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We have investigated the diffusion coefficient of a particle performing a random walk

on a lattice with random jump rates. The mean-square displacement of the particle is a
linear function of time for all times when the initial probability distribution corresponds
to a stationary distribution. We discuss the implication of this result on the description
of diffusion in disordered media by averaged equations.

In this Report we study a simple but nontrivial
class of models for particle diffusion in a disor-
dered medium. In the models considered, the par-
ticle performs a random walk on a periodic lattice;
the jump rates associated with the sites of the lat-
tice are random. We first complete the proof indi-
cated in Ref. 1 that the mean-square displacement
of the particle is a linear function of time for all
times when stationary initial conditions are used.
We then discuss the implications of this result for
the description of diffusion in disordered media by
averaged equations.

We consider a Bravais lattice in d-dimensions
whose sites are indexed by a vector n. The
particle's evolution through the lattice is described
by a master equation
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where q-„, denotes the jump rate assigned to site
n' and Q „,-„ the spatial transition probability.
The jump rate tI-„, is a random function of the site
variable n', however, all possible values must be
larger than zero. The spatial transition probability
is assumed to have the following symmetry proper-
ty:
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The physical situation described by Eqs. (2) and
(3) corresponds to a distribution of potential wells
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i
mto) is the conditional Probability; it is de-

fined as the probability that the particle is at site n

at time t given that the particle was at site rn at tp.
8'-„, -„ is a transition rate from the site n' to site n.

The transition rates of the models can be written as

FIG. 1. Configuration of potential wells of varying
depth randomly distributed on a regular lattice. The
distance between minima is assumed to be a. The jump
rates vary in value from site to site by the modulation of
valley depths; the jump rates are smaller for valleys of
increasing depth.
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whose depths are random, as suggested in Fig. 1.
The symmetry property equation (3) requires equal
transition probabilities to opposite neighbor sites;
this is indicated in the figure by arrows of equal
length.

The master equation (1) describes a Markovian
continuous-time random-walk process, and the as-
sociated waiting-time distributions are given by

f-„,(t) =q-„,exp( q-„—, t) .

In order to make the derivation more transparent,
we restrict our discussion to nearest-neighbor tran-
sitions on a linear, square, simple cubic, etc., lat-
tice. More complicated lattice structures and tran-
sitions to further sites are easily included.

The mean-square displacement of the particle in-

itially at site m is
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With the use of Eq. (1), the above discussed sym-
metry properties, and the equality
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a simple algebraic manipulation shows

Since we have chosen nonzero jump rates, the tran-
sition matrix is irreducible, and the master equa-
tion (1) has one and only one stationary solution,
which is

—1Pn= &n M&m

Performing the average over the initial sites of Eq.
(6), we obtain, in general,
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or, if we choose the stationary distribution as ini-

tial condition,

—(
~

n —m
~

') = g q-„,p-„,
dt

g 1=2, (9)

where the constant A is the harmonic mean of the
jump rates. The right-hand site of Eq. (9) is in-

dependent of time; therefore the mean-square dis-

placement is a linear function of time for all times.
The argument is independent of dimension and

the distribution and variability of the jump rates.
Qther initial conditions, corresponding to a nonsta-
tionary distribution, will yield a mean-square dis-
placement that is a nonlinear function of time.
The constant in Eq. (9) is directly related to the
diffusion coefficient, which is

Q

2d

where a is the separation between nearest-neighbor
lattice sites. A slight generalization of the deriva-
tion presented above yields results for different lat-
tice topologies which may include anisotropic dif-
fusion.

The second time derivative of the mean-square
displacement is defined as a "velocity" autocorrela-
tion function, whose time Fourier transform de-
fines a frequency-dependent mobility. The "veloci-
ty" autocorrelation function for the models used in
this note is a delta function at t = to and thus, the
corresponding mobility is frequency independent.

We have derived the mean square displacement
of our class of models of disordered media directly
from the master equation by performing the aver-
age over initial conditions chosen according to sta-
tionarity. It is the symmetry condition equation
(3) that allowed the essential simplifications to be
done. There are approximation schemes that can
be applied to our models as well as to more general
classes of models that do not obey Eq. (3). These
approaches replace the inhomogeneous equations,
after averaging over different configurations, by
lattice-translational invariant equations. The equa-
tions appear in the form of generalized master
equations or continuous-time random-walk theory.
It has been claimed that the correspondence be-
tween the inhomogeneous and the averaged equa-
tions can be made exact. Our result provides a
stringent test on these formalisms. When such an
approach is applied to our models, the resulting
mean-square displacement must be linear in time
for all times, when stationary initial conditions are
used. For instance, systems with a random distri-
bution of traps, corresponding to our models, have
been described by continuous-time random-walk
theory with waiting-time distributions g(t) that do
not depend on n —m (decoupled approximation in
the terminology of Ref. 3). For that approxima-
tion scheme, there has been a controversy whether
the first jurnp of the particle after the arbitrarily
chosen origin of time must be treated differently
from all others or not. When the first jump is
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treated differently such that stationary initial con-
ditions are incorporated, the resulting mean-square
displacement is in accordance with our result. '

In the corresponding generalized master equation,

an inhomogeneous term must be added which re-
stores the time homogeneity for the derivation of
the mean-square displacemen~.
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