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Hyperfine fields at impurities in ferromagnetic metals
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A model has been developed which describes the hyperfine field at nonmagnetic impur-

ities in ferromagnetic metallic hosts as arising from conduction-electron polarization.
The problem is approached by considering the effect of both the screened electrostatic po-
tential of the impurity and a spin-dependent potential arising from the exchange scatter-

ing of the conduction electrons at the localized magnetic moments of the host lattice.
The influence of zero-point motion and thermal vibrations is explicitly taken into account.
The model is applied to study the spin density at muons in Gd, Dy, Ni, Fe, and Co, and

the predictions of the model are compared with experiment. The effect of various physi-
cal mechanisms on the temperature, pressure, and site dependence of the hyperfine field
is discussed in detail.

I. INTRODUCTION

In the last few years the muon spin rotation
(@SR) technique has been widely used to investi-

gate internal fields in magnetically ordered materi-
als. ' Once thermalized in condensed matter, the
positive muon behaves as if it were a light proton
(rny/m„=9). The precession frequency which is
observed by detecting the time-dependent angular
correlation pattern of the decay positron gives a
direct quantitative measure of the local magnetic
field B„at the site of the muon. By considering
the contributions of the Lorentz field and the resi-
dual dipolar field to B„, the site of the muon and
the contact hyperfine field can be determined.

The hyperfine fields thus observed in various
ferromagnetic metals are all negative, i.e., the local
magnetization density at the p+ is in a direction
opposite to the average magnetization density.
Such a negative value is in agreement with other
experiments at dilute nonmagnetic impurities in
ferromagnetic metals which generally show hyper-
fine fields which are negative for small impurity
valence Z and positive for large Z. This depen-
dence was first explained by Daniel and Friedel.
They proposed a model which assumes a homo-
geneous free-electron gas with a positive spin po-
larization. Simulating the electrostatic potential of
the impurity by a square well, the depth of which
depends on Z, the spin density at the impurity is
then calculated. Although most applications of

this model have dealt with substitutional impuri-
ties, it is equally applicable to interstitials. Anoth-
er model for hyperfine fields was proposed by
Blandin and Campbell, who, instead of assuming
an a priori spin-polarized electron gas, considered a
Ruderman-Kittel-Kasuya- Yosida (RKKY)-type in-

teraction between the localized moments of the
host and the conduction electrons, giving rise to an
inhomogeneous spin polarization. Other models
have been proposed by Jena and Geldart, who ex-
plained qualitatively the behavior of hyperfine
fields for a large number of Heusler alloys, and by
Stearns, who proposed a model based upon the
volume misfit between the impurity and host
atoms.

The results of the @SR experiments in ferromag-
netic metals have provoked new theoretical efforts
to explain the measured hyperfine fields. Micro-
scopic calculations of spin densities at muons in Ni
have recently been presented by several authors us-

ing different approaches such as separate treatment
of s and d electrons, a molecular cluster calcula-
tion, a Korringa-Kohn-Rostoker (KKR) formal-
ism, ' "or a supercell band-structure method. '

While giving values of BM(T =0) at the p+ in Ni
in good agreement with experiment, due to compu-
tational complexity these methods are inconvenient
to study the influence of different physical effects
on the spin density. Effects such as zero-point
motion of the muon, lattice relaxation, and lattice
expansion are best studied in the framework of a
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phenomenological model.
The first attempts' concentrated on the spin-

density enhancement at a p+ in a homogeneously
polarized electron gas with a polarization deter-
mined by the background density measured with

neutrons. It has been pointed out, ' however, that
it is not adequate to base a model on a homogene-
ously polarized electron gas. The hyperfine field is
a nonlocal quantity and the use of a local density
approximation is incorrect.

In the present paper a model is developed which
describes the hyperfine field as arising from con-
duction electron polarization. It is an extension of
previous works' ' devoted to the study of spin
densities at positive muons. It contains other
models as special cases (Daniel-Friedel and
Blandin-Campbell ), and includes the main pertur-
bations created by the presence of the muon in the
lattice. These perturbations seem to be essential in

explaining the experimental data. Similar models
have recently been proposed, ' ' which also stress
the nonlocal character of the hyperfine field at the
impurity.

Since the model is based on a spin-dependent po-
tential arising from the exchange scattering of con-
duction electrons at localized magnetic moments, it
treats the exchange mechanism in an approximate
manner. Therefore, it does not allow precise pre-
dictions of the absolute numerical values of the hy-

perfine fields at impurities. However, the present
model has the merit of providing a physically
transparent picture and allows one to study in
some detail how the hyperfine fields are influenced

by various physical mechanisms. In particular, the
modifications due to the zero-point motion of the
impurity (which is large in the case of a light im-

purity as the p+) and the effects of thermal vibra-

tions of the lattice ions and of thermal expansion
are investigated. For technical reasons these physi-
cal effects are usually neglected in first-principle
calculations.

The outline of the paper is as follows. In Sec. II
the model is developed for an arbitrary nonmagnet-
ic impurity in a ferromagnetic metal. Its relation
to other models ' ' is discussed. Zero-point
motion and thermal lattice vibrations are taken
into account in a way similar to the discussion of
the temperature dependence of the electric field
gradients at impurities in metals. ' ' The theory
is presented for a general impurity but has been
applied so far only to muons or protons.

The model parameters are discussed in Sec. III,
and the results of the model applied to the pure

keeps the same sign for T & T„and it can be posi-
tive or negative (see Table I). In the framework of
the present model this behavior can be partially
reproduced.

