the
earlier theories. If we make simple approximations for the self-energy, our expression for
K, reduces to the earlier results. If we make drastic assumptions while solving the ma-
trix integral equations for the field-dependent part of the self-energy, our expression for
K is equivalent to the earlier results for the exchange-enhanced K but with the free-
electron g factor replaced by the effective g factor. A novel feature of our analysis is that
while some of the terms in K, have exchange enhancement effects similar to those of K,
except that the exchange enhancement parameters are different, the other terms in K, be-
come modified similar to K,. Thus because of the mixed character of these terms, the
exchange and correlation effects on K|, cannot be interpreted in an intuitive way. In ord-
er to calculate the importance of the new contribution Kj,, we apply our theory to calcu-
late the Knight shift of ’Pb in p-type PbTe with small hole concentrations. Our results,
which agree with experimental results, indicate that K, is of the same order of magni-
tude and has the same sign as K and is about 3 orders of magnitude larger than K,,.
Thus K,,, the new contribution to the Knight shift that we have calculated, is important
for solids with large effective g factors and should contribute a significant fraction of
their total Knight shift.

I. INTRODUCTION among conduction electrons and-between conduc-

tion and core electrons. The quantitative analysis

A first-principles analysis of the Knight shift!
(K) of solids is of importance from a theoretical
point of view for two reasons. First, since K
depends rather sensitively on both the wave func-
tions as well as features of the band structure and
Fermi surface of the metal, it provides a more de-
tailed assessment of the applicability of methods
used for band calculations than properties which
depend only on the shape and dimensions of the
Fermi surface. Second, it depends on a variety of
mechanisms involving both single-particle and
many-body effects connected with interactions

of various pertinent mechanisms that contribute to
K could thus sharpen our understanding not only
of the electronic structure of solids, but also of
electron-electron interaction effects in the presence
or absence of magnetic fields.

It is well known? that the basic mechanism for
contribution to the Knight shift of metals is due to
the extra field produced at the nuclear site by the
surplus of polarized electrons at the Fermi surface
with the magnetic moments parallel to the magnet-
ic field. Since this extra field also produces the
Pauli paramagnetism, this basic mechanism may

3091 ©1982 The American Physical Society



3092 TRIPATHI, DAS, MISRA, AND MAHANTI 25

be termed as the spin effect. To evaluate this spin
contribution to Knight shift (K;) one needs a
knowledge of the spin susceptibility (X;) as well.as
the spin density produced by the Fermi-surface
electrons at the nucleus. It is also well known®
that the electron-electron interactions enhance Xj.
In conventional treatment*~° of this quantity, it is
tacitly assumed that electronic exchange interac-
tions give rise to a spatially homogeneous effective
magnetic field acting on the electronic spin. With
this assumption, K; becomes proportional to
exchange-enhanced X and a Fermi-surface average
of the electron contact density. The recent theoret-
ical calculations of K of metals either use relativis-
tic wave functions constructed from many orthogo-
nalized plane waves (OPW’s) using first-order per-
turbation theory’ or nonlocal pseudopotentials® in
which the effect of electron-electron interactions in
X, have been taken into account.” However, these
theories do not include the exchange core-
polarization effect!®!! which can be viewed as a
consequence of a spatially inhomogeneous exchange
field in the core of the ion and the exchange in-
teraction'>!3 between the polarized Fermi-surface
electrons and the paired-spin electrons below the
Fermi surface. Further, the requirement of achiev-
ing self-consistency between the spin density and
the exchange field had also been ignored. Zaremba
and Zobin'* have formulated a linear-response
theory of Knight shift in metals based on the
density-functional formalism.!*'® Their approach,
which is similar to the recent theories of muon
Knight shifts,!”'® emphasizes the importance of
achieving self-consistency with respect to both the
charge and spin densities and includes core polari-
zation. Recently, attempts have been made'®
within density-functional theory to treat correlation
effects on spin susceptibility in many-band but
nearly-free-electron-like systems, such as aluminum
and magnesium. However, when band-structure ef-
fects are important it may be difficult to handle the
strong local-field effects within the usual density-
functional theory.

There are also additional mechanisms such as
orbital hyperfine interaction and spin-orbit interac-
tion which contribute to the Knight shift of metals.
The contribution of orbital hyperfine interaction in
the absence of many-body effects has been fairly
well understood.?>?! In the calculation of the spin-
orbit contribution to Knight shift of metals,? the
spin-orbit interaction was included to second order
in the terms involving the electron-nuclear contact
interaction which resulted in an anisotropy of

Knight shift even in cubic metals. However,
many-body effects were also neglected in these cal-
culations.

It is well known that the spin-orbit interaction
has a profound effect on the energy eigenstates of
multivalley semiconductors, but Sapoval,23 who
was the first to obtain an expression for the Knight
shift of semiconductors, ignored this property. Bai-
ley** ignored Yafet’s treatment of the hyperfine
coupling®® showing that the hyperfine Hamiltonian
does not involve the effective g factors. Sapoval
and Leloup?® derived a theory of the Knight shift
in degenerate multivalley semiconductors, consider-
ing the spin-orbit interaction and the relativistic ef-
fects on the hyperfine coupling. They considered
the spinor character of the wave function and the
nontensorial nature of the g matrix and showed
that, except for a spherical valley, the Knight shift
is not proportional to the Pauli paramagnetic sus-
ceptibility. However, they did not consider the
many-body effects on these contributions. Adler
et al.’’ have developed a kP band model to calcu-
late the Knight shift of Pb;_,Sn,Te in which the
spin-orbit interaction is included through the effec-
tive g factor, but they have also ignored the many-
body effects. It may be noted that in these calcula-
tions, the effective g factors depend on the choice
of the basis functions (in particular, on their
phase). Unfortunately, a convention®® is necessary
to obtain the sign of the conduction-electron g fac-
tor, thus introducing an ambiguity in the expres-
sion for Knight shift.

It is clear from the foregoing remarks that only
the theory of Knight shift in simple metals in the
absence of spin-orbit and many-body effects is well
known. Although attempts have been made to in-
clude the spin-orbit and other relativistic effects,
none of these obtain all the contributions to K. In
fact, hitherto it has been thought that the entire ef-
fect of spin-orbit interaction on K is incorporated
through a modification of the g factor and through
a change in the orbital contribution via modifica-
tion of the one-particle eigenstates. Similarly, it
has been assumed that the entire effect of electron-
electron interaction is to enhance the spin suscepti-
bility appearing in the spin contribution to K. The
complete effect of the electron-electron interaction
on K starting from first principles, particularly for
many-band systems and for strong spin-orbit in-
teraction, has not been investigated. The present
work was carried out as an attempt in this direc-
tion, and we believe that we have been able to
derive a satisfactory theory for K.
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Our approach is different from the earlier
methods in the sense that we have used a finite-
temperature Green’s-function formalism where the
thermodynamic potential () for an interacting
electron system in the presence of a periodic poten-
tial, spin-orbit interaction, external magnetic field,
and electron-nuclear hyperfine interaction is ex-
pressed in terms of the exact one-particle propaga-
tor G. We have constructed in k space, using the
Bloch representation, the equation of motion of the
Green’s function in the presence of the magnetic
and hyperfine fields and evaluated  and hence K.

The expression for Knight shift for interacting
electrons in solids, which we shall derive, is of the
form

K =K, +K,+K,, , (1.1)

where K, and K are the counterparts of the usual
orbital and spin contributions to K, modified by
the spin-orbit and many-body interactions,”’ and
K, is an additional important contribution to K
due to the effect of spin-orbit coupling on the orbi-
tal motion of interacting Bloch electrons. In our
theory the effects of exchange and correlation on
each of the three components of K have been expli-
citly calculated. If we make simple approxima-
tions for the self-energy, our expression for X,
reduces to the earlier results. If we make drastic
assumptions while solving the matrix integral
equations for the field-dependent part of the self-
energy, our expression for K is equivalent to the
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earlier results for the exchange-enhanced K, but
with the free-electron g factor replaced by the effec-
tive g factor, a result which has been intuitively
used but not yet rigorously derived. An important
aspect of our work is the analysis of exchange and
correlation effects on K,, which are more subtle
and cannot be included in an intuitive way. We
show that K,, which has been hitherto neglected,
is of the same order of magnitude as K; and much
larger than K, for solids with large g factors. We
apply our theoretical results to p-type PbTe as an
example and present what we believe to be the
most complete calculation of K in a solid which
analyzes all the contributions carefully.

The planning of the paper is as follows. In Sec.
II, we construct in k space, using the Bloch
representation, the equation of motion of the
Green’s function in the presence of a magnetic
field. In Sec. III, we derive an expression for the
Knight shift for an interacting electron system in
the presence of a periodic potential, spin-orbit in-
teraction, external magnetic field, and electron-
nuclear hyperfine interaction. In Sec. IV, we care-
fully analyze the exchange and correlation effects
on each component of K and compare our results
with the earlier results. In Sec. V, we apply our
theoretical results to calculate the Knight shift of
p-type PbTe and show that K, is of the same or-
der as K and much larger than K,. We also com-
pare our results with experimental results. In Sec.
VI, we summarize and discuss our results.

