Electron-phonon interaction in Ni-Ti

R. Bruinsma

Brookhaven National Laboratory, Upton, New York 11973 (Received 9 November 1981; revised manuscript received 12 January 1982)

The contribution of electron-phonon interaction to the phonon dispersion curve is calculated for Ni-Ti. The anomalies in the dispersion curve are qualitatively reproduced and associated with areas of the Fermi surface having large electron-phonon matrix elements. This provides an understanding of the pre-Martensitic phenomena in Ni-Ti.

The equiatomic transition-metal alloy Ni-Ti has a B_2 structure (CsCl) above room temperature. It undergoes a Martensitic phase transition to what seems, a B_{19} structure at T_m (300 K).¹ Above T_m , x-ray and electron diffraction² show diffuse scattering at $\vec{q}_1 = \frac{1}{3}(1, 1, 1)$ with polarization along [111] and at $\overrightarrow{q}_{II} = \frac{1}{3}(1, 1, 0)$ with polarization [110], while inelas tic neutron scattering³ finds phonon softening at \vec{q}_I and a convex curvature in the dispersion curve of the TA modes. In addition there is anomalous temperature dependence of the C_{44} elastic constant.⁴ The relation between the pre-Martensitic phenomena and the Martensitic phase transition is not understood. A 3% addition of Fe, which is substitutional for Ni, suppresses the Martensitic phase transition and a continuous displacive phase transition occurs at 230 K, with a soft phonon at \vec{q}_II (but not at \vec{q}_I) producing an incommensurate superlattice with wave vectors near \vec{q}_I and \vec{q}_{II} .⁵ It seems likely then that the Martensitic phase transition has an origin different from the soft modes. Soft modes of type I have been observed in Zr and Ti alloys (ω phase) and are sometimes attributed to formation of a charge density wave,⁶ while soft modes of type II are seen in transition-metal carbides⁷ where they are associated with electron-phonon interaction involving $p-d$ hybridized bands.⁸ For pure Ni-Ti, infrared absorption⁹ indicates the disappearance of large sections of the Fermi surface at the Martensitic phase transition consistent with charge-density wave formation. We will assume then that electron-phonon interaction is responsible for the pre-Martensitic phenomena. A screened Coulomb interaction can be used to understand a longitudinal soft mode, but it does not give rise to any transverse anomalies. '

A general method for calculating the electronphonon matrix elements in single basis transition
metals was developed by Varma *et al.*¹⁰ Using t metals was developed by Varma et al.¹⁰ Using thei method, the anomalous electron-phonon contribution to the phonon dispersion curve may be calculated once the band structure is known. A self-consistent augmented plane wave (APW) calculation was peraugmented plane wave (APW) calculation was performed by Papaconstantopoulos.¹¹ His calculation was fitted¹² with an orthogonalized tight-binding Hamiltonian involving s , p , and d orbitals on both Ni and Ti, providing 18 electronic levels $\epsilon_{\mu}(\vec{k})$ with μ = 1, 18 (Fig. 1). The fitting parameters are tabulated in Table I. The rms error at Γ , X, M, R and halfway Λ , Σ , and Δ was 0.7×10^{-3} Ry. The result of Varma et al. may be generalized to include a multiple basis. Since Ni-Ti has an inversion center at every atom it is convenient to calculate the modified dynamical ma-

FIG. 1. Band structure produced by a tight-binding fit to Ref. 10. The crosses indicate initial and final points of the dominant scattering contributing to the Σ_4 mode, the squares are initial and final points of scattering contributing to Λ_1 .

 25

TABLE I. Slater-Koster fitting parameters for Ni-Ti (in Ry). The parameters not cited here were determined from the rule $(sp \sigma) = (ss \sigma \times pp \sigma)^{1/2}$.

