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In the recent observations of spin-wave resonance in amorphous thin films, spin waves

are found to propagate, and the resonance linewidth strongly depends on the spin-wave

wavelength. The aim of this paper is the understanding of this dependence and its relation
to the physical parameters, which are the exchange and anisotropy fluctuations. This is

accomplished by means of a scattering theory that neglects conduction and takes advan-

tage of the quasiselection rule of spin-wave resonance to become a one-dimensional

theory. Long-wavelength behavior is dominated by anisotropy, while short-wavelength

behavior is determined by exchange. The theoretical results qualitatively agree with the
experimental results and define a measurement of the short-range fluctuations.

I. INTRODUCTION

In recent years several spin-wave-resonance

(SWR) experiments have been performed on amor-

phous thin films' or on more or less strained

thin films. Because of the wave scattering by local
inhomogeneities of various sizes and scattering in-

tensities, one can expect poor propagation in such
films. In SWR experiments as in a Fabry-Perot
cell, the wave is reflected a large number of times

on the external surfaces. Poor propagation can
change the effective surface conditions, so one can
expect a dispersion of the resonance condition, i.e.,
a frequency linewidth 8' for the modes of frequen-

cy co and an enhancement of the even modes which

are forbidden for perfectly symmetric surfaces.
The two features, linewidth 8' and enhancement of
even modes, are observed and depend on the fre-

quency. If one follows the analogy with light
scattering by impurities one can observe a transi-

tion from a red sun in a blue sky to a gray sun in a

gray sky according to the density of defects. In the
samples considered by the previously quoted au-

thors, the defects, which are typical of an amor-
phous structure, are probably short ranged because
of the good uniformity. The typical curve of fre-

quency linewidth W versus the perpendicular wave

vector q, or its quantum number n defined from
the film thickness d by q =nm/d, gives a first
maximum value at n =0, then a decrease with in-

creasing n, a minimum value for some values of n,
then an increase with increasing n, followed by a
saturation value. Even for the highest n or q ob-
served in SWR, the wavelength is large in compar-

ison to the atomic radii and the defect size, so the
scattering theory one works with has no size reso-
nance and is restricted to small defects. This de-

fines the aim of this paper, the understanding of
the curve W(n) on a microscopic basis. The ob-
served samples have different conduction proper-
ties, so one can omit the extra conduction contri-
bution to the linewidth 8' in the first approxima-
tion. Thus the main parameters are the exchange
and anisotropy fluctuations LD and LU, respective-
ly. Firstly, it seems useful to recall the basic results
of Kittel's theory of SWR (Ref. 5) and the derived
fluctuation treatment of 8' (Refs. 3 and 6) when

one introduces the surface phase shifts related to
the surface conditions. This gives a simple law 8'
proportional to n, in poor agreement with experi-
mental results. Secondly, we directly consider the
scattering equations of spin waves, specializing for
one small-sized impurity and a plane spin wave ac-
cording to the quasiselection rule of SWR. This
looks like the scattering by a barrier related to the
impurity. Thus there appears a new phase shift hP
which modulates the total one and a reflection
term which determines a damping and so a coher-
ence length. Both the fluctuations of the total
phase shift and the finite coherence length contri-
bute to the spin-wave linewidth 8'. For low n, i.e.,
long wavelength, the scattering is dominated by the
anisotropy fluctuations. The notion of coherence
length which allows us to interpret the saturation
effect is similar to that of Anderson's localization
of electrons in amorphous materials which is due
to a strong scattering by local barriers. The four
parts of the W(n ) curve are considered in agree-
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ment with the experimental results. Moreover, the
resulting phase-shift deviation explains the appear-
ance of even modes in SWR when the surface con-
ditions are the same, as is observed experimentally.
This allows a check of the measurements of 4J and
h(ZI).

Section IA is devoted to the first approach,
while Sec. IB deals with the scattering theory, be-
fore the concluding remarks.

Ja
(~ )

6(Ja ) 2b,d
d2 Jg2

Unfortunately, this simple law is not followed. One
can argue that the sizes of the decoupled domains
depend on the wave mode n, i.e., on the wave vec-
tor q =nm/a, but this is already beyond the scope
of this simple model, and it is better to consider a
more detailed one in order to derive 8' directly.

