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Several conditions under which a magnetic field can be considered to be strong in comparison
with a random scattering potential are distinguished. These are the maximum magnitude of the
scattering potential small compared with Landau-level separation, large spatial separation of
otherwise arbitrary scattering centers compared with the quantum size of Landau states, and
smoothness of the scattering potential on this scale. In all three cases, by somewhat different
mechanisms, extended states exist and the ideal quantum Hall resistance is found. The case of
scattering centers separated by a smoothly varying potential can also be solved. The actual ex-
perimental conditions are likely to involve aspects of all three conditions.

Ordinary conduction in two dimensions is interest-
ing, in part because of the surprising and delicate
result that all electronic states are localized in this
case.! The same problem in the presence of a strong
perpendicular magnetic field has also attracted consid-
erable attention, largely because of the remarkable
quantum Hall effect which is observed? but also be-
cause its relation with with the localization problem
in the absence of the field has not been completely
elucidated. We here treat the problem of two-
dimensional electrons in a strong magnetic field from
several standpoints which may contribute to the
understanding of these matters.

We deal with the Hamiltonian Hy+ V (x,y) where
V(x,y) is a random scattering potential, specified in
more detail later, and
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The magnetic field B is in the z direction and the
electric field E is in the negative x direction. The
geometry is that of Ref. 3. The question is then in
what sense the magnetic field is strong. There are
several possible limits that can be studied, each af-
fording great simplification.

One approach has been taken by Ando and cowork-
ers* who, without giving details, use large B to argue
for the neglect of certain intermediate states appear-
ing in the Kubo formula. An explicit criterion has
been employed by Thouless® and Halperin.® This cri-
terion is

max|V(xy)| <kw/2 .
%y

Thouless points out that if this criterion is satisfied
then perturbation theory for the single-electron
Green’s function, G(1,2,E), will converge when E is
between Landau levels and well away from the un-
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perturbed energies. Halperin rediscovered and used
this result to justify Laughlin’s’ method. His result is
that given the Thouless condition, there are extended
states with energies close to the unperturbed Landau
levels and these states carry the correct Hall current
when they are completely filled. The nature of these
states remains unclear, however.

We next wish to do scattering theory so we consid-
er a potential ¥ (x,y) which vanishes except in isolat-
ed regions, where it is completely arbitrary. There is
some minimum distance d, between regions of sup-
port of V, which we term ‘‘scattering centers.”

(Since several scattering centers can be regarded as
one, a more precise condition is that the region of
vanishing V percolates throughout the system with
minimum width do.) The magnetic field may be re-
garded as large when ! << dy, with 1= (n +1)#c/eB.
Here 7 is the number of the Landau level in which
we are interested. In the absence of the magnetic
field, a wave-packet incident on one center scatters
out in various directions, then impinges on a second
center and so on. The result of the scattering from
each center is stochastic so the electron undergoes a
random walk and to first approximation can be re-
garded as diffusing away from its initial region of lo-
calization. Because of the properties of the random
walk in two dimensions, there is destructive interfer-
ence at large distance. There is good evidence that
such a potential succeeds, in two dimensions, in lo-
calizing the electrons.!

Now consider the strong B case. The incident
wave packet has well-defined energy, and is made up
of states from a single Landau level, say the Oth.
Such a wave packet, having no spread in energy (in
the absence of the Hall electric field), will not move.
This makes it very easy for a local potential, no
matter how weak, to bind the electron, and indeed,
all the electronic states in the system will, technically,
be bound states. However, the binding energy will
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be exponentially small for many of the states. To
avoid this embarassment, we have included the Hall
(electric) field in Hy which gives to the wave packet
the drift velocity v=cE/B in the y direction. The in-
cident wave packet can be taken as

w(xyt) < exp {-—%[(x +po—v)2+(y —yo—v)?l
+%i(x +po—v)(y —yo—vn)} (2)

and is localized near x =v—pg, y =ygat t =0.