	Ni-Ni	Ti-Ti	Ni-Ti	hw (meV) ю
	0.58298	2.4009		
$\begin{array}{c} E_s \\ E_p \\ E_{dt} \end{array}$	0.92684	2.7097		
	0.53565	0.73412		20
E_{de}	0.53689	0.73725		
$ss \sigma$	-0.07348	0.15073	-0.04827	
pp or	0.10616	-0.14354	0.06231	
$pp \pi$	-0.06279	-0.06277	0.20407	hw (meV) IO
$dd\sigma$	-0.01810	-0.04427	-0.04562	
$dd\,\pi$	0.00681	0.028 64	0.03108	
ddδ	0.00084	-0.00400	-0.00500	

trix, which is real and symmetric in this case. The modified dynamical matrix is defined as

$$
C_{\alpha\beta}(\kappa, \kappa'|\vec{q}) = \frac{1}{\sqrt{M_{\kappa}M_{\kappa'}}} \sum_{l} \Phi_{\alpha\beta}(0, \kappa|l, \kappa')
$$

$$
\times \exp[i\vec{q} \cdot (\vec{R}_{l} + \vec{x}_{\kappa'} - \vec{x}_{\kappa})],
$$

(1)

where *l* runs over all unit cells. The matrix $\Phi_{\alpha\beta}$ gives the force constant between atom κ with position \vec{x}_r and mass M_{κ} and atom κ' with position $\vec{R}_l + \vec{x}_{\kappa'}$ and mass $M_{\mu'}$.

The second-order electron-phonon contribution to the modified dynamical matrix is

FIG. 2. Phonon dispersion curves along Δ , Σ , and Λ . The experimental points are those of Bührer et al. $(\Box \text{ longi-}$ tudinal mode, \blacksquare transverse mode). The dotted lines indicate the short-range contribution to Λ_1 and Σ_4 . The arrows indicate the position of the wave vectors of the superlattice which appears below 230 K in Ni-Ti (Fe) .

$$
C_{\alpha\beta}^{(2)}(\kappa,\kappa'|\vec{q}) = \frac{1}{\sqrt{M_{\kappa}M_{\kappa'}}}\sum_{\substack{\mu=1,18\\\mu'=1,18}} g_{\alpha,\kappa}^{\mu,\mu'}(\vec{k},\vec{k}+\vec{q})g_{\beta,\kappa}^{*\mu,\mu'}(\vec{k},\vec{k}+\vec{q})\frac{f_{\mu}(\vec{k})-f_{\mu'}(\vec{k}+\vec{q})}{\epsilon_{\mu}(\vec{k})-\epsilon_{\mu'}(\vec{k}+\vec{q})}
$$
(2)

with $\kappa = 1$ for Ni and $\kappa = 2$ for Ti and $f_{\mu}(k)$ is the Fermi distribution function. The electron-phonon matrix element is given as

$$
g_{\alpha,\kappa}^{\mu,\mu'}(\vec{k},\vec{k}+\vec{q})=q^2\sum_{n=1,9}A_{\mu,\kappa n}^+(\vec{k})A_{n\kappa,\mu'}(\vec{k}+\vec{q})\left[v_{\mu}^{\alpha}(\vec{k})-v_{\mu'}^{\alpha}(\vec{k}+\vec{q})\right],
$$
\n(3)

where $A_{n\kappa,\mu}(\vec{k})$ is the 18 × 18 unitary eigenvector matrix of the tight-binding Hamiltonian and $v_{\mu}^{\alpha}(\vec{k})$ is $\partial \epsilon_{\mu}/\partial k_{\alpha}$. The coefficient q^2 is given by