A. From Kittel's theory of the spin-wave
frequency E, the linewidth 8'

in amorphous thin films

Because of the inhomogeneities, spin waves pro-
pagate poorly in such films and can be considered
as almost localized. So in different parts of the
sample, spin waves experience difFerent exchange
and anisotropy couplings. This picture can be
completed more quantitatively as it will be in Sec.
I8, but here it is enough to introduce a simple
model. The inhomogeneities lift the frequency de-
generacy, and a resonance linewidth 8' appears. So
the simple model consists in using the classical
results of SWR (Ref. 5) and considers the causes of
fluctuation. With a for interatomic distance and J
for exchange integral, the resonant magnetic field
H along film normal for the nth spin-wave mode
occurs when

is satisfied, where mo is the radio frequency,

/ =if&2 —fl ls tllc total pllasc slllft dllc to tllc two
external surfaces, and A, is the gyromagnetic factor.
Three effective causes of variation of the resonant
field H can be outlined: the exchange constant
Ja, the thickness d, and the phase shift P. So one
can derive the obvious "error" formula for the
hnewidth 8'=khH

Ja d P+BJT

B. One-dimensional model

Here, as in the preceding part, the size and
scattering intensity of the scatterers are assumed to
be small enough so that the two-dimensional exten-
sion of the spin wave in the planes parallel to the
surfaces is larger than d . In that case it is well

known that the only spin waves observed by SWR
have zero wave-vector components in the plane

q„qz reciprocal to the surface plane xy. In other
words the involved spin waves propagate along the
z axis which is normal to the specimen and parallel
to the magnetization and the external field. This is
the reason for the restriction to a one- dimensional
problem in the z direction. Before going on to a
continuum picture more suitable for amorphous
structures, one has to recall the magnetic Hamil-
tonian P with exchange integral J, uniaxial aniso-

tropy constant I, and Zeeman efrect measured by
h':

1

A = ——, g J~JS;S~.

(4)

With the usual definition of Pauli operators b and

bf ——Sf"+i'~, bf ——5)"—i'~,'

when one takes into account their commutation re-

lations, the equation of motion of bg reads

. db~ y g fb —b
fg

The surface phase shift P is usually proportional to
n and to the effective surface anisotropy I (Ref. 8).
Therefore at this level of approximation hP is pro-
portional to n too and to AI. Thus the total line-

width 8'„ looks like

8'„=8'i n

It is useful to introduce a simple local definition of
J~ and I~ when the interaction is restricted to
nearest neighbors as here:

J~=(f+g)f2 Jfg~ 1~=(f+g)I2 Ifg
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%hen one defines the vector 5 linking nearest
neighbors by

5=g —f
where

2 2

4
(12a}

——+5~b —Q (J by+ Jb~Ii) = 0,
g,a g, a,p

(9)

where the developments of J, I, and by have been
restricted to the lower powers of the components of
5, and Z is the local number of nearest neighbors
while the sum of these nearest neighbors is speci-
fied in g . A similar treatment leads to Portis's

equation' by considering J~~. If we assume a local
center of symmetry in the amorphous structure,
Eq. (9} reduces to

b'+ —co b —g (J~b~+Jb ~)=0.ZI

ga
(10)

One easily recognizes a wave equation with a
damping term VJ V b written for a full rotational

symmetry of the local sites. J~ is of order hJ/a,
while b &/b~ is of order nn/d, so t.he condition for

undamped spin waves reads

LDd 1

J a n

The higher n is, the more easily this condition is

fulfilled.
As a matter of fact, three cases occur in the

analysis of Eq. (10): overdamped spin waves,

damped spin waves, and undamped spin waves. As
we assume quite homogeneous samples and one-

dimensional effects, i.e., an average over the planes

parallel to the surfaces, the effective hJ are weak

and the condition (11) is fulfilled, so we can neglect

the damping term (BJ/Bz)(Bb/Bz). On the other

hand, as it has already been said in the Introduc-

tion, even in the case of these undamped equations

we shall take into account an effective damping of
the spin waves. So the following theory restricted
to the undamped equation does not lose the gen-

erality of the damping phenomena.
The equation without damping and with a full

local rotational symmetry reads

and 5 its coordinate along the a axis and labels
the spatial derivations of b, J, and I by the respec-
tive lower indices, the equation of motion of b at
frequency co reads in this local picture

ZI ~ da

2 y s
8

(12b)

b -sin nm+P.
d

z+01

Then the local equation (12a) reads

co„=h'+ +(n1r+P)
ZI , Je2

d2

2

+
4

+n (13)

where the noninteger definition of n' is quite obvi-
ous. One can notice that if one takes the mean
value, Eq. (13) is nothing else than Kittel's equa-
tion (1). Moreover, Eq. (13) has a local meaning if
Je does not vary too quickly as has already been
assumed in Eq. (11), and is the basis for the treat-
ment of inhomogeneities as square barriers.