II. EFFECTIVE EQUATION OF MOTION IN BLOCH REPRESENTATION

—

The exact one-particle propagator G (T,r",{;) for an interacting electron system in the presence of a
periodic potential V' (T), spin-orbit interaction, external magnetic field B, and electron-nuclear hyperfine in-

teraction satisfies the equation

(&—H)G(T,¥" BM,&)+ [dT"S(T,7",B,M,§)G (F", 7", B,M,{)=8(F—T") , 2.1)

where X is the proper self-energy operator, {; is the complex energy

_ QI+ i
gl“ B +‘lL )

and H is the one-particle Hamiltonian?

(2.2)

Hel [549A | y@r A 590 |54 %K |+~ vVt Lo o
- Im p ¢ am 26‘2 p ¢ 8 202 2g0.u‘0
] = = M;"& 3G F)M;T) 87 _ — . 2M;T;X[P+(e/0)A]
+2 ‘—_M]'B+,lto — 13 + 4 1 J +'_1T0"M18(r1)+ L [p3 .

(2.3)
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In Eq. (2.3), A(F) is the vector potential, & is the
Pauli spin matrix, g is the free-electron g factor,
Mo is the electron Bohr magneton, M; is the nu-
clear moment of the jth nucleus, and T; is the
coordinate of the electron relative to the jth nu-
cleus. The first five terms are the well-known
terms for the one-electron Hamiltonian in an exter-
nal magnetic field including spin and spin-orbit in-
teraction, the sixth term is the nuclear Zeeman
term, the seventh and eighth terms are the interac-
tion terms due to nuclear and electron-spin mag-
netic moments and have the form of a dipole-
dipole interaction energy, the ninth term is the
magnetic hyperfine contact interaction, and the
tenth term describes the interaction of the electron-
ic orbital moment with the nuclear magnetic mo-
ment.

In the absence of the magnetic field, both G and
3 have the symmetry

G(T+R, 7' +R,§)=G(F,7,) (2.4)
and
S(F+R, 7' +R,E)=3(F,T"¢) , (2.5)

1 — Pug — =y — —».—' — i - =
[gl-‘”z‘r;[p+ﬁh><(r—r )]Z-V(n—ma VVX[B+#h X(F—T")]—

1 = = M;&  3(-T;)(M;T;)
—I—V_'Mj'B_IJ'O 5

i r? +
J

+
j ¥

+
|
Q
X!
=4
-

where R is the crystal translation vector. The vec-
tor potential in the Hamiltonian destroys this sym-
metry, but both G and X can be written as the
product of a “Peierls phase factor” and a part
which has the above _Symmetry. 3031 In the sym-
metric gauge (A= —B>< ), we have

G(F, 7, B,M,£) =V TXTG(F, 7, B,M, &)

(2.6)
and
(7,7, B,M, &) = T TXTE(E T B,M,E)
2.7
where
h= 5"% (2.8)

and the quantities G and = satisfy crystal transla-
tional symmetry. Substituting Egs. (2.3), (2.6), and
(2.7) in (2.1), commuting the differential operator
through the Peierls phase, factor, and then multi-
plying on the left by e~ FTXT' e obtain

Ex@E—) || 500 2=
€4 ;'rf[pJ“ﬁ :‘f )] ]HG(r,r B,M,¢)
y;
J

-

+ [dFre XTI T XTI (7, 7 B MLE)G (T, T B Mg ) =8(F T e 7T T 2.9)

where €, is the antisymmetric tensor of the third rank and we follow Einstein summation convention. We
can write the equation of motion in a Bloch representation, i.e., in terms of the basis functions

¢",r,p(?>=e"r'?Un,r,p(?) ) (2.10)

where U, ¢ X.p is a periodic two-component function, n is the band index, K is the reduced wave vector, and p
is the spm index. Here ¢, ¢ p( T) are the eigenfunctions of the Hamiltonian of the noninteracting electrons
in the absence of the external magnetic field and the hyperfine interactions [B=0, M=0 in Eq. (2.3)]. The
index p, p=1or 2, dlstmguxshes the two independent eigenfunctions ¢, ¢ , and ¢, ¢ , which belong to a
general wave vector K and energy E,(k K) if the crystal has inversion symmetry. Usmg the Bloch representa-

tion, Eq. (2.9) can be written as
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- nk,p
T
A — L (B4R X (F— F) =V (F)— — T 3 TV X[ +ARX (F—TF")] — —ev2Y
2m 4m?2c? 8m2c?
A o B M;G 3G T)M;T) 87 _ =
—380koB T+ | =M B—po | ——5—+ 5 + 0 "M;8(T;)
j N ] T 3
7NV
+2 €a yMa ﬁ[p+ﬁhX(3r )]
ﬁrj
Xe ¥ TG e OV o o (EG(E, T BMENU,, 0 (T T

+ 3 fd?d?'d?"d*"'e-'ka* (F)
k

nk,p
n”.p", g

) - —n t - "
Uy o (T VUL 0 G )

XG(T", ""BMQ‘;)U p( )e —6,,,, Byt - (2.11)
By mtroducmg change of variables R1 =r"-71/, R2= —-(r +T1") in the first integration, RI =r—r",

—( r+1'"), R3=f'”’ r’, and R4— %( r’'+T'"") in the second integration, and by using partial integra-
tlon of the type

-

= o K (T=T),iK " (T =T o (=T o —n
2 (T—T"e e Uy @ g OV o (F7)
-

K" (T=T"; K" (T =7") vyt —n
=Z e iVyoe U, g .,(r)Un,.,r,,’p,,(r ), (2.12)
ol

Eq. (2.11) can be written in the form

2 [6—H (&R BME], ¢ o ¥, T oprom, €0 (K SBMED | 12 7 =8By » (2.13)
n"p"
where
. 1 — —\2 — 'ﬁ —_ — — ﬁz 2 1 n —
H(K,BM,;))=—((P+A) "+ V(D) +—=0 " VVX(P+AiK)+ VV+ 5goueB: o
m 4m2c? 2.2 2
VR M;jd  3(&FT)MT) 8
v - —0'M;8
+2 N B+pu, ",'3 + rj5 + 3 0 (T)
MR +a) || o = o
+2 eqpy P +3(RB,ME) (2.14)
ﬁrj
F=E+iITXV;>, (2.15)
3t o e KB M) = [dTdT Ul ¢ (D~ % T TX(E, 7, BME)U,. ¢ AT, (2.16)
and
Gty /K BME) = [dTdT UL ¢ (DG T, BM e K T-TY, 2 (7). (2.17)
[
It should be pointed out that g( . B,M,£)) is a dence. It also depends implicitly on the nuclear
(2X2) matrix, an operator in k space, and has moment M. Since the U, i, s form a complete set

both explicit (through k') and implicit B depen- for periodic functions, Eq. (2.11) can be written in
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the alternate form
[&—H(RBM,EIG (K, E)=I . (2.18)

Equation (2.18) is the effective equation of motion
of the Green’s function in the magnetic field. This
method of derivation of an effective equation of
motion in the Bloch representation is a generaliza-
tion of the procedure developed by us®? for orbital
motion of Bloch electrons in a magnetic field. We
shall now use this equation of motion to obtain a
general expression for the Knight shift of solids.