Furthermore, it is shown that the discontinuity
of the hyperfine field at the structural phase transi-
tion in Co can be qualitatively understood with the

TABLE I. Compilation of the experimentally deter-
mined zero-temperature hyperfine field Bbq(0), the deter-
mined muon site, and the deviation D(T) of the normal-
ized hyperfine field Bqq(T) from the bulk magnetization
[Eq. (1)]. The table is from Ref. 1.

Host Bbg(0) (kG) D(T) Site

Gd
Dy
Ni
Fe
Co

—6.9 +0.2
—0.7 or —25.0
—0.71+0.01

—11.1 +0.2
—6.1 +0.2

&0

)0
&0
&0

octahedral
octahedral (?)
octahedral (?)
tetrahedral (?)
octahedral

host lattice are described in conjunction with the
data from polarized neutron scattering. Section IV
is devoted to the dependence of the hyperfine fields
on vibrations of the muon and lattice ions. Two
typical examples (Gd and Ni) are discussed for
various values of the model parameters as well as
for different sites of the muon. The results are
compared with the experimental data which are
summarized in Table I.

In order to provide some physical insight into
the numerical results of Sec. IV, we discuss the
dependence of spin densities on vibrations in the
framework of a modified RKKY model in an Ap-
pendix. This simple model allows an analytical ex-

pansion of the spin density in terms of a vibration
parameter which shows that the hyperfine fields

depend crucially on the distance between the im-

purity and the first neighboring ions. These struc-
tural effects are used to discuss in detail the results
of the full model presented in Sec. IV.

The model allows one to consider changes in the
lattice parameters and vibration amplitudes in a
straightforward way. Thus, in Secs. V and VI the
temperature, pressure, and site dependencies are in-

vestigated. The experimental functions B&r( T) do
not scale with the temperature-dependent satura-
tion magnetization M, (T) of the host. The mea-
sured deviation D ( T), defined by

Bt,r( T) M, ( T)
D(T)=

Bgr(O) M, (o)
'
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help of the vibration dependence of Bhr in both
phases. The main conclusions of this study are
summarized in Sec. VII.

This constant part of the potential gives rise to a
rigid band splitting described by the Fermi wave
vectors kF.

II. DESCRIPTION OF THE MODEL

H,„=—2J,„s SQ+5(r —R ) (2)

We consider a ferromagnetic host lattice with a
single nonmagnetic impurity located at the origin,
which may be a substitutional or an interstitial site.
The screened electrostatic potential produced by
the impurity gives rise to a distortion of the wave
functions of the conduction electrons, which are
treated as an interacting electron gas. The magnet-
ic moments S localized at the lattice sites R- of
the ferromagnetic host interact with the spin s of
the conduction electrons through an effective s-d
or s-f exchange interaction

ano

no

3 Jr
2 EF

where n p =kg/(3n ) is the density, and Er , ks-——
the Fermi energy of the homogeneous electron gas.
From Eqs. (3), (5), and (7), the inhomogeneous
magnetic potential is found to be

b, W~(r) = W~(r) W—

= —os Qg z5(r R) 1— —4',

(ks ) k—F=2W(, ———2oJr .

In a linear approximation, the corresponding mean
polarization of the itinerant electrons is given by

with interaction energy J,„. 0 denotes the atomic
volume. The sum extends over all occupied lattice
sites R-. Following Blandin and Campbell, we

simulate this interaction by the spin-dependent po-
tential

W (r)= —oJ&Q+5(r —R-) . (3)

0 =+1 according to the spin projection of the con-
duction electrons. The effective exchange energy

(4)

is temperature dependent since the average local-
ized moment (S, ) is supposed to follow the sa-
turation magnetization M, (T). Since we are in-
terested in the charge and spin densities close to
the impurity only, the model is further simplified
by taking a spherical average of W~( r ):

W (r)= fd(cos8)dg W (r) . (5)
1

4m

This approximation is analogous to the spherical
solid model, where the electrostatic lattice poten-
tial is approximated by a spherical average of the
ion pseudopotentials. In our case the pseudopoten-
tials of the lattice ions are ignored, and only the
influence on the spin dependence of the conduction
electrons is considered.

For large r values, W (r) can be replaced by its
average

W~= —OJg .

Now the sum extends over all shells s at distance
R, from the impurity, and z, denotes the number
of ions on shell s.

As has been discussed earlier, ' this model con-
tains the model of Daniel and Friedel as well as
that of Blandin and Campbell5 as limiting cases:
By neglecting 68'~ altogether and approximating
the charge screening potential by a square well, one
recovers precisely the Daniel-Friedel model which
has been proposed to explain the hyperfine field
systematics observed at impurities with different
valences in ferromagnets. On the other hand, by
restricting the sum over s to a few neighboring
shells around the impurity, one obtains the model
of Blandin and Campbell. In this case, the con-
stant part 8' must be set equal to zero since there
is no band splitting of the electron gas.