We have adopted units, as in Ref. 3, in which

l, w,(=eB/mc), and m are unity. If this wave packet
is incident on a scattering region, we may find the
results after the interaction by using standard
methods. The total wave function is given by

YOt) = o xye) + fdx’ dy' dt’ Go(xyt,x'y't")
xV(x'y)(xy't) . (3)

G is the retarded Green’s function for the Hamil-
tonian H,. The second term above is nonvanishing
only for times after the wave packet reaches the
scattering center. (We consider only times such that
just one scattering center of the many making up V
enters the integral.) It is convenient to look at the
component of (3) for definite energy £, which may
be taken as Eq=vpo. Then

"’(XyEO) =l"0(xyE0) + fdx,dy’ GO(xy»xly,JEO)
X V(x'y)p(x'y'E)) . (4
Here G is explicitly

Golxyx'y' ,E) =3, & Vo9 (x3)
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where Y, (xy) =e"¢,(x —v+p). ¢, is the harmonic

oscillator wave function, and 3 is a positive infinitesi-

mal. By shifting the p integration to the steepest
descent path, it is seen that G, is exponentially small
for large |x —x’| as well as for large negative y —y'.
For large positive y —y’ it will be small except for the
contribution of the pole at pv=E — n, namely,

Golx,x'y',Eo) ~ = ithop, (x0) op(x'y) /v . (6)

This will again be small unless x ~x’ ~ —p,. (Note
that y —y' large means, in standard units, y —y' >> L.
This may hold without requiring that y be far away
from the region of scattering compared with the
linear dimension of the scattering center, as is usually
assumed in scattering theory.) The fact that only the
pole contributes is just the statement that far from
the scatterer, thus long after the scattering, the final
energy must be equal to the initial energy. This
asymptotic behavior is radically different from that of

the Green’s funct/ion in the absence of the field,
namely, Go( ', T ,E) ~ ¢*R/\/R where k is VE and
R =|F—F'|. The scattered wave in this familiar
case is into any direction, but this degeneracy of the
energy is completely lifted by the crossed fields.

The scattered wave therefore has the form
e?¢,(x —v+p)lexp(id,) —1] for strong B. The
form of the coefficient follows from unitarity. The
propagation of a wave packet perpendicular to a
strong magnetic field with crossed electric field is
thus super one dimensional. It will over long dis-
tances continue in its initial line of propagation.
Moreover, it does not admit time reversal and there
is propagation only in the positive, E x B direction.
Further, a barrier of finite extent is not capable of
stopping the packet, as there is always a way around
in the second dimension.

The multiple-scattering analysis now becomes trivi-
al. There will be localized states, perhaps many of
them, in the neighborhood of the localized regions of
support of the potential. However, between these re-
gions, there are states which are extended. The den-
sity of electrons in these states is the same as in the
case V' =0, and if all of these states are filled, one
can calculate the total Hall current crossing a line
which remains entirely in a potential free region from
the lower edge of the sample to the upper. This
gives the same total Hall current as if V' =0 every-
where.

The current carried by each state may be formally
analyzed as well. Let 8(p) now mean the total phase
shift accumulated as a wave of energy vp propagates
from one end of the sample, y =0, to the other, at
y = L. Demanding periodicity gives discrete momen-
ta satisfying p.L +8(p,) =2mn, where the n, are
successive integer values. As usual, 5(p) will de-
crease by 2 for each bound state. There are thus,
over the total range of the p,, Np fewer solutions for
Do than in the absence of scattering with Ny the total
number of bound, i.e., localized states. The solutions
for p, and thus for E,=vp, are nicely ordered, and
Laughlin’s technique’ is easily applied to see explicit-
ly that the Hall current takes its ideal value. The
eigenstates carry an excess current just compensating
that not carried by the localized states, as in Ref. 3.