III. DERIVATION OF GENERAL FORMULA
FOR KNIGHT SHIFT

A. Method of derivation

The Knight shift (K) at the nucleus j is calculat-
ed from the expression

1. 9’Q
KPF=—— lim — 1
7 =7 V50 0B,3M,, 6D
M0

where Q(T, V,,u,ﬁ,ﬁ) is the thermodynamic poten-
tial for an interacting electron system in the pres-
ence of a periodic potential ¥ (T), spin-orbit in-
teraction, external magnetic field B, and electron-
nuclear hyperfine interaction. Using finite-temp-
erature Green’s-function formalism, {) can be
evaluated from Luttinger-Ward expression333*

1

(3.2)

Here G¢1 and EG: are the abbreviated notations for

the exact one-particle Green’s function and proper
self-energy defined earlier, Tr is defined as 2 i tr,
where tr refers to summation over a complete one-

particle set, and the functional ¢(G¢,) is defined

a833,34

—1i Asm
$(G,)=lim Tr§n‘, 5 2"(Gg)Gg, - 3.3)

Here 2‘"’(6;1) is the nth-order self-energy part,

where only the interaction parameter A occurring
explicitly in Eq. (3.3) is used to determine the or-
der. In fact, §(G¢,) is defined through the decom-

position of 2‘.‘”)(G§I) into skeleton diagrams. There
are 2n Gy, lines for the nth-order diagrams in
#(Gg)). Differentiating ¢(G, ) with respect to G,
has the effect of “opening” any of the 2n lines of

the nth-order diagram, and each will give the same
contribution when Tr is taken.> From Egs.
(3.1)—(3.3), it can be easily shown that>*

.1 92
K*=lim — | ————Trin(—G
=3 Ve | " am,an,, %)
'1\71—»0
< -
+Tr_a_ECI_G
3B,3M;,
33, 3G,
1 1
Tr —— —— )
+ ranv 3B, (3.4)

Equation (3.4) can be written in the alternate form

K =Ko +Kjcor » (3.5)

where K, (qp denotes quasiparticle), the contribu-
tion due to the first term in the right-hand side in
Eq. (3.4), has exactly the same form as that of
noninteracting Fermi system, except for the re-
placement of the “noninteracting G€1 ” by the exact

Ge, for the interacting Bloch electrons. Ky, the

sum of the second and third terms in Eq. (3.4), is
the contribution due to exchange and correlation
effects. In order to evaluate K from Eq. (3.4), we
expand

S(k,B,M, &)= 3(K,B,M, )

and
$(K,B,M, &) = 3%K,6,)+B, "MK, 5)
+ 3 M 3K,
j

+3 B M+
j

(3.7)
where

hap=€aph” » (3.8)

€,py is the antisymmetric tensor of the third rank,
and we follow Einstein summation convention.
From Egs. (2.14), (3.6), and (3.7), we obtain

H(R,&)=Ho(K,&)+H'(K,£) , 3.9)
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where H, O(E,é‘ 1) is the Hamiltonian in the absence of magnetic and hyperfine fields,

— — 2 ~ —
Hy(K,6)= S (B+AK 4 V(1) + 55 0TV X (B +K) + s vy + 2K g (3.10)
C (4
and H'(K, &) is the operator
ifi,
H'(K,5)= —~hagl*(K,£1)VE + 7 g0oB,0 * + B, EH(K,8)
2v 1
+3 (vaziz'v(k’§1’+Bquv213’“V(k 1) —ihapM;, ak“ V"_FM B

M;:&@ 3(o-T;))(M;"T;) 3
17 j j L _+__7T

+Ho | — 5-M;8(;)

r]-3 rj5 3
M3 +aK) MaB
+ 268t —Ri€gg VR |+ |, 3.11)
ﬁrj rj

where we have retained terms up to first order in both magnetic and hyperfine fields, and I /m is the velo-
city operator in the absence of B and M,

M(K,&)=(P+#K)+ L ~FX TV + V50 (3.12)
4mc #i

We make a perturbation expansion

G(K,£)=Go(K,&))+Go(K,E)H'Go(K,£)+Go(K,EDH'Go(K,ENH'Go (K, &)+ - - - (3.13)
where
Go' (k&) =[&—Ho(K,5)] (3.14)

and is diagonal in the basis U, ¢ . Here we retain terms up to first order in both magnetic and hyperfine

»
fields.

It can be easily shown that®!3*

v;:éo(i’,g,):’—i—é'o(ﬁ,g,)naéo(i,g,) . (3.15)

From Egs. (3.11) and (3.15), we obtain

2

G(k,£)=Go(K,&)+G, —z%haﬁnaé’onu%goyw,,w

1 = =
t2 ["WMJ"BH* M}, 5 4 1oM;, D}
J

N’ (r]GoITP—TIPG yr]1)
+2i ;“Oemnh aBM v 3

¥

2
—I%yohaﬁij(D}'GoH“GoHﬂ—k 11°G,D; G, I1P+11°G, I1G,,.D})

+ —;-g().u(z)Bpij(Djvéon+F”§0Dj~v)

it 852' ~ 82”
— h sM;, | ——G, 1P —T1PG
ok ° ° 3k

G0+ T, (3-16)
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where

1 =
D1y=XJ?+E2f2,V’ (3.17)
3G F)F—o” AP +AK)
X7 = | S o (i) + =L ey P v Y (3.18)
J
I
Fheghi She (3.19) where the trace is taken over one-particle states
oMo only. By partial integration, we obtain from Eq.

and we have retained terms up to first order in
both magnetic and hyperfine fields. We note that
we have neglected all second- and higher-order
terms in magnetic and hyperfine fields since we are
interested in calculating the field-independent
Knight shift.

B. Evaluation of K,

We shall derive an expression for K, from Egs.
(3.4) and (3.16) by assuming that the self-energy is
independent of frequency, which is valid in the
statically screened exchange approximation.*® In
order to carry out the frequency sums appearing in

K, we use the identity*?

nE g 1
2mi Ve eB-m 1 T H L

1 1

— 1 —_

B ?, nH—§1
(3.20)

where the contour ¢ encircles the imaginary axis in
an anticlockwise direction. We define

¢(§)=——é*ln(1+e"ﬁ(§‘”))- (3.21)
From Egs. (3.2), (3.20), and (3.21), we obtain

qp

[ —%an(ﬂ—p : (3.22)

277'1

(3.22)

nqusztr [qs(gnn(H—g)

- [ WOy dg] (3.23)

Since the first term is zero, we have
Qp=—tr [ $(£)G(E)dE (3.24)
ar 21ri c ) '

The advantage of using Eq. (3.24) is that after sub-
stituting the perturbation expansion for G(¢) [Eq.
(3.16)], the free energy can be easily evaluated.
The results are the same as obtained by using the
inverse Laplace transform technique,’' but the
present technique is simpler.

The one-particle trace is evaluated over the
periodlc part of ¢, ¢ o Which are eigenfunctions of
Ho(k) In this basis G is diagonal and is given
by

Go'=((—E,7) . (3.25)

After evaluating the trace, we perform the contour
integration as prescribed in Eq. (3.24). We use the
identity ﬁn po,np—0 Where p is a spin state conjugate
to p. We also adopt the convention that running
index means that the sum over all the bands and
all the spin indices shall be taken except that all
band terms equal to n have been explicitly separat-
ed out. After considerable algebra, we obtain
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BN | G | g0 N | G L4
-3 ¢(E,,)+2i£7h op RN +1ihaﬁ————"”’”;§’ "M £ (E,)+ ~goptoB,F S (E,)
k mn mn

f(E,) 3f(E,) (E,)
aB.u'OM_w ]np,np ng mp" ng ,np s + 2 - + 4¢ 3 .
Emn Emn Emn

+2

) f(E)  24(E,)
‘H'?p mp nmp a0 DJqp »np Eqn o E: E
mntign
(E,) 2¢6(E,) 2¢(E,)
H:p mpD;;np qp’ Hqﬂ;a” np f . (125 . (f :
' EIIHE""' EmnEqn Eanmn
B f(E,) 2¢6(E,)
D;;'P mP'H’zP qp’ qu”:np EgnEmn EXE
gn~mn

F(E,) 26(E,)

B
+ W np Djnp,mpy Mimgt, mp

Epn  Emn
f(E,) 26(E,)
— I, npnfp,mpDJVmp "\ g2 E3.
18 C;'I'P»'"P' H'gpﬁnp— pr, mP'CJ?Z"P'y”P
+24] = $(E,)
mn
18 Crgp,mp’nrgp’»np‘“Hrznmp'Cﬂnp'»nP $3.pv
+A4] E, S(E)+ MVB,. +B M Znpnp |f(En)
480.”0M1v3n inp.npFngr,np + FnpunpDingr,np \f'(E
(D}, FH +F¥ D}, )
7 QoM B, R eI f(E, ) (3:26)
mn
where
rfl )
A oMy . (3.27)

#i
AMen—2; L . hop—de 12
7PC; ’ml‘OijEwra aﬁrf-Hm

As indicated earlier, sums will be taken over all indices n, m, g, p, and p’, but n%~m,q. In the above we
have also used the notation

Epn=En(K)—E,(X) . (3.28)
In Appendix A, we derive the following identities:
— hz z ]"P'”'P mP ”PH’?Pv"Pf(E )
m Emn
B
=3 iﬁz._ h oM. | — H"'zp mp’ Jmp qp” qu’ np DJ""P ”P'H:P mp"mp",np
X m? * EmnEzn Erzm
B B
Dinp,mp Mmp'.apUgp'np | Dinp.mp H'"P npllnp,np A”ﬂ Cinp.mp Uimgi,mp S(E,)
ELE E, E} "
qn mn mn mn