$$
q^2 = 4/a^2 \tag{4}
$$

where *a* is the lattice constant (3 Å) . This relation assumes that overlap integrals vary with distance as $1/R²$. The result of the calculation is shown in Fig. 2. The short-range force constants [1 NN (nearest neighbor) and 2NN] were determined by a leastsquare fit to the BZ boundary phonon frequencies and the sound velocities. In usual notation, and the sound velocities. In usual hotation,
 $F_{\alpha\beta}^{1N}$ (1,2) = $A \delta_{\alpha\beta} + B(1 - \delta_{\alpha\beta})$; F_{xx}^{2N} (κ , κ) = A_{κ} ;
 F_{yy}^{2N} (κ , κ) = F_{zz}^{2N} (κ , κ) = B_{κ} ; F_{xy}^{2N} (κ , \k were in units of 10^4 dyn/cm: $A = 0.78$, $B = 1.83$, $A_1 = 0.35$, $B_1 = 0.18$, $A_2 = 6.15$, and $B_2 = -0.18$. Along Σ , the modified dynamical matrix has the fol-

2952

FIG. 3. Electron-phonon contribution to the dynamical matrix $C = C_5^{(2)}(\vec{q}) - C_4^{(2)}(\vec{q})$ with phonon wave vector $\vec{q} = 0.31$ (1, 1, 0) $2\pi/a$ and polarization [110] (Σ_4). The electronic wave vector is restricted to the RXM plane.

lowing general form:

$$
C_{\alpha\beta}(1,1|\vec{q}) = \begin{bmatrix} C_1(\vec{q}) & C_2(\vec{q}) & 0 \\ C_2(\vec{q}) & C_1(\vec{q}) & 0 \\ 0 & 0 & C_3(\vec{q}) \end{bmatrix} (Ni-Ni) ,
$$
\n(5a)

$$
C_{\alpha\beta}(2,2|\vec{q}) = \begin{bmatrix} C_4(\vec{q}) & C_5(\vec{q}) & 0 \\ C_5(\vec{q}) & C_4(\vec{q}) & 0 \\ 0 & 0 & C_6(\vec{q}) \end{bmatrix} \text{(Ti-Ti)},
$$
\n(5b)

$$
C_{\alpha\beta}(1,2|\vec{q}) = \begin{bmatrix} C_7(\vec{q}) & C_8(\vec{q}) & 0 \\ C_8(\vec{q}) & C_7(\vec{q}) & 0 \\ 0 & 0 & C_9(\vec{q}) \end{bmatrix} (\text{Ni}-\text{Ti}) .
$$
 (5c)

The anomaly in Σ_4 is caused by the large electronphonon contribution to $C_4(\vec{q}) - C_5(\vec{q})$. Note that this only involves interactions between Ti atoms. The electron-phonon contribution $C = C_5^{(2)}(\vec{q})$
- $C_4^{(2)}(\vec{q})$ has a maximum along Σ at $\vec{q}_M \approx 0.31$ \times (1, 1, 0)2 π/a , close to \vec{q}_{II} . The maximum is caused by a large contribution from the region around $\vec{k} = (0.13, -0.06, -0.5)2\pi/a$ to the summation in Eq. (1). In Fig. 3(a) the contributions to C in
the $k_z = -\pi/a$ plane are plotted for $\vec{q} = \vec{q}_M$. The the $k_z = -\pi/a$ plane are plotted for $\vec{q} = \vec{q}_M$. The peak is caused by a transition from a Z_1 level to a T_1 level, both with large $v_{\mu}(\vec{k})$ (Fig. 1). Both levels are $d_{x^2-y^2}$ levels localized on Ti, with only little p-wave

FIG. 4. Fermi surface in the RXM plane. Arrows indicate the dominant scattering producing the anomaly in Σ_4 .

admixture, contrary to the conclusion of Ref. 8., The energy transfer is 0.11 Ry.