The spin-dependent potential W~(r ) introduced
in Eq. (3) assumes fixed sites for the ions (at
r =R-) and for the nonmagnetic impurity (at
r =0). Actually this potential depends on the in-

stantaneous positions and should be replaced by

W (r, t) = —crJz Q+5(r —R —u-(t)+u&(t)),

(10)

where u-(t) is the instantaneous displacement of
the lattice ion m from its average position R- and

u&(t) that of the muon probe. By requiring that
the mean elongations vanish,

(u (t)) =0,
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all effects due to lattice expansion are shifted into
the quantities R- which thus become temperature

dependent.
Since measurements of the hyperfine field act on

a time scale much larger than that for thermal vi-

brations, the potential (10) may be averaged over
phonon fluctuations:

g s0.1

bcc
tetr site

w. (r) =( w. (r, t)) . (12)

Writing the 5 function in Eq. {10}as an integral,
one obtains

W~(r)= —oJTQQ f 3e(2' }

X(e ' " ).—iq-[u~(t) —u (t)]

(13)

(14)

where it has been assumed that ( u&) =0.
Taking the spherical average of W ( r }, we get

for the magnetic part of the potential

~JT~ zs 1 —Ir —R )2/a2sI~
W (r)=- e4rr, rRs v n.gq

(15)

The dimensionless parameter g defined by

2 (u')+(u„')n'=
3

(16)

is a measure for the combined mean-square elonga-
tions of the nonmagnetic impurity and of the host
ions in units of the lattice constant a.

The inhomogeneous magnetic potential

hw (r)= W {r) W—
is rather long ranged and has an oscillatory
behavior (Fig. 1). The vibrations have the effect of
smoothing out the 6 functions of the rigid lattice.

The average over the exponential can be treated by
the cumulant method, which is applicable even in
the case of strongly anharmonic vibrations. In the
present context however, it is sufficient to consider
the simplest harmonic case and to assume that the
motion of the ions and of the impurity are un-

correlated. Using the Debye-Wailer approxima-
tion, one may then approximate the expectation
value by

—i q [ u ~ (t)—u (t)] —q ((p )+(p ))/6(e " )=e

10—

0
0

I

I

I i. Ll ! I

1 2 3

r/a
FIG. 1. Inhomogeneous magnetic potential 6 W (r)

for a=+1 [see Eqs. (15) and (17)], in units of Jr,
versus the distance from the tetrahedral interstitial site
in the bcc lattice. For g=0, hW (r) is a sum of 5
functions [see Eq. (9)]. For rl&0, it becomes a sum of
Gaussians with widths which increase with g. In the
lower part of the figure, the number z, of ions on shell s
is shown.

It should be mentioned that the localized exchange
interaction (2) is an idealization; the corresponding
5 functions should be replaced by Gauss functions
with a width given by the spread of the wave func-
tions responsible for the localized magnetic mo-
ment. This effect can easily be incorporated into
the model by adding to the right-hand side of Eq.
{16)the relative mean-square spread, leading to an
enhancement of the value of the parameter T).

Given the magnetic potential and the pure
Coulomb attraction of the charge of the nonmag-
netic impurity ( Z/r), th—e spin density of the
electrons can be calculated in the framework of the
self-consistent density-functional method. This
technique has been applied' to the investigation of
the hyperfine field systematics for impurities with
various outer electron configurations in Ni. Light
impurities in Gd and Dy have recently been treated
with the density-functional method by Manninen
and Nieminen. ' The excessive numerical work in-
volved in these calculations, however, forces one to
cut off the potential after the first few shells.

In the present work we therefore choose to ap-
proximate the effective electrostatic potential by a
one-parameter potential

where A, is determined from the Friedel sum rule.
It has been shown that the electron density at a

muon in a homogeneous electron gas calculated
with Vq(r) differs from that calculated in the self-
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consistent density-functional formalism by at most
10% over the entire metallic range. Significant
discrepancies occur only for large r values. The
physical reason for this is the fact that close to the
impurity the potential is always dominated by the
Coulomb part. The specific form (18) was chosen
since it allows an analytic solution of all s-wave
properties. 2 Another choice for V)„(r) (e.g., a
Yukawa-type potential) would not significantly af-
fect the resulting spin density.

The problem is now reduced to calculating the
electron wave functions in each band 0. for the
spherical symmetric potential

4~)I(r)= V)„(r)+W (r) W—
which is represented in Fig. 2. To achieve a
reasonable independence from the cutoff radius, a
very large number of lattice points (typically one
thousand) must be taken into account.

Denoting the enhancement factor for the wave
functions with wave vector k by E ( k ), the spin
density at the origin resulting from the potential
4~ ~(r) can be written

k~+

An(0)= f dkk E+(k)
2

—f dkk E (k) +En(0)b

(20)

from bound states. The contributions of the
scattering and bound states to the total spin densi-

ty, shown for a typical case in Fig. 3, involve can-
cellation of large individual contributions, so that
high numerical accuracy is required for a reliable
net spin density. It is of interest to note that the
contribution from the scattering states alone results
in a positive spin density. The bound state, on the
other hand, gives rise to a negative polarization.
This behavior is common to all cases investigated
in this paper and indicates that the model simu-
lates rather well some of the basic features found
in much more fundamental calculations. (See, e.g. ,
the discussion of Kanamori et al. " of the contri-
butions of band and bonding states to the total
spin density at the )M+ in Ni. )

III. DISCUSSION OF THE MODEL
PARAMETERS AND THE UNPERTURBED

SPIN DENSITY

The model contains two essential parameters:
Jp the effective exchange interaction at 0 K, and

q, a measure of the vibrations. The former quanti-

ty is independent of the presence of the impurity,
and its value can, in principle, be estimated from
experiment. Dividing the spin density in a fer-
romagnetic metal into one contribution from local-
ized moments and another from itinerant electrons

where b,n(0)b denotes the spin density originating

0.15-
n'

( sc

0.05 I I I i

1

I I I I
]

I

01 Gd, kF= 0.739 a.u.

Jo= 0.3 eV

l) sc

—0.1 p = 0.15

~o = 1.0eV
0.05- n'

g
b

-0.2—

fcc oct site
a„= 6.65aB

I

5 10

r/a,
FIG. 2. Plot of the total potential 4 q(r) in atomic

units [Eq. (19)]. The solid line is the charge screening
potential alone, Vq(r) [Eq. (18)], with A, =0.95. The
dashed and dotted lines include the magnetic potential
for both spin directions. The impurity is at the origin
(octahedral interstitial site in the fcc lattice).