(3.29)
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and

2 | R ) JA | L
_l%hdﬂM_}vZ np,mp~=jmp,np "P’"Pf(En)
k

2
E mn

a B v a B v
_ I mp.ap"Digp”,np N o, nplnp,mpDjmp',np

. ﬁz np,mp’
= i—hegM;
> [ m o EpnEqm Epn
B B B
Djxlp.np'H:p’,mp"H'np",np _ H:p»mp’Dj‘;np',qp” H‘IP"v"P __AMB nnp’mp’cjfr’np’mp #(E,)
Epn EpnEqn ’ Eq, "
(3.30)
It can be easily shown from time reversal symmetry’ that
W mp(K)=+ 10,5 o(—K) (3.31)
and
Frpnplk)=—F,; (— k). (3.32)
Using h,g= —hpg, and the above, we have for nonferromagnetic crystals
# f(E,) 26(E,) .
S ihappmpllngny |+~ |+ 2 780k0BuFhpnsf (En)=0. (3.33)
n,m,p,p’,T(’ m mn Epn n,p,?
nstm
From Egs. (3.1), (3.26), (3.29), (3.30) and (3.33), we obtain
K% — i 2 DJ";lp»np'H:P'»Mp”nrgp",np L oy " ,
jap = Z — L N - ?gOF'()Djnp,np’an',np S(E,)
K m Epn
. B
+ [ L ,ugfaﬁﬂ _ 3DJ?','P’”P'H"'IP;"'P"H’"P"’”P :p,'nP'H'gp’,qp”D};p",np
m Emn EmnEqn
B B
r?p,mp’DJ“;np':qp" qu”,np DJX'P, mp’ Hgip',qp”nqp",'w
Eanmn E?"Em"
pr,npDJ;p,MP’n'gp',np _ H'?P’"PH'?PJ"P'DJ?;"P',"P
E2, Enn
D} o FE o +FE oDy =
1 y » 3 s 3,uv
1 gopl Lmeme me an np,mp'~ jmp',np _Ej"‘;:np,
mn
3
2 28 5. 8p.) (rjﬂ/’j})np,mp'nrﬁp'mp"nfp,mp'('Jy/rj Jmp',np
- h#o vBOun— Byudpn Epn
Az} )
ip ok Tngne=Wpme' | e |,
_ —_ﬂeaﬁn np,mp mp,np f(En) , (3.34)
#i Emn
where we have used the identity
(3.35)

2 €apu€van="0y.0py— 8,0y
a

and omitted the nuclear Zeeman term. We note that in the absence of electron-electron interactions,
F=0,DY=X" and E, and II reduce to the corresponding values for noninteracting Bloch electrons.
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C. Derivation of K o

We shall now derive an expression for K,.,. From Egs. (3.4), (3.5), (3.7), and (3.16), we obtain

7%, _ 93, 3G,
KJ?gon_:.l_Tr _____’.»_GL__‘_ 1 1 R
= %Tr K60 (K, 6D + 580102 (K, E)Go(K,ENFEGo (K, &)
o mawee o o |
— e 3K £)Go(K, TG (K, 6)IPGo(K.81) | (3.36)

As before, we assume the self-energy to be independent of frequency. We carry out the frequency sums as
per prescription of Luttinger and Ward*:

1 1 1 1
-y — d¢ . (3.37)
B ; (&, —E,)™ 2m fro (E—E,)™ ePs—1 41 ¢
We obtain from Egs. (3.36) and (3.37)
. 2,v a B B a
ipg s np' 11 2 | by I, S2 ] Pl
ijgorr= Z { zgoﬂozjnp,onnp np+ eaﬁu. o ngv 0T B ;;mp N
kK mn mn
D Fp0 | L0 ) 1
an mp'mp',np”"np,np '
f(E,)
Emn
2,
+ = ‘i‘goﬂo an mp Ef"'ﬁ n;;’ 21"; MPF#tp’mp ]
mn
+ ipo e zanmp g, mpy H'gp"mp H'ﬁ mp' 21'2';!;’,"'? Mg mp
m Epn Epn
<2,
H'?p mp' H'gp'»mp’zim;',np + EJ”Ps"'P Mgt mp fpmp
Epy Epn
2,
H"p mp 21":;7 npnr?p L Emp mp nr?tp mp' H'gp',np _ EJ"P mP'H:'z'P ap’ ntﬁv",np
Er%m Er%m E"UIEII"
2y B
H:p mp H"'P (14 EIGP mp an,"lp szP 9P H:p np +23,uv F(E,)
EmnEqn Emn Eqn e np "

(3.38)
We note that in the absence of electron-electron interaction, K, becomes zero as it should. However, as

we shall see, in the presence of electron-electron interaction, there are significant cancellations between K ap
and K, terms.

D. General expression for the Knight shift

It has been shown in Appendix B that
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. B I 2,v a S 2,v a B
Iho Cagn S, 0, mp 2 jmp',nplnp,np n 2 jnp,mp' Mmp', npUnp,np FUE,)
m P & E,,, En "
X
. B S2,v a S22V B a
_ o Cape S, 2055, mpZ jmp'ap"gp’ mp M 23 jnp,np Ung',mp Wimp',mp
= aBu 2
m X EmnEqn Emn
az}” 5 s |33
m | k% |nom Mg mp—Map.mp k™ |mp.n
+ — £me EIP\F(E,) . (3.39)
#i E,,

We shall now obtain a general expression for the Knight shift of solids (K) in the presence of both many-
body and spin-orbit effects. In order to simplify our results and present them in a familiar form, we use
some partial integration results and make simplification of X terms as outlined in the appendixes.

In Appendix C, it has been shown that

; a B v a LA | LA | i B,
2 s #(2)6 4 ”PrmP'H"'P'»‘IP"XJQP"v”P "PsmP'XI'"P"‘IP' qu 2hp Xjnp,'np mn’,qp”nqp ",np
app
nK.p m Eanmn Eanmn Eanmn

7 /p3 e . _MB (#1/p}
(#]/7; Ynp,mp Mmp,np— Winp,mp (7" /75 Vmpt, mp ]

2i
- ?1‘0( BygBun—Buudpn) E,,

(r anﬂ)np,mp’(Ljv/ ¥ J’S)mp’,np'*‘(LJy/ s J‘S)nP,'nP’(r anﬂ)"m’,np

2
e 2
=75 3 81/ npmpt et 3,

3me nk,p nk,p E’""
. a B Ov a ov B Ov T1® B
+_’_“26 4 2 H"p,Mp’nmp’,qp”XJ'qp",np + anymp’Xﬁnp’,qp"qu",np Xan,mp mp’,qp”nqp",np
0“apu
m nK.,p EmnEqn EmnEqn EmnEqn
(3.40)

From Egs. (3.5), (3.34), (3.38), and (3.40), we obtain the general expression for the total Knight shift which
we separate into three different contributions to K as was done in the case of magnetic susceptibility and
write’’

Kjvu — Kjts'u + KJ-‘:,“ + Kj‘;,; , (3.41)

where K is the spin-contribution to the Knight shift

) i D ¢ | LI | [
v 2yv 2 jnp,np’ tinp’ ,mp"  tmp”,np , N
Kj#=— > 7 80140Xjnp,npE #P’,np'*' Ho€apy 2 E FER, (3.42)
o m W mn
nk,p,p m,p
ms£n

K% is the orbital contribution to the Knight shift

2

e
w_ __
m nk,p

SVI"f(EnTJ)

I Jnpnp

(rjanﬁ)np»mp'(Ljy/rj})mp',nP + (Lfy/rfs)"P:mP'(ranB)

mp',np
fE 2), (3.43)
Epn Epn "

2us
+ ﬁ eaﬂp _,2
n, k ,p,m,p’
n*m

and K% is a new additional spin-orbit contribution to the Knight shift
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2
1
Kjo= Z —_eaﬂﬂ —3Xjup,npt 218 mp”nmp p+nnp npXjnp,mp HMP np—zp, npn}?pnnp Ximp',np) =3~ E?
nk,p mn
B 0 B
+(H"P»MP npgp Jqp np+nnp meJ':p,qp Hgpnp
Oov a B —1
+ Xjnp mp' H'np »qp’ qu”,np) E,E
, (Xj e FY o+ FE X )
_gO,u“ jnp,mp mPr"PE np,mp'jmp',np f(EnT(,) . (3.44)
mn

We note that in Eq. (3.44), repeated indices imply summation. We can also write K;** in the alternate form

2 3
K]s = 2#0 2 an np' |8n, ,,(k)(f,,p npt — 2np np
nX.p.p' Ho

f(Ez), (3.45)

where the effective g matrix g, ( K) is defined through the equation

- o2 L |
gla (K)ot (k) =goots oK)+ €0, 3, —npmp’mpTnp (3.46)
m mp E,.
m=£n
[

From Egs. (3.43) and (3.45), we note that K; and where DY=X"+(1/p) > and =*" has been de-
K, are the usual spin and orbital contributions® to fined in Eq. (3.7). Thus in the quasiparticle ap-
K modified by the spin-orbit and many-body in- proximation, both spin vertex o# and the hyperfine
teractions. In fact, it has been hitherto thought vertex XV become modified. The effect of K, is
that the entire effect of spin-orbit interaction on K to cancel precisely all the corrections to the hyper-
can be incorporated through a modification of the fine vertex and keep the renormalization of the
g factor in the spin contribution (K;) and through spin vertex. The source of the apparent asym-
a change in the orbital contribution (K,) via modi- metry between the spin and hyperfine vertices is in
fication of the one-particle eigenstates. However, Eq. (3.4), which depends upon the order of dif-
we have obtained new contributions (K, ) which ferentiation in obtaining K. But our final result is
vanish with spin-orbit interaction. K, can be in- independent of this order of differentiation. This
terpreted as the contribution to the Knight shift can be easily checked by obtaining a relationship
due to the effect of spin-orbit interaction on the or- between the two quantities Sh# and 327,
bital motion of Bloch electrons. We shall now show that in the absence of spin-