Upon encountering a scattering center, an electron
reappears with a time advance Ty =—d8/dE. The
wave packet during the scattering detours from the
path x constant along the edge of the region V (x,y)
#0. There is an area 4 (E) between the paths with
and without scattering, which is avoided by the ex-
tended wave functions (and depends on the incident
energy). It may be shown that dd /dE = T,. {For
v~0, we note that the packet speed where V #0 is
much greater than v, 50 Ty = [V max(X) —Ymin(x) 1/v
Wwhere ¥ max(min) is the maximum (minimum) value of
y for which V(x,y) #0 at fixed x. The above rela-
tion follows since £ =vx.} Using the connection
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between phase shift 8 and the number of bound
states gives 4 =2m/*Ng. The arguments above have
literally correct meaning only if the spatial scale of
the scattering center is large compared with / It may,
however, be extended readily to the case discussed
later in this paper. The results discussed up to this
point thus justify the assumptions made by Tsui and
Allen® who postulate that a certain area is associated
with localized states and is insulating, while the
remaining area has the ideal Hall conductivity.
They show that if the conducting area percolates
throughout the system then the system as a whole
will have the ideal Hall resistance. Our result states
that the area avoided by extended states, or occupied
by localized states, is 27/? for each localized state and
is associated with the area for which ¥V #0.

Another possible strong-field condition is that the
potential be smooth on the scale of the magnetic
length I The condition is V V(x,y) << fw./l. This

situation has been considered by Iordansky.” We
|

give a treatment which will enable us to combine this
case with that discussed previously. A similar
smoothness condition which of course does not in-
volve Planck’s constant is well known in magnetohy-
drodynamics, and is used as the basis of the theory of
adiabatic invariants and of guiding center motion.!°
A very similar development can be carried over to
the extreme quantum case. The most important adi-
abatic invariant is the magnetic moment, or
equivalently the perpendicular kinetic energy. In the
two-dimensional world under study, there is no paral-
lel kinetic energy, so that the potential energy V (x,y)
becomes an adiabatic invariant also. The guiding
center motion, and in consequence the motion of wave
packets, is thus along the lines of constant V(x,y).
We consider the path-integral representation of the
propagator in the presence of U.!! (U =V —eEx.)
We write this using units in which %, m, and e/c are
unity. The field B will be an explicit large parameter.
Then

G(F, F",t—t')=fo'(‘r)exp{ide[%iz—ijz—U(f'(T))] .

The integral in the exponent is along some particular
path T (r) with the end conditions 7(f) =T,
©(¢+)='. Just as the semiclassical approximation
is developed by thinking of # as small and making the
stationary phase approximation in the above integral,
the quantum guiding center approximation consists of
taking B as large in the sense adopted here and mak-
ing the stationary phase approximation. The semi-
classical approximation expands about the classical
path. In our case, we shall expand about the guiding
center path whose center coordinates satisfy the
equations

LD - py_ =8 %)

9Y X
This minimizes the sum of the last two terms in the
action above. Weputx=X+u, y=Y +v. We ex-
pect u, v to be of order /, that is, of order 1/vB. U
may then be expanded in powers of 4, v. On the oth-

er hand, we expect the time dependence of u, v to be
J

BX =

[
on the scale of w,; that is, we estimate #, v ~ /B.
The leading terms in the Lagrangian, of order B, are
(4" +9")/2— Buv. Terms linear in u, v arise only
from the kinetic energy, as follows from the defini-
tion of the guiding center. Integration by parts casts
this contribution into the form —Xu — Yv. In order
to neglect these terms we make the condition that the
acceleration of the guiding center be small. The
second derivatives of U must not be too large if the
quadratic terms in 4, v are to be small. Thus, V¥V (x,y)
<< kw./lis somewhat stronger than strictly necessary.
It is possible to carry out the functional Gaussian
integral exactly,!! keeping all terms up to quadratic in
u and v. However, the coefficients of the small
terms are dependent on time through their depen-
dence on the guiding center coordinates, so we just
neglect them. The remaining functional integral is
the propagator for free electrons in a magnetic field
whose Fourier transform has been displayed in Eq.
(5). Thus the propagator has the form