I I I

0 0.1 0.2 0.3 0.4 0.5
Tl

FIG. 3. Contributions to the spin density in atomic
units versus g, at a positive muon localized at the octa-
hedra1 interstitial site in Gd. An„, =b,n„+Anb ——n„
—n,', +nb —nb, contains the scattering and bound states
contributions. For higher values of g, both An„and
b,nb may cross the 0 axis.
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is a reasonable approximation in the case of rare-
earth metals. The atomic f-electron contribution
for Gd (Dy) is 7p,s (les�). From the measured
magnetization of 7.55ps (10.2ps) per atom, a
mean itinerant spin density of 0.0025 a.u. (0.00094
a.u. ) is obtained. Equations (4) and (8) then give

J,„=0.24 eV (0.063 eV), i.e., Jo ——0.83 eV (0.31
eV).

For transition metals, the use of a localized ex-

change interaction is somewhat artificial. Howev-

er, since the long-range potential obtained mimics
the spatially inhomogeneous spin polarization of
the host, it contains some of the essential physics
of an impurity in a ferromagnet.

By leaving the value of Jo as a parameter, we
focus not on the values of the calculated hyperfine
fields, but rather on the influence of different
mechanisms on the spin density. In general we ex-

pect Jo to be smaller for transition metals than for
Gd.

An estimate for Jo may be obtained by calculat-
ing the magnetization at an interstitial site in the
absence of a muon. The resulting unperturbed spin
densities are given in Table II for Jo ——0.9 eV (Gd)
or 0.3 eV (Ni, Fe,Co). It is remarkable that the
model calculations lead to a negative magnetization
at all interstitial sites although the mean magneti-
zation of the itinerant electrons is assumed posi-
tive. This clearly shows the nonlocal character of
the spin polarization, as pointed out earlier. ' The
calculated magnetization may be compared with
the value obtained from polarized neutron scatter-
ing experiments in Gd, Ni, Fe, and Co. In
these experiments, the magnetization distribution is
determined as a Fourier series expansion of the

magnetic Bragg reflection amplitudes. The Fourier
series method gives accurate results for the distri-
bution in the region close to the lattice site, but it
converges too slowly to give precise information
about the interstitial regions since only a finite
number of Bragg reflections (about 30) could be
measured. By averaging the magnetization over re-
gions of space, the effects due to finite resolution
can be minimized. An alternate method for
analyzing neutron scattering data is to fit the mea-
sured magnetic form factor to a free atom 3d spin
form factor plus a constant term corresponding to
a uniform contribution to the magnetization. The
values of the magnetization given by both methods
are compared to our calculations in Table II.

The model calculations give different values for
the octahedral and tetrahedral interstitial sites in
Ni but almost the same values for both sites in Fe.
On the other hand, if analyzed by the first method,
the neutron scattering data give a pronounced
difference for the two sites in Fe, although with
large error bars.

The other parameter of the model rl was defined
in Eq. (16). Its value is mainly given by the zero-
point motion of the muon. Model calculations of
the muon potential in Cu (Ref. 29) and in Ni (Ref.
30) in the vicinity of the octahedral site give values
for (u&)'~ of 1.3as and 0.9as, respectively
These correspond to g values of about 0.2 —0.3.

Another estimate may be obtained by calculating
the radii p~t, ptct„and psubst of a sphere at the in-
terstitial or substitutional sites which fits into the
space left by touching spheres centered on the lat-
tice sites. The corresponding q values are given in
Table III. Since the ionic radius is always smaller

TABLE II. Unperturbed magnetization densities at interstitial sites. The model calcula-
tions are compared to the results obtained by neutron scattering data. The experimental re-
sults can be analyzed either by averaging the magnetization (method 1), or by fitting the
magnetic form factor to the form factor of a free 3d atom (method 2).

Theory

Magnetization (p~ A ')
Experimental data

Method 1 Method 2

Gd, Jo ——0.9 eV

Ni, Jo——0.3 eV

Fe, Jo ——03 eV

Co, Jo ——0.3 eV

—0.0192 (oct)

—0.0087 (oct)
—0.0025 (tet)

—0.0077 (oct)
—0.0076 (tet)

—0.0044 (oct)

—0.037+0.004

—0.0085

+ 0.0085+0.0068 (oct)
—0.0136+0.0043 (tet)

—0.02

—0.0092

—0.018

—0.025
+0.006
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than the touching sphere radius, we expect g to be
generally larger than the values calculated. It is
interesting to notice that the volume V, of the in-

scribed sphere at the octahedral site in a fcc lattice
is larger by a factor of 6.2 than the volume V„„at
the tetrahedral site. For a bcc lattice, one has

V„,„/V, =6.7, and for an hcp lattice with ideal
c/a ratio V, /V„,„=6.3. From the experimental-

ly determined sites (see Table I) it thus seems that
the preferred interstitial site of the muon corre-
sponds to that where the maximum space is avail-
able.