It is interesting to note that the effects of ex- orbit coupling and with inversion symmetry, every
change and correlation (other than the usual term in K, vanishes. In the absence of spin-orbit
effective-mass corrections) which comes through coupling, every o, and X2, vanishes because of
S# appear only in K, and K,, and not in K, and the orthogonality of the orbital functions. Hence
also only certain terms in K, get modified. In the fourth up to the eighth terms vanish. If one
fact, the leading term of K, [proportiona] to chooses B to lie in the z direction, one has

—3Xjp.np in Eq. (3.44)], which is approximately D Onpnp= Ont,nt+ Onin=0. This, coupled with
proportional to the g factor, does not become the fact that in the absence of spin-orbit coupling

modified by exchange and correlation (except via
modification of the one-particle eigenstates). An

important point is that had we considered the and
quasiparticle contributions only, we would have ob- i -0 (3.47)
tained exactly the same expression for K in Egs. ntmi )
(3.42)—(3.44) with the modification X*—D", and h,g is antisymmetric, makes the first term

_, _»
Hnt,mf‘: Hnl,ml
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vanish. If in addition to the absence of spin-orbit

coupling, the crystal has inversion symmetry
nt?p,mpzn:xp,np . (3.48)

One can show from time-reversal property that

Ut (—K)=—U,,(K) . (3.49)
From Egs. (3.47)—(3.49), we have
:T,MT(E)z_n:tt,nT(—ﬁ) . (3.50)

Similarly we can show that
[X] (), me =X (=KLt - (351
From Egs. (3.50) and (3.51), we have
8, (ONE, ()X o (K)
E2
mn

I (=KX mp (—OTIE (—K)

np,np J mp',np

Enn

(3.52)
Since the reduced Brillouin zone is invariant under
reflection, when there is inversion symmetry, this
term exactly cancels the 15, ,( K) inpmp (K)
X2, 10(k)/Ep, term. Thus all the terms in K,
vanish in the absence of spin-orbit coupling if the
crystal has inversion symmetry.

K, should be considered as contribution due to
spin-orbit effects on the orbital motion and dis-
tinguished from the spin-orbit contribution to the
effective g factor for the following reason. There
are two types of contributions of the magnetic and
hyperfine energies of a one-electron eigenstate,
terms linear in B which split the spin degeneracy
and terms linear in M which do not. Both terms,
of course, contribute quadratically (product of B
and ICI), to the thermodynamic potential. The
linear terms in B are included in the g factor and
are always independent of the sign of the g factor,
i.e., independent of the sign of the splitting of the
spin degeneracy. The quadratic terms which arise
from a perturbation of the one-electron wave func-
tions by both the magnetic and hyperfine fields are
responsible for both K, and K,.

IV. MANY-BODY EFFECTS ON THE
KNIGHT SHIFT

A. Exchange self-energy in the band model

We note that it has been generally thought!*1%-38
that the dominant effect of the electron-electron in-

teraction is to enhance the Pauli spin susceptibility
appearing in K;. The complete effect of the
electron-electron interaction on K for many-band
systems including spin-orbit interaction has not
been investigated. In order to calculate these
many-body effects from Egs. (3.42)—(3.44), we
shall first consider the exchange self-energy in the
band model. The exchange contribution to the
self-energy is local in T space

= 1 R,
3(T,T ,g‘,):_ﬁzveﬁ(r,r )G(T, 7,6 —&r)
&'

4.1)

where we have made a simple static screening ap-
proximation to obtain v4(T,t’) from v(7,7’). In
this approximation the self-energy is independent

of §; and we have

S(F,F)= -+ Soa(F,TIG(F,F,E) . 42
B

We assume that v4(7,7’) is field independent, i.e.,
neglecting the field dependence of screening, we ob-
tain

S5, = -~ SoalF,TGETE) . 43)
B

3 and G can be expanded in terms of Bloch states
as follows:

SET)= 3 Zapmp (K, ¢ (O, 1 ,(T7)
n,mf
p:p'

(4.4)

and

GET)= 3 Gupmp KW fOW, ¢ () -
n,m,?
pp

4.5)

Substituting Egs. (4.4) and (4.5) in Eq. (4.3) we ob-
tain
S Znpme (K 7 W, 1 (T

nm
PP
s S yBFIG, K

B pp,9p
Sipg k'

==

Xt ¢ AWy g op(T) . (4.6)

2

If the effective electron-electron interaction is spin-
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independent, then p=p, p’=p’ and we have

= — 1 -
znp,mp'(k)=_Ei;§ (nm Iveff(k»k ) |pq)pp'
»61
p.q

Xépp,qp’( K&, 4.7)
where
(nm [veﬁ«(E,E')[pq) ,
”f¢n o D (T I0egg (F,T7)
X 1 oWy 0 (7). (4.8)

We shall now evaluate Enp np' and E,,p mp’ Which
occur in the expressions for K; and K,,. In order
|

S (K)=— 3, v (K, K2t (K)F (B
mk’

to evaluate f,,lp,,,p:, we make the further approxima-
tion

- — —

(nn |veg(k, k') | pg ) py=(nn |ver(K,K") | pp )8pq
SUppSpq - (4.9)
From Egs. (4.7) and (4.9), we obtain

— ~

- 1 -
oK) == 2 3 v (K,K)Gppp(K1,51)

(4.10)

Substituting the value of G from Eq. (3.16) in Eq.
(4.10), summing over ;, expanding 3, as in Eq.
(3.7), and comparing the first-order terms in mag-
netic fields, we obtain

—-»

mk’ ) — 2.“'02 vnm ’ I)gtl:t,m(E')amp mpf (Emk )

m, g
i I | £ B o
DD S (" g s L R W .11)
m m,T(.',q,p” Eqm
g#m
where the effective diagonal g matrix gk, has been defined in Eq. (3.46). In order to calculate S:',l,,,,,,,,,,(‘lé )y
we assume
(nm | ver(K,K) | PG ) ppy =20 (K, K')81pS g - 4.12)
From Egs. (4.7) and (4.12), we have
Z o mp(K)= ~ 52 LS (K, KNGy (K',1) - (4.13)
K¢

Substituting the value of G from Eq. (3.16) in Eq. (4.13), summing over {;, and comparing first-order terms

in magnetic field with such terms in Eq. (3.7), we obtain

- fE,2)—f(E, 2 )
St (K) zu,,,,, K,KNE 0 z “
nm
o fE,2)—f(E,)
zuoEUnm KB hpmp |~ | (4.14)
nm
[
where we have defined the nondiagonal effective g alternate form
trix gk,
ma n:( 8nm as ) ) K"" K"()‘s +va‘s , .16
g#m( k )o#p,mp‘( k )=g00#p,mp'( k) where
2 nﬁp,qp”nqﬁp",np’ v 1) v M ,
+ —€upu 2 - - - Kj& =—7Ho ; gn, (k )Xjnp np Unp',npf (E,)
m " E, ,
9 qm mk,p,p
gF#m
(4.15) =3 Kbn > @.17)
n

B. Exchange enhancement of K

We shall first investigate how K;¥ becomes ex-

change enhanced. We can write Eq. (3.45) in the

is the spin contribution to the Knight shift for
noninteracting Bloch electrons but with the free-
electron g factor replaced by the effective g matrix,
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Kb, is the spin-contribution to K from the nth
band, and

=—Ho 2 inpnp’ np np s (4.18)
nKpp

is the contribution due to exchange and correlation.
First, we consider individual band enhancement
and neglect interband interactions. We make an
average exchange enhancement ansatz, assume v,
=0pp_Oum Which is equivalent to the assumption
that S"* is independent of k, and neglect terms
proportional to f to obtain from Eq. (4.11)

SLp 1 n
np,np' = E 1—a, .U'Og#nal;:p,np’ ’

(4.19)

where

—

— 3 G (K, KV f(E,, ) (4.20)
Wom
is an average exchange enhancement parameter for

the nth band electrons at the Fermi energy. From
Egs. (4.16) —(4.19), we obtain

Kp=3 1= 421)

which shows that the contribution from the nth
bands gets enhanced by a factor (1—a,)~!. We
note that the intuitive result of Eq. (4.21), which

of the effective Pauli spin susceptibility in the ex-
pression for Knight shift, is only valid if one makes
drastic assumptions whlle solving the matrix in-
tegral equations for E,,p np- However, the neglect
of interband terms, i.e., coupling between the