G(F, Tt—1) =exp(i JarlL (i + 7)) - BXY - v, 01| Goluvru'v't) . ®

We now take up the initial conditions to be im-
posed on the equations for the guiding center. We
choose the initial conditions X (¢') =x', Y(¢') =y’,
which implies that 4 (¢') =u' and v(¢') = v’ vanish.
If the final positions X (¢),Y (¢) are far from x,y,
respectively, then u(8) =u =x —X(¢) and v(#) =v
=y — Y () will have to be large, and G, will be very
small. We may therefore assume that X (¢),Y (¢) are

I
rather c’lose to x,y, respectively. For large separation
| — | the Green’s function of Eq. (8) will only be
nonvanishing if the two points are close to the same
guiding center trajectory. We may therefore treat an
additional set of local but otherwise arbitrary scatter-
ing potentials, and we may again do scattering theory
with much the same conclusions.

We have seen that the problems of electron prop-
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agation in random potentials satisfying two different
strong-field conditions can each be solved. The first
condition is that scattering centers be well isolated on
the scale of the magnetic length, and the second that
the potential be sufficiently smooth that the accelera-
tion of the guiding center be small. These two condi-
tions can be combined into the single weaker condi-
tion that regions of arbitrary scattering be separated
by distances large compared with the magnetic length
in which the potential is smoothly varying.

All of the conduction will take place, in the limit of
zero Hall field, at the energy for which the contour
lines of the potential extend across the sample. This
type of potential thus has a band of extended states
which is arbitrarily narrow, and indeed, disappears as
the electric field vanishes. This may well approxi-
mate the situation in the best samples at very low
temperature and high fields, where extremely sharp
steps are observed in the Hall resistance and where
very little parallel resistance is found, even at fields
where the Fermi level lies in the region of extended
states.!? In these samples the scattering centers prob-
ably consist of occasional impurity atoms and inter-
face defects. Dopant atoms lying close to but not in
the inversion layer will contribute to a random but
smoothly fluctuating potential.

At higher temperature there will be a phonon con-
tribution which in addition to providing some of the
inelastic effects will give an effective potential which
is pervasive and rapidly varying but which may still
satisfy the Thouless condition. Such a potential no
doubt gives rise to a band of extended states whose
width increases with max| ¥V (x,y)|. No proof that
this is the correct dependence of the width has so far
been given, however. In any case, the picture that
the width of the region of extended states is very
narrow at low temperature and increases with tempera-
ture qualitatively fits the experimental observations.

A serious shortcoming of all the theories so far
presented is that electron interactions have been

neglected. Recent work for small magnetic fields has
shown that there are indeed surprising interaction ef-
fects in that case. Further, at sufficiently strong
fields and low enough electron density the Coulomb
effects should, on dimensional grounds, begin to play
a major role, but it is difficult to estimate reliably the
fields and densities needed.

One relatively elementary and innocuous conse-
quence of interaction is screening. This should have
the result that as the density increases the self-
consistent potential becomes smoother. This may
well have something to do with the failure to observe
a quantum Hall step after the lowest spin and valley
component of the 0th Landau level has been filled in
the case of Si samples.!* It would be interesting to
know whether all the states in this level are localized
or whether they are all extended. Either of these
possibilities could account for the observation. The
two cases can be distinguished by the temperature
dependence of the resistance, and both are possible
theoretically, as far as we know.

Finally, it will be of interest to understand the case
of intermediate field strengths in order to make con-
nection with low-field results, where at high electron
energy the states are extended, and at low energy
they are localized. Much further work remains to be
done on the nature of the mobility edge between lo-
calized and extended states in the magnetic case if
indeed such a concept is appropriate as we have as-
sumed.
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