As a function of temperature, the elongation

(u& ) '~ is expected to increase slightly due to lat-
tice expansion. This is taken into account by using
the appropriate lattice constant in the calculation
of potentials. The vibrations of the ions and their
temperature dependence are known from measure-
ments of the Debye-Wailer factor. ' The tem-
perature dependence of q is shown in Fig. 4 for the
particular value ( u „)' =0.775az for Gd, Ni, Fe,
and Co. It should be noticed that the increase of
the lattice constant a with temperature does not
fully compensate the increase of (u~ ) '~, so q is
always a slightly increasing function of T.

IV. INFLUENCE OF VIBRATIONS

The model discussed in Sec. II has been applied
to calculate the spin densities for a muon at vari-
ous sites in different hosts. In this section two
typical examples are discussed in detail: Gd and
Ni.

The results for the octahedral site in Gd are
shown in Fig. 5 where the spin density and the
corresponding hyperfine fields are plotted as a
function of g. It is seen that the spin density is
extremely sensitive to small changes of g and is
positive for both very small and large values of the
elongation amplitudes. Since the actual values for

g are expected to lie between 0.2 and 0.3, the
model predicts negative hyperfine fields. Using the
value Jo ——0.83 eV, which is estimated from the ex-
cess magnetic moment of the conduction electrons
(see Sec. III), the resulting hyperfine field is be-

tween —4.0 and —6.0 kG. This is in reasonable
agreement with the experimental value —6.9 kG.
A similar curve is obtained for Dy where, for
Jo ——0.3 eV, we obtain —2.0&8hf & —1.S kG. The
result for Gd agrees rather well with the recent
calculations of Manninen and Nieminen' who
treated the charge screening in a fully self-
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0.22—
0.004—

0.002—

I —2

0.20—

g 0.18—

= 0.77J a~

0,16—

Gd

1

1.0
0.1 4

0.5

Tc

FIG. 4. Temperature dependence of g [see Eq. (161]
for Gd, Ni, Fe, and Co. The increase of lattice vibra-

tions with temperature always dominates the lattice ex-

pansion, so that g is slightly increasing with T. The
constant part of g is the temperature-independent zero-
point motion of the muon with spatial extension

&
u' &'"=O.775a, .

0.002

-0.002—

consistent way. This demonstrates again that the
effective screened electrostatic potential VII (r) [Eq.
(18)] is a very good approximation for calculations
of electronic densities close to the muon.

The results of the model applied to Ni are given
in Fig. 6 (octahedral site) and Fig. 7 (substitutional
site). In the former case the spin density is nega-
tive for q &0.3 and shows a much smaller depen-

o=O

I5 -0.002—
0

-0.004—

-0.006—

-0.008—
0

l I

0.1 0.2
7l

FIG. 6. Behavior of the spin density and hyperfine
field at a muon at the octahedral interstitial site in Ni,
as a function of the vibration parameter g. The depen-
dence on g is much less pronounced than in the case of
Gd. This can be understood within the modified
RKKY model (see Appendix).

l

0.40.3

dence on g than in Gd.
Several microscopic calculations have been pro-

posed to explain the experimentally observed value
of Bhf ———0.71 kG in Ni. From a cluster calcula-
tion the value —0.59 kG was obtained. Using
KKR methods, Katayama et al. ' got —0.72 kG
and with supercell band-structure methods, Jepsen
et al. ' predicted —0.463 kG. All these calcula-
tions assumed rigid positions of the ions and
muon. An inspection of Fig. 7 shows that in the
case of Ni the influence of the zero-point motion
on the spin densities at the muon at the octahedral

17site is much smaller than for Gd, Dy, or Fe.
Thus Ni seems to be a good candidate for rigid mi-
croscopic theories. Calculations for Co and Fe (see
Secs. V and VI) also show a strong dependence of
Bhf on vibrations.

The general features of these results can be un-

. -0.004—

~ -0.006—
—-3:

K
0.002—

-0.008—

-0,01—

Gdh
oct

I

0.1 0.2
T1

0.3

—-6
I

0.4

FIG. 5. Behavior of the spin density and hyperfine
field as a function of the vibration parameter g for Gd
for various values of the exchange interaction Jo. The
muon is at the octahedral interstitial site. The theoreti-
cal estimate for Jo is 0.83 eV, and g is expected to lie
between 0.2 and 0.3. One can understand these curves
with the help of the modified RKKY model {see Appen-
dix).
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FIG. 7. In contrast to Fig. 6, when the muon is at a
substitutional site in Ni, the dependence of Bqq on the
vibration parameter g is very strong. The main differ-
ence from the octahedral interstitial case is a larger dis-
tance between the muon and the first shell (see Appen-
dix).
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derstood in the framework of the modified RKKY
model described in the Appendix. The main con-
clusion of this discussion is that the sign of the hy-
perfine field and its dependence on vibrations
depend crucially on the distance between the im-

purity and the first and second neighboring shells.
Any change in this distance (e.g. , lattice relaxa-
tion' ) may act in a non-negligible way on the hy-

perfine field. Furthermore, the curves B~g(rj) vary
from one host to the other. Thus, the effect of the
zero-point motion on the hyperfine field has to be
calculated for every host separately.