The anomaly in Λ_1 is caused by a maximum along Λ in $C(\vec{q}) = -[C_f^{(2)}(\vec{q}) + 2C_8^{(2)}(\vec{q})]$ at \vec{q}_M $\approx 0.25(1, 1, 1)2\pi/a$ which is, again, close to q_b and again only involving Ti-Ti force constants. The maximum is due to large contributions from the regions around $\vec{k} \approx 0.27(1, 1, 1)2\pi/a$ and \vec{k} $= (-0.12,-0.12,0.4)2\pi/a.$

In the first case the transition is from a Λ_3 level to the same level with an energy transfer of 0.03 Ry. This is a d level involving both Ni and Ti atoms. In the second case the transition is from a $S₄$ level to a Λ_3 level with an energy transfer of 0.02 Ry. The S_4 level and Λ_3 level are d levels localized on Ti. The pre-Martensitic phenomena in Ni-Ti (Fe) thus seem due to formation of a gap on the electron pocket centered at X (Fig. 4) and the flat Fermi surface along Λ .

As was mentioned, a 3% addition of Fe to pure Ni-Ti causes the phonon anomalies to produce a superlattice at $T \approx 230$ K. Within the rigid-band model no appreciable effect was found on the phonon anomalies. The Fe impurities possibly cause local strains contributing to the central peak above 230 K observed in neutron scattering.¹³

ACKNOWLEDGMENTS

I am indebted to S. Shapiro for suggesting the problem and for valuable discussions. I gratefully acknowledge useful conversations with J. Davenport, M. Salamon, S. Satija, and J. Watson. I would like to thank M. Salamon and S. Shapiro for a critical reading of the manuscript. I am grateful to D. Papaconstantopoulos for allowing me to use his unpublished band-structure calculation. The work was supported by DOE under Contract No. DE-AC02-76CH00016.

 25

- ¹D. P. Dautovich and G. R. Purdy, Can. Metall. Q. 4, 129 (1965).
- 2K. Chandra and G. R. Purdy, J. Appl, Phys. 30, 2176 (1968). R. F. Hehemann and G. D. Sandrock, Scr. Metall. 5, 801 (1971).
- ³W. Bührer, O. Mercier, P. Bruesch, and R. Gotthard, Prog. Rep. 1980, E.T.H., AF-SSP-115 (Zürich, 1981), p. 60.
- "0.Mercier, K. N. Melton, G. Gremaud, and J. Hagi, J. Appl. Phys. 51, 1833 (1980).
- ⁵M. B. Salamon, M. Meichle, C. M. Wayman, C. M. Hwang, and S. M. Shapiro, in Modulated Structures-1979 (Kailua Kona, Hawaii), edited by J. M. Cowley, J. B. Cohen, M. B. Salamon, and B. J. Wuensch, AIP Conf. Proc. No. 53 (AIP, New York, 1979), p. 223; S. K. Satija, S. M. Shapiro, and M. B. Salamon, Bull. Am, Phys. Soc. 26,
	- 381 (1981); M. E. Meichle, M. B. Salamon, and C. M.

Wayman, *ibid.* 26, 381 (1981).

- $^{6}R.$ Pynn, J. Phys. $F \underline{8}$, 1 (1978); A. L. Simons and C. M. Varma, Solid State Commun. 35, 317 (1980).
- ⁷H. G. Smith, Phys. Rev. Lett. 29, 353 (1972).
- 8W. Hanke, J. Hafner, and H. Bilz, Phys. Rev. Lett. 37, 1560 (1976).
- ⁹I. I. Sasovskaya, S. A. Shabalovskaya, and A. I. Lotkov, Zh. Eksp. Teor. Fiz. 77, 2461 (1979) [Sov. Phys. JETP 50, 1128 (1979)].
- $10C$. M. Varma and W. Weber, Phys. Rev. B 19, 6142
- (1979);Phys. Rev. Lett. 39, 1094 (1977). ¹¹D. A. Papaconstantopoulos (unpublished).
- ¹²J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954);
	- B.A. Papaconstantopoulos, B. M. Klein, J. S. Faulkner,
- and L. L. Boyer, Phys. Rev. B 18, 2784 (1978).
- ¹³S. Shapiro (private communication).