E,fp np for different occupied bands, might be too
drastic for systems such as Be, Cd, etc. We now
consider exhange enhancement of K, in a two-
band model. We define

S =Z 4.22)

Gy = 5108 Thpmp’ » (4.23)
and

N, = _Zf’(Em?') . (4.24)

From Egs. (4.11) and (4.22) —(4.24), we obtain
(neglecting f terms)

2 =Vnn N Zp + Vm Nop Zpy +Upn@n Ny
+Vum@m Nm (4.25)
and
2 =V N 2 + Vi N 2 + 000 @, Ny
+ V@ N,y - (4.26)
Equations (4.25) and (4.26) can be solved self-

gives rise to the well-known Stoner enhancement™® consistently and we obtain
J
- VUnn@n Ny + Vm @ Ny =V U @n Ny N + | Vs | 285 Ny N 27
1= 0n Ny =V Nom + (Vi U — | Vg | Ny Ny '
and
s, = Uyam @ N + Vysn@n Ny — Vi Ui @ Ny N + | U | 2@ Ny N e 4.28)
1=y Ny =V Ny + Uy Vi — | U | )N N
From Egs. (3.45), (4.17), (4.27), and (4.28), we obtain
Ko Kb, n[1—Vpm N + (@ /8 Wy Ny 14+ Kb [ 1 — 0py Ny +(@, /81 Y01 N, ] . (4.29)
s 1— 00y Ny = Vps Ny + Uy Vi — | Vs | >INy N

We note that even in a simple two-band model, the
exchange enhancement of K is different from the
simple form obtained in Eq. (4.21).

C. Electron-electron interaction effects on Kj,
From Eq. (3.44), it may be noted that there are

no exchange and correlation effects on K;,. How-
ever, the effects of electron-electron interaction are

r

incorporated through effective-mass corrections
and through modification of the Bloch functions.
These corrections are essentially small and can be
neglected.

D. Exchange and correlation effects on K,

In order to calculate the exchange and correla-
tion effects on the mixed spin-orbit contribution
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Kjs,, we write Eq. (4.14) in the form Equation (4.30) can be written in the alternate
form
2np mp' ( k) =0y 2np mp'+ 32 .U'Oanmgnm Unp mp' >
™ a
(4.30) Enp,mp 2 ILO 1 _n gnm U#p,mp (4.32)
where we have defined a new interband exchange From Egs. (3.19) and (4.32), we obtain
enhancement parameter
anm
- - [fIE,2)—f(E_3) FE =0k o+ ghnok ey . (4.33)
G = — 3, Ty (K, 1) oI (1=t ) O P
K " Using Eq. (4.33), we have, considering only two
4.31) bands #n and m,
]
iug ng X X mp T 1B X moFE F o X
_ o €ah np»np npmm jmp',np  “jnp,mp” " "mp”,qp""" "qp""',np + 1 go#o np,mp'mp',np +Fnp,mpXjmp,np
m " E,%,,, EmnEqn 2 Emn
_ 1 #2 [gnm oJ:p mp Xj‘t’np',np +g#n( k) j?;tp,mp’oenp’,np]
2(1 —Apym ) 0 Emn
2iug [(’y/’J NP +Ak)® lnpmp mn',qp"nqﬂp",np
— T €apu€ysy 2 (4.34)
m Emn
where we have taken a,,, =a,,,. From Egs. (3.44) and (4.34), we have
K =Kib1+Ki%, (4.35)
where
; b (K)OY o Xy ()X} mpr Oy
KJ;‘;,‘ — z Ho &nm np,mp' jmp’,np + gnm Jjnp,mp'Ymp’,np f(E ) (4.36)
n, T{,p 2(1 —Opm ) Emn Emn
and
v ilu’ (2) a v B
sto,Z = Z eaB;t[ —3X jnp np' an’,mp’ Hmp” np+ nnp,anjnp,mp'Hmp',np] EZ
m, Kk ,p mn
B ov 8 1
+ (I, m Tlimgr, g XJqp np+ g, mpXjmp g gp,np) E E
qn
2ipd LFT /DB +AK)P), 1S g T1E
B o PP/ LA e SR\ f(E,) . (4.37)
m Eqn
I
Thus we note that the effect of electron-electron in- In this sense K& Js0,2 18 similar to K j‘;". We note that
teraction is different for the different terms of K% the leading term of K} , [proportional to
and involves the calculation of interband matrix —-3X j‘,',p,,,p' in Eq. (4.37)] is the dominant term in
elements of S"*, K 0,1 becomes exchange en- Kj%. We also note that exchange and correlation
hanced through the interband enhancement term effects on K% could not be incorporated in an in-
- In a sense, this exchange enhancement is tuitive way because of the mixed character of these
similar to K} although the enhancement parame- terms.
ters are different. However, K%, does not become
modified by exchange and correlation. The effect V. KNIGHT SHIFT IN p-TYPE PbTe
of electron-electron interactions on these terms is
incorporated through an effective mass and As an example of the importance of the new

through the modification of the Bloch functions. contribution K, to Knight shift of solids with
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large? effec'tive g fjactorsz,0 7we }.1ave calculated the. iso- LiB=—— ‘/_ (X 1—iX_1).
tropic Knight shift of “*/Pb in p-type PbTe which

has large spin-orbit coupling and small energy Here the a and B indices denote the partners of a

gaps. The wave functions usgdin the calculation Kramers pair, the spin functions 1 and | refer to
have been obtained by using kP perturbation eigenstates of S, in a coordinate system with x
theory on the twelve double-group basis functions along the [112], y along [1T0], and z along [111]

f01.' the six levels a_t t4}(1)e L point obtained by ) axes of a valley. R is an atomic s state, X, and Z
Mitchell and Wallis.”™ The double-group basis transform like atomic p functions with m, — + 1

. . . . : 40
functions in the notation of Mitchell and Wallis and m, =0, respectively, and S transform like

are . ' atomic d functions with m, = +1. sinf*, cos6* are
L¢iB=icos6TR|+sinf*S_1, the amplitudes of the single groups in the double-
= B cosf~Z in6-X_1, group basis functions. We note that there is some
s1B=cos bsin ! controversy about band ordering at the L
L&B=isin*Ri—cosfS_1, point.*"#*? We have chosen the Lin-Kleinman or-
_ o _ dering*! since, using this ordering, Bernick and
LgB=sing"Zi—cosf"X_1, (5.1) Kleinman*® have obtained good agreement for en-
1 ergy gaps, effective masses, and g values.
LiB=—=(S L1—=iS_1), We have first diagonalized exactly the con-
V2
duction-band (L g,a, L¢,3) and valence-band wave
and functions (L i, L B) to obtain
]
1w |7, - Vat/misk, Lia \/_(ﬁ/m)tk+ VARmk
=15 T BN WA T E W W) ’
. W 1/2L—/3+ V2(#/m)sk, Ltt V2#H/m)tk _ 4o
=1 ow T EN WA W) T Egvwarw)
be | 127 sy YAk, A mk s 5.2
T w N W) T v e
and
1w | Vamsk o Va/mk
=10 | PP v L B o

Here Eg is the energy gap,

172
24742 2 2 4%,
W= 1+"—n‘§EGz*(kx+ky) 152 5k, ) (5.3)
t = —sin@*sinf~P3; —cosftcos6~Py; , (5.4)
s = —sin@ " cos@t Py; +cosO~sinf* Py, , (5.5)
1 ,
ki=~‘7_—2—(kxilky) s (5.6)

and Py;, P;;, P3;, and P; are the nonzero momentum matrix elements between single-group states defined
in Ref. 40. The mteractlon of the 9's with the far bands Ly, L5, 8, L, L _ZB’ *B, and Lfa have been
obtained by using kP P perturbation theory. The new valence-band energy E, (k) is obtained as

‘hzk 1 M3
E (k)—e1+—-2-———7EG(W—1)+M1(k,f+ky2)+M2kz2+ warm T — (k2 +k})?
M; M, 4 M, 2 2
Gk B —_ — kI+kDkZ, (5.7
Hwarwmtw et waawm T w |RetRk )
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where M |,M,, etc., are functions of momentum
matrix elements, energy gaps, etc. Similarly, the
matrix elements of Il, &, and X have been expand-
ed in powers of K and obtained in terms of the cor-
responding values at the band edges. The ampli-
tudes of the single group in the double-group basis
functions (sinf%,cos6*) and the momentum matrix
elements and the energy gaps at the band edges
were obtained from Bernick and Kleinman.*
However, we have taken sin6* to be positive in-
stead of negative since otherwise the longitudinal
(K;) and transverse (K,) Knight shifts have oppo-
site signs. We note from the following argument
that this change of sign neither alters the numeri-
cal results nor the band ordering. The energy ex-
pressions of Mitchell and Wallis® are

+  + + . + .
€T =€3cos’0% — ATsin?0% +2V2A%sin0* cosf*

(5.8)
and
€F =eksin?9* — Afcos?ot
—2V2A%sinf%cosot | (5.9)
where €3, AT, and A% are energy parameters.
Furthermore,
. 2V2A%
tan20* = ——— . (5.10)
€p +AT

From Egs. (5.8)—(5.10), it can be easily seen that
€¥ and €% do not change if the signs of both
sin* and sind~ are changed simultaneously.