V. DEPENDENCE ON TEMPERATURE

The temperature dependence of the hyperfine
field Bbr(T) at nonmagnetic impurities does not
generally follow the host magnetization M, ( T).
This has also been observed for hyperfine fields at
muons. The deviation D(T) has been defined in

Eq. (I}:

Bgg( T) M, ( T)
D(T}=

Bbr(0) M, (0)

The experiments give D(T) & 0 for Gd, Fe, and Co
but D ( T) p 0 for Ni for all temperatures (see Table
I) from 0 to T, In the fr.amework of our model,
the temperature dependence of the lattice constant
and of the mean-square elongation of the host
atoms can easily be taken into account, as well as
the decrease with increasing T of the effective ex-

change interaction Jq which follows the saturation
magnetization M, ( T).

As already mentioned, the parameter q is always
slightly increasing with T (see Fig. 4). The in-

crease of g leads to either a decrease or an increase
of the magnitude of Bq~, depending on the value
taken for r)0 ——rl(T =0}. For instance, an inspec-

tion of Fig. 5 shows that in Gd, for r)0-0.2,
dBsr/Bri & 0, but for qc-0. 3 this derivative is
greater than 0. These two choices correspond to
different deviations D(T) (see Table IV). In addi-
tion, Bq~ changes when the lattice constant is in-

creased. In the following, we present the results of
the calculations for T/T, =0.3, 0.6, and 0.9.

A. Gd

Table IV shows the measured ratios
M, (T)/M, (0) of the host magnetization, the @SR
data Bsf(T)/Bqr(0) and the results of the model
calculations for the octahedral site. As mentioned
above, we obtain a positive deviation D(T) for
go-0.2. For rio-0. 3, D(T) is negative and the
calculated values of Bqr(T)/Bqr(0) are in rough
agreement with the experiment.

B. Ni

In our Inodel, the variation of 8&~ vvith g at the
octahedral site is rather small and the main effect
on the temperature dependence of Bb~ stems from
the lattice expansion. This gives rise to a negative
deviation (see Table V) which is in marked contrast
to the experiments. However, a positive D ( T) is
obtained for the substitutional site. It should be
noticed that a curve similar to Fig. 7 could be ob-

tained from the octahedral site if a positive lattice
relaxation is included.

It may well be that the assumptions of the
present model are invalid in the case of Ni. It
should be mentioned that the calculations by
Kanamori et al. ,

"based on first principles, ex-

plain not only the observed hyperfine field at abso-
lute zero but also its temperature dependence,

TABLE IV. Temperature dependence of the normalized saturation magnetization com-
pared to the observed and calculated temperature dependence of the normalized hyperfine
field at a muon in Gd at the octahedral interstitial site. A negative deviation D(T) [Eq. (1)]
corresponding to the experimental result is obtained for a vibration parameter at 0 K of
go ——0.3. For go ——0.2 a positive deviation is obtained, as expected from Fig. 5.

Gd
T/T, M, ( T) /M, (0) Expt.

Bgg( T) /Bgf(0)
Oct. , F0=0.2 Oct, go=0.3

0.3
0.6
0.9

0.937
0.789
0.479

0.92
0.75
0.42

0.95
0.80
0.50

0.93
0.77
0.47
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TABLE V. Temperature dependence of the normalized saturation magnetization com-
pared to the temperature dependence of the normalized hyperfine field at a muon in Ni at
the octahedral and substitutional sites for the same value of the vibration parameter at 0 K
(qo ——0.2). The positive deviation D(T) [Eq. (1)] obtained experimentally cannot be repro-
duced within the model at the octahedral site unless a positive lattice relaxation is included.
At the substitutional site, however, the deviation is positive.

Ni
T/T, M, ( T)/M, (0) Expt.

Bhf( T)/8$ f(0)
Oct. , tfp=0, 2 Subst. , gp ——0.2

0.3
0.6
0.9

0.98
0.90
0.56

0.99
0.95
0.65

0.97
0.87
0.52

0.99
0.94
0.59

which is mainly dominated by single-particle exci-
tations.

C. Fe

As in the case of Ni, we obtain D (T) &0 at the
interstitial (tetrahedral) site, and D(T) & 0 at the
substitutional site (see Table VI). The result for
the interstitial site agrees with the experiment.
The calculations for the substitutional site will be
discussed in the next section.

change Mhq ——Bhq(hcp) —Bhr(fcc) depends on the
choice of g but ~hf is clearly always negative.

By fixing the model parameters Jo and go, we
have calculated the spin density at the octahedral
site in both lattices, taking into account the change
in the lattice constant and the increase of M, . The
result for Jo ——0.3 eV and go ——0.2 is shown in Fig.
9. Furthermore, D ( T) is negative as expected
from Fig. 8.

VI. DEPENDENCE ON VOLUME AND SITE

D. Co

The case of Co is particularly interesting because
of the structural phase transition at 690 K where
the host magnetization increases by about 2'Fo

while the amplitude of the hyperfine field at the
muon decreases by some 5%. This behavior can
be understood by an inspection of Fig. g which
gives the dependence of the hyperfine field on vi-

brations in both phases. The phase transition cor-
responds to a jump from a full line to the corre-
sponding dotted line which results in a net decrease
of the magnitude of Bh~. The amplitude of the

BlnBhf =1.5 (0.3) .
ulna

(21)

Butz et al. have measured the local magnetic
field at muons in Fe and Ni at room temperature
as a function of applied hydrostatic pressure up to
7 kbar. Using the known dependence of magneti-
zation and volume on pressure, the change of Bh~
with volume could be determined. In the frame-
work of our model, we have calculated the change
in the spin density with the lattice constant keep-
ing Jo ——0.2 eV and q=0.2 fixed.