The matrix elements of ff, 7, and X and new
energy gaps were substituted in the general expres-
sion for Knight shift [Egs. (3.41)—(3.44)] to obtain
the Knight shift K ( K) at an arbitrary K. The
result was then summed over all k states. Inan
arbitrarily oriented external magnetic field B, nei-
ther the matrix elements of & nor the Fermi popu-
lation factors are identical in the four valleys at the
(111) zone edges. Thus the sum over the four

3109

valleys in PbTe must be carried out, valley by val-
ley, for the assumed direction of B. However,
since the cubic symmetry of the lead salts requires
that the final result of isotropic Knight shift be in-
dependent of the orientation of B, one may choose
B in any direction. Therefore, we have simplified
the problem by taking B along [001], in which case
the four valleys are fully equivalent. For conveni-
ence, K was calculated for the valley around the
point L with coordinates (27/a)(3,7,5). Since
there are four inequivalent L points, the total
Knight shift is obtained from the formula

K =4(3K'+3K"), (5.11)

where K is the longitudinal and K* is the trans-
verse Knight shift for any valley. For numerical
calculations in p-type PbTe we have ignored ex-
change effects, which is justified in view of the low
density of carriers.

Before presenting our numerical results we
would like to point out that the negative (positive)
sign of K in p (n)-type PbTe has been attributed to
negative (positive) g factors in corresponding sys-
tems. However, it is well known?® that whereas
the sign of g factor is not uniquely determined, the
sign of K is. Thus a calculation of K provides a
stringent test of the accuracy of electronic wave
functions in the solid.

The results of our calculation of the contribu-
tions from each valley to the longitudinal and
transverse components of Knight shift in p-type
PbTe for two different hole concentrations are
given in Table I. The spin, orbital, and mixed
spin-orbit contributions to the Knight shift have
been calculated from these results using Eq. (5.11)
and have been tabulated in Table II along with the
experimental results. From Table II it can be seen
that the orbital contribution to the Knight shift is
about 3 orders of magnitude smaller than the spin
and mixed spin-orbit contributions. It may be not-
ed that the new contribution K,, which has been
missed in the earlier theories, has the same sign as

TABLE 1. Longitudinal and transverse contributions to components of the Knight shift of 27Pb in p-type PbTe for

each valley (for two different hole concentrations).

Hole
concentration K! K! K, Kl K,
(cm™3)
7.1 10" —1.98%1073 —4.13x10~* —1.74%x10~° —1.06%x10~° —4.2%x10~* —1.21x10~*
1.8 10" —2.15%x1073 —437x10™* —6.19%10~° —3.78x10~° —7.6Xx10~* —2.46x10"*
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TABLE II. Spin, orbital, and spin-orbit contributions to the Knight shift of *’Pb in p-type PbTe and comparison
with experimental results.

Hole
concentration K; K, K, K,/K; K, /K; Kot Kexpt
(cm™3) (Ref. 44)

7.1x 10" —3.74%x107* —5.12x10° —89 x10~* 1.37x10°¢ 0.23 —4.63x107° —4.7x1073

1.8x 10 —4.03%x107% —1.81x107% —1.68x10~° 4.5 x10~¢ 0.41 —5.71x1073  —6.1x1073
K, and contributes a significant fraction of the to- solids with large effective g factors.
tal Knight shift. It is also interesting to note that In order to calculate the relative importance of
ratio K, /K, increases with the hole concentration. K, we have applied our theory to calculate the
The physical reason for this is the increase in the Knight shift of 2’Pb in p-type PbTe with small
strength of the spin-orbit interaction as one goes hole concentrations. Our results indicate that K,
away from the L point in the Brillouin zone. The contributes a significant fraction of the total
quantitative agreement of our result with the ex- Knight shift and this contribution increases with
periment is quite encouraging if we note that ex- the hole concentration, as it should, since the
change enhancement effects will increase with hole strength of the spin-orbit interaction is increased as
concentration, bringing theory and experiment into one goes away from the L point in the Brillouin
better quantitative agreement. zone. Our results agree quite well with experimen-

tal results.
VI. SUMMARY AND CONCLUSION

In this paper we have presented what we believe

is a reasonably complete theory of the Knight shift ACKNOWLEDGMENTS
in solids, which includes the effect of electron-
electron interaction on the Knight shift for many- This research was supported in part by the Na-
band systems including spin-orbit interaction. We tional Science Foundation, University Grants Com-
have analyzed all contributions carefully and ob- mission (India), and Department of Atomic Energy
tained new contributions to the Knight shift (K, ) (India). One of the authors (S.D.M.) would like to
which have been missed in all the earlier theories. thank the Berhampur University, where most of
We have also calculated the effects of exchange the work was performed, for a visiting professor-
and correlations on K, which are important for ship.

APPENDIX A

In order to prove the partial integrations in Egs. (3.29) and (3.30) we first wish to obtain expressions for

Vg, ., and VD, 1y We have

m —
V,‘:pr’mp,z—ﬁ—v,‘:fdr Usy (VEH)U,,

m —> - a
=2 | [ anVEUL g NVEHO U, g+ [ AT Us g (VEVEHOU,, 3,

+f df’U,:;»yp(VfHo)V,?Um_—g,p.] . (A1)

Since U, y, are a complete set for periodic functions, we can insert the identity | U, %, p,,)( U,%,| in the
first and third terms. Therefore, we have
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m -
v,;’n,ﬁ,,,,,,,—; 2 [arveuie U,z 0 [ dT'Usy (VEHOU,, 3
q;én

+§fd?(v;:U;;k U,z [ d¥'Usg . (VEHOU, 3

ViU, v

+2 [arus; (VEH)U, v [ ATUe VU, 2

g k,p”
tl;ém

— #
+2‘,fdr o VEHOU,, ¢ v [ dT'UL ¢ VRU, 3 p+;l—saﬁsnp,mp,+ygfmp ,

(A2)
where
Y¥P=vives0. (A3)
We also have
ve [dr ULy HoU, 3 ,=0, (A4)
from which we obtain
#
E, [ dTVEU g Uyt En [ AT UL VEU, ¢yt~ 115 1 =0 (AS)
and
ve [dT UL U,z =0, (A6)
from which we obtain
[avveuis U, =~ [dTUL: VEU, 2, (A7)
From Eqgs. (A5) and (A7) we have for g54n
4 Mgy
f dr'y n, k p q X, o m E . (A8)
We define
Qupnp= [ dFUL L ViU, - (A9)
From Egs. (A2), (A8), and (A9) we obtain
ﬁ Hn H m # 11, gy m
VaHB 2 p,qp" " "gp”,mp’ 2 ____mzp_qg_,_i
np.mp’ = o m E,, o m Epmg
qFn >
*2 (an np” np \mp' T gp,mp"Q;p",mp’ )+h8a58np,mp'+ # letlmep (A10)
In a similar fashion we can prove
ﬁ IIn m ‘ﬁ jn #Tlg m
veDy, =3 = p.ap"Digp",mp +3 2 p.qp” " gp",mp’
nprmp’ = gp" M E"‘l gp" M qu
g5n gFm
rl 1 |a=2”
—E(anynp ing",mp — Dijnp,mpQmp',mp ) +2€ma =5 } o ja (A1D)
7j np,mp’ ok np,mp’
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and
B B a
A Mg gp g mp i g g Mg pmp B
VI? mp'snp = 2 m E + 27)1“ E E(Q"'P mp" "‘P np H'"P':"P"Q:p”,np)
a.p" mq a.p" "q
'H&m g7n
+h8a58mp’,np+ % Yr?tg np * (A12)

The partial integration can be done in the following way. We consider the following differentiation:

D TP

hagM Vi {*——~’”"”"”2 mEP 4(E,,)
El,

7 ap apDigp,m #i Dinp.gp gy
=hqapM;, 2 m _—E;‘—"" 2 ";“’L’%‘"ﬂ _Z(Q:pmp DJ‘;'P mp’ _D;;tp,mp"Q:rzlp”,mP’)
\ 0" mgq
i o "
] S 2 B
e | L L Mg o
I ok® E}
J Jnpmp’ np,mp’ mn
v B
Djnp,mp A Mg o Tlgpnp " 2 A 1700 Mg, mp
E2X, i ™M E g o m E,,
gFm qn
- 2 Qmp mp" mp np Igp',np"Q:lzp",np)+h8a36mp',np ¢(En)
_ #i Dj‘l’lp mp’ IImp npnr:p mp'
m Epn
D" qB 112 D?’ N 1 0N |
jnp,mp' ";p MpZIPNP | G(E, )+ Jjnp,mp m2p np”tnp', M f(E,) L (A13)
E,, Emnn

where we sum over all the band indices but n~m=~q. We note that the sum h,,gY“E is zero because of the
antisymmetric nature of h,g. We simplify the sum by interchanging band indices (except n) wherever neces-
sary and then group together the diagonal terms in the band indices ¢ and m with the nondiagonal terms.
Since we have a summation over k, which can be changed to an integration, the volume integral over the K
space can be changed to a surface intergral, and since the integrand is periodic in k, the surface integral van-

ishes. Thus the sum is zero and so the term proportional to f(E,) will be equal and opposite in sign to all
the terms proportional to ¢(E,). Finally we obtain
2 0§ N K
i # vz Dijnp,mp’ ";p,np " £(E )
m? E,,
qE, Dyny T o TLE B i S ) 9
_2 hagM;, | — 5o, mpDjmp, q; gp",np inp,np’ np3Mp mp',np Djnp,mp Zrnp .qp" " ap”,np
EmnEqn Emn Eanmn
D}y 15 T loFNn | L
Jjnp,mp’ ";P Mp” _np,np +AJ")ﬂ J"F”"‘P2 mp,np ¢(En ), (A14)
Emn Epn

where the sums are over m,p’,q,p"’, but m,q5~n. Following a similar procedure we can prove Eq. (3.30).
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APPENDIX B
We shall now prove Eq. (3.39). We write, interchanging a and S in Eq. (A10)
B
vine, =S & i H"P,qp Mgy, mp +3 A g o Tgp mpy
np,mp —
A E,, M E,,
q5n q7Fm
"2 (Qnﬁp,np"nr‘txp",mp' np mp' Qmp ,mp’ )+h8a66np,mp '+ % Yr(tlp mp’ (B1)
P
and, in a similar fashion as Eq. (A11), we can prove
_ 32 2 B
Vﬁzz =3 A II,,,,, a0 2jgp" np" +3 i ZjmpapUgp np”
jmp',np” =
P Py E,g o m E,,
g#m gn
2, 32 0 2,
“2 (anp mp'" Jm:w np”"Ejm:',np"’pr””"P" )+ kP 2/ vl g (B2)
mp',np"”
Using Egs. (B1) and (B2), we have
11 G g
Capu Vi | —ETELEI f(E, )
mn
=€ A anyqp Mgy, mp " 2 i M, g0 nqp" mp’
=€apy
ap” M E"q q.p" E"'q
qn q#=m
Sav,
S (0L AN | GRS | (AN LI W - 3 S %fw,,)
pu mn
2, Sy B
" Mg, mpr i mpgp 2o \np” 2 7 ZjmpapNapminp” S Qi SET
m m, m ,n
Epn | gpn M Epnq oo M E,, pmp Simp",np
qFm q5n
2, d 32
zjm‘;) np' an ,np"” D+ asz Y f(En)
mp',np"”
I2,v B I2,v B
+ # H‘:p,mn mep’vnp”nnp”ynp” Hﬁp mp' Zjmp’,np" g, mp’ f(E,)
m Ep, Epn "
ne ,.,2>v 12
_h_. np,mp'<jmp’,np "P»”Pf (E (B3)
m E,..
By a procedure similar to that followed in Eq. (A 14), we obtain from Eq. (B3)
B I2,v B 2,
Lo, mp zJmp npn'?p np ng mp'Zjmp,ap"Nap”.np H:P mp H'np np' 21”; \np
eaﬂuz f (E )_605#2 + 5
* E,, g EmnEqn Emn
2
a , azf
np,mp B
ak mp' np
+ — | f(E (B4)
# E,,
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Similarly, we have

Sev 2. T8 ng . .2xv. M2
Eaﬁpz jnp,mp'* “mp',np* np,np FUE, )= eaa#Z np,mp"<jmp",qp'"* qp’,np
Epn by EpnEgp
) .
2,V a B nmp np
_ Ean np nnp mp’ Hmp mp - m ok np,mp’ f(E,)
Erzm ﬁ Em" e
(B5)
By summing Egs. (B4) and (B5), we obtain Eq. (3.39).
APPENDIX C
We shall now prove Eq. (3.40). Using Eq. (3.18), we write
B B 1
2 (an mp H"'P qp"XJqp np+an '"PXJ‘;"P »qp’ qu np+X11;tp mp Hrzp’,qp"nqp"ynp) E E
nX,p gntmn
m,q,p'.p"
— B ov ov 0 B _1____
- Z' (H”P mp Hmp',qp"Xiqp”,np‘anp mpXjmp',.qp’ A1 ap", "P+XJ"‘;? mp H:tp apUap",np) E_E
nk,p gnCmn
m,q,p',p"
e, b, x,oame x o mh, ixl o ope. qpb, —L
np,mp'*imp’,qp"“* jgp",np np,mp' X jmp',qp" Uap",np+ & jnp,mp' Ump',qp" L gp”,np E_E
(C1)

Denoting the second term in Eq. (C1) as T, we can write it in the alternate form

= (r2 v B
+ (jnp,mpXjmp,ap" Jap",np)

. a B 1v 1v a B
im l_ rfnp,'np’Hmp’,qp”XJ'qp",nP + Xan,mrr Hmp,qp Jap",np

n,ip 7 E‘I" Emn ﬁz ’
m,q,p',p
(C2)
where we have used the well-known relation
T
p,mp m _,
=—F .. (C3)
Enm #o e
Using the completeness of the periodic functions, we write
arB 1v a 1v a 1v
(r; T g, mpXjmp',np =3 "jnp,qp”n ap",mpXjmp',np > rinp,np"nnp ,mpXjmp',np (C4)
Emn '’ Emn '’ Emn ’
a0 p
v ar B 1v a B 1v re B
Xjnp, mxr( j 1 )mP""P - 2 Xan mp'jmp',qp' qu”,np +2 Xinp,mp'" jmpl,np’ an”,np (C5)
Epnn 4 E,y Z Epn ’
7.0 p
and
(ryX;*rf z X npumptThnganp + 3 XS Dnpumg gt (C6)
3T Inpimp= Inp,mpjmp!,np o \'j A npmpTinpinp -
P

From Egs. (C2) and (C4)—(C6), we have
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Ti=— 3

n,k,p
)

m,p,p

im (r JgHB)nP,mp’lerxp'mp +lenvp mp’ (r fgnﬂ)mp',np
Emn

v B lv ay lv B
[ ¥inp,np’ h jnp'smp ijp inp + Xjnp,mp jmp' npTing'",mp + (17X )”pmp_(r 7 X5 Inp,npjng',np

a ly B
= Tjnp,npXjnp!, mp" i’”P"v"P]] . (C7)
We can also write
ﬁ B 1v
Tinpnp (1 X, j Inpt,np= 2 FinpunpT ng',mpX. J'"P np+2 jnp,np’ an npXinp",np (C8)
and
X r? B EXI" re B +2X1" re B (C9)
np, np np”, jnp,mp'T jmp',np"¥ jnp”,np Jnp,np'Ving',np"Vinp,mp -
From Egs. (C7)—(C9), and using the commutation relation
Byl ry
[rj ,X] v]=2i€mﬂ ;? ’ (C10)
J
and the identity equation (3.35), we obtain
v v
i 3 ) j Lj 1
;#Oeal’#T’:Z“Oeaﬁu 2 (rJqHB)”P,mp’ "_3] + =5 (rf’ HB)MP"”P E
nk,p ¥ mp',np rj np,mp’ mn
m,p
2 r 8 JB rf B rf
ﬁz ’LO(SVBSF‘" 5""53"7) _Z —;? Vinp',np — r3 +rjnp,np' 75' .
nX,p,p’ J Jnp.np' J np,np J Inp',np
(C11)
We also have, using Eq. (C3),
2ipd (r1/r) B ) U § L O /) W
_ Ao 8,8, 3, J 7T ‘np,mp'imp',np— 2 np,mp\Tj /T 'mp',np
# vBOun Bn E
n,k,f? mn
m,
ripB rBen rl rl
2 I i I B s
ﬁz “O(SVBSM 8,88y Z 3 3 1,3 Finp',np — Vjnp,np' .3
nk,p,p’ j np,np J np,np J Jnp,np’ J Jnp',np
(C12)

From Egs. (C1), (C11), and (C12) and using the identity (r]’rf3 Jup,np="0 for n=~=f3, we obtain the desired result
in Eq. (3.40).
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