For the muon at the tetrahedral site in Fe (at
the octahedral site in Ni), we obtained for Fe (Ni)

TABLE VI. Temperature dependence of the normalized saturation magnetization com-
pared to that of the normalized hyperfine field at a muon in Fe at the tetrahedral (substitu-
tional) site, with vibration parameter gp=0.2 (gp=0.3).

Fe
T/T, M, {T)/M, (0) Expt. Subst. , gp

——0.3

0.3
0.6
0.9

0.98
0.90
0.61

0.97
0.87
0.54

0.95
0.84
0.51

0.99
0.93
0.64
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FIG. 8. Behavior of the spin density and hyperfine
field at a muon at the octahedral interstitial site in Co
for both the fcc and hcp phases with the same values of
the exchange interaction J0.

~lnBhr 1 ~inBhr al~+
Bln V 3 Gina „„„BlnV (22)

With the value 0.47 (0.37) for BlnM/Bin V for Fe

A change in the volume will also change the
mean-square elongations. This can only be ac-
counted for by calculations of the potential. If it
is assumed that (u ) is proportional to a, the
value of ri remains unchanged. Assuming, further-
more, that the hyperfine field is proportional to the
magnetization, we get

(Ni), we thus obtain

BlnBhf =0.97 (0.47) .
alnV

=

The experimental values are 0.92 for Fe and 2.7
for Ni. The Fe value agrees satisfactorily with the
experiment, but the model completely fails to ex-

plain the Ni result.
Very recently it was possible to observe a pre-

viously unobserved pSR signal in a Fe crysta1
which had been irradiated with electrons. From
the annealing characteristics, the signal could be
identified as stemming from muons at monovacan-
cies. It is therefore of some interest to discuss in
some detail the predictions of the present model
concerning the dependence on the muon site. A
quantitative discussion is, of course, not possible
since the zero-point motion of the muon is site
dependent, and the hyperfine fields calculated for
Fe strongly depend on g, as can be seen in Fig. 10.

Qualitatively, however, the following conclusions
can be drawn: At an interstitial site, g is expected
to be smaller than 0.2. If ri,„»,-g««,

~
Bhr(subst)

~

is expected to be some 20% smaller than

~
Bhf(tetr)

~

. On the other hand, if ri,„»,-2ri««,
the reduction is about 50%. Adjusting the effec-
tive interaction Jo such that the hyperfine field at
the tetrahedral site agrees with the experimental
value of —11.1 kG, we expect a value between —6
and —9 kG for Bhr(subst). This differs from the
results of Kanamori et al. "who predicted
Bhf(subst) = + 0.32 kG.
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1 —2

0.5—
-0.002—

C
~-o.ooc—
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T/T

FIG. 9. Temperature dependence of the normalized
saturation magnetization and the experimental and cal-
culated normalized hyperfine fields at a muon at the oc-
tahedral site in Co (for Jo ——0.3 eV and go ——0.2). Al-
though M, increases at the phase transition (T=690 K)
by about 2%%uo, the magnitude of the calculated Bhf de-
creases by some S%%uo, which is also observed experimen-
tally.
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FIG. 10. The dependence of the hyperfine field and
the spin density on the vibration parameter q in Fe,
with a muon at the octahedral, tetrahedral, or substitu-
tional sites calculated with the exchange interaction
Jo ——0.3 eV. At the substitutional site the muon sees a
negative hyperfine field of smaller amplitude than at an
interstitial site.
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The experiments done so far have not permitted
a determination of sign of the total local field at
the muon at this site, so that the value of the hy-
perfine field is either —S.2 or —9.6 kG. A less

questionable prediction of the model concerns the
temperature dependence of the hyperfine field at
the substit;utional site. Owing to the much less
pronounced variation of the spin density at the
substitutional site, the deviation introduced in Eq.
(1) is positive (see Table VI), in contrast to the neg-
ative value calculated for the tetrahedral site. This
seems to be in agreement with recent experi-
ments.

For Ni, the first-principles calculations of
Kanamori' "predict a muon hyperfine field at a
substitutional site of 4.25 kG which is analogous to
the case of boron. Our model also gives a positive
value for the rigid case (q =0) but a negative value
if the zero-point motion is accounted for. Experi-
ments on Ni with vacancies would be very interest-
ing.

VII. CONCLUSIONS

A model was developed which describes the hy-
perfine fields at nonmagnetic impurities in fer-
romagnetic metals. The model was applied to
study the spin density at muons in Gd, Dy, Ni, Fe,
and Co. In most lattices, the spin density depends
crucially on the zero-point motion of the muon.
The influence of vibrations on the hyperfine field
was discussed in a modified RKKY-type model.
This allows one to understand the numerical re-
sults obtained from the full model. The tempera-
ture dependence of Bhr was calculated, taking into
account lattice expansion and thermal vibration of
the lattice ions. Agreement with the experiment
was found except for the case of Ni. This failure
is tentatively interpreted as being due to the neglect
of the unknown lattice relaxation around the p+
since, in Ni, the hyperfine field at the octahedral
interstitial site depends strongly on the distance to
the first- and second-nearest neighbors. The calcu-
lated pressure dependence agrees well with the data
for Fe, but disagrees again for Ni. Further, the
model predicts changes in Bhf and its temperature
dependence for the substitutional site.

Since the model is based on a localized exchange
interaction between itinerant electrons and local-
ized moments as are the approaches in Refs. 4, 5,
or 19, it is too crude to give reliable absolute num-
bers for Bh~. Its merit, however, lies in the possi-
bility of investigating relative changes and studying

geometrical effects. This is best documented by
the change in Bhf at the structural phase transition
in Co. Other models ' emphasize different
mechanisms for the origin of hyperfine fields. Mi-
croscopic treatments, ' on the other hand, usual-

ly leave out certain physical effects for technical
reasons. Quantitative theoretical results for hyper-
fine fields at light impurities would not only re-

quire a microscopic theory for the exchange
mechanism, but also a calculation of the lattice po-
tential which accounts for the large zero-point
motion of the muon.

APPENDIX: RKKY MODEL WITH VIBRATIONS

It is interesting to investigate the influence of vi-

brations on the spin density induced by a single
magnetic ion. This gives some insight into the re-
sults obtained by the numerical solutions of the
model discussed in Sec. IV.

A fixed magnetic moment induces an oscillating
spin density in a homogeneous electron gas, which
then leads to an effective coupling between two lo-
calized moments. Neglecting the electrostatic po-
tential of the muon, the enhancement factor is
given in linear approximation by'

00

E (k)=1——f dr W (r)sin(2kr) . (Al)

The relative spin density is then calculated from
(20):

where

f()slug cosg

y
(A3)

For the potential produced by a fixed (g=0) local-
ized moment

W (r)= —oJrQ 5(r —R)
4~R

(A4)

we obtain the familiar RKKY result

g„(0) f (2kFR)
=3J~n

alp mR
(AS)

The effect of charge screening can easily be incor-
porated. In the distorted-wave Born approxima-
tion, one obtains'

hn (0) = —6 J dr rf(2kFr)[W+(r) W—(r)]-
no

(A2)
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b, n (0)
no

3JTn kFf dk kEI„(k)sin(2kR)
2mkFR

For small values of g', the integrand can be ex-
panded and we obtain

(A6)
b,n(0)

n0

3Jz-Q
[f(2k/;R)

mR
which reduces to (A5) for E~(k) =1.

Using the known enhancement factor Eq(k)
for VI„(r) [see Eq. (18)], the enhanced spin density
can be calculated. The results are shown in Fig.
11, together with the function yf (y) characterizing
the RKKY result. The inclusion of charge screen-

ing leads to a large enhancement of the oscillations
as well as to a shift in the phase. The qualitative
picture, however, remains unchanged. Introducing
the averaged potential of Sec. II, we obtain for a
single vibrating lattice ion (with rl standing for
2kFag):

(A7)

The spin density is determined from

hn (0) f dxe "f(2kF(R+rl'x)) .
no m&&2R o

(A8)

+rl' kFf"(2kFR)+ ] . (A9)

One sees that for small q' the spin density depends
quadratically on the vibrations of the impurity and
of the lattice ions with a curvature that is positive
or negative depending on the sign of the second
derivative f" at y =2kFR

The dependence of the spin density on g' as
given by Eq. (A8) is shown in Fig. 12 for various
values of y. It is evident that the sign of the spin
density and its dependence on vibrations depend
crucially on the value of y =2kFR, i.e., mainly on
the distance between the muon and the magnetic
ion. This result can be used to discuss the curves
obtained for Gd and Ni using the full model (see
Sec. IV).

The strong dependence of the spin density on ri
for Gd (Fig. 5) can be interpreted as follows: For
g =0 we get a positive spin density as is the case
for a single magnetic ion at a distance

y I
——2kFR I -8 (see Fig. 11) corresponding to the
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FIG. 11. The function f (y) [Eq. (A3)] is proportional
to the spin density induced by a single magnetic ion in
the RKKY model when no vibrations are present.

y =2kFR measures the distance from the fixed localized
magnetic moment. The dotted curve is the same func-
tion of the spin density when the charge screening po-
tential V/„{r) [Eq. (18), with A. =1.3] is taken into ac-
count. Depending on the value of y, the spin density
can be positive or negative, with a positive or negative
curvature f"(y).
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FIG. 12. Spin density produced by a single magnetic
ion as a function of the vibrations q, in the modified
RKKY model for various values of y =2kFR, where R
is the distance between the muon and the localized mag-
netic moment. The dependence of the hyperfine field on
the vibrations depends crucially on R (see Fig. 11), i.e.,
on the lattice constant, lattice relaxation, or any change
in the distance between the muon and its nearest neigh-
bor.
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nearest-neighbor distance from the octahedral site
for Gd. With increasing g, the contribution of the
negative amplitude for y &7.5 first dominates and
keeps the average field negative until the vibration
is so large that the positive amplitude for y ~ 5

gives the main contribution. In the case of a muon
at the octahedral site in Ni (Fig. 6), the spin densi-

ty shows a much less pronounced dependence on g.
We attribute this behavior to the partial cancella-
tion of the negative contribution from the six
nearest neighbors (2kFR| ——5.56) and the positive
contribution from the eight next-nearest neighbors

(2kFR2 ——9.63) (see Fig. 11). For the substitutional
site (Fig. 7), there are twelve nearest neighbors

(2k~R~ ——9.63) with a positive field for g=0. The
same kind of arguments help to understand the
curve obtained for Co (Fig. 8) and Fe (Fig. 10).
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