1. Inhomogeneities as square barriers

There are two basic assumptions in this treat-
ment: Firstly, inhomogeneities are rather dilute

One recognizes a Schrodinger equation for a parti-
cle of mass (Je )

' moving in a potential
h'+ZI/4. The potential is rather weak, so the
particle is nearly free, and the deviation from
Kittel's law co-q is weak. One can notice here
that both inertial terms and potential terms are
nonuniform in space. Obviously, the wave scatter-
ing will be dominated either by inertial (exchange)
terms or by potential (anisotropy) terms.

Out of the film there is no spin, so the wave

function is restricted to it, i.e., from z=0 to z =d.
The spin boundary conditions on the surfaces can
be interpreted in terms of spin pinning (9) which
links b (0) and b, (0) for the first surface. This spin

pinning which is due to surface anisotropy and to
surface exchange (8) introduces the surface phase
shifts 1I}1 and pz (Ref. 8) in a quite obvious way:

t an/ =b ( 0) /b, (0) .
In the film, spin waves propagate, as indicated

by the SAR experiments. So in a zeroth order of
perturbation, one has to neglect the scattering, and
one deals with a Fabry-Perot-type cell, with the
wave behavior characterized by the integer n called
the mode number:
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cases
a. b,n /n tweak. This condition means [from

Eq. (13)]

1 6(ZI)d n&(Je )

8~2Je 2 2 Je 2

For a given sample with given Auctuations that
means a range of n with

1
2Je 2

b, (ZI)d
2Je

2b(Je )
ni ——

and do not interact strongly between themselves;
secondly, the result is independent of the shape of
the barriers. The first assumption is justified for
quite homogeneous samples, and the second one for
the sake of simplicity, i.e., it avoids introducing ex-
tra parameters.

So we consider first a one-dimensional one™
impurity problem defined by a square barrier or
well between two bulk parts and later the multi-

impurity problem. The barrier is defined by A(ZI)
and b, (Je ), and so for the spin wave of mode
number n, it defines a variation An. Now one is
dealing with a standard problem of wave mechan-
ics or of quantum mechanics, i.e., scattering by a
square barrier or well. "The ingoing wave is par-
tially reflected, partially transmitted through the
barrier with an extra phase shift b P. If hn/n is
weak the reflection can be neglected; if not, the
one-dimensional reflection which occurs leads to
the loss of one part of the wave for the coherent in-

terference condition. Of course there are different

nit a b(Je )
2
—,n2»n &no .

Je
(17c)

where, of course, g(AzP„) has been assumed equal

to zero because of randomness. So we define the
rms effective phase shift 5$„ for one run through
the sample

And one notices that hP is the minimum for this
value no, which is in the middle of the range de-
fined in Eqs. (15).

After this one-impurity problem, where because
of the one-dimensional character, a two-
dimensional average has been taken into account
for h(ZI) and b, (Je ), one must consider the
many-impurity problem. The impurity p intro-
duces a phase shift h~P„which determines the
transmission factor t„& of the wave n through this
barrier p:

t„~=exp(i Spy„)

(&~/„)'
=1+ibpP„—

2

Neglecting the reflection at the barrier, one obtains
the transmission factor T„ through the sample

T„=gt„~=1—g (&~/„)'

T„=exp(i5$„) . (20b)

For these waves there is no practical reflection at
the barrier, just a transmission factor t =exp(ikey)
which involves the phase shift derived after a.

straightforward calculation:

(17a)

and that allows us to write Eq. (16) as

ad b,(ZI) |r a 5(Je }+n
nm gJe2 2 d Jei

The anisotropy fluctuations determine these phase

shifts for the first few modes, while exchange fluc-

tuations are the leading ones for the modes of high

n. Of course there is a balance between the two

contributions for a value no, with

d 5(ZI)
2' Q(J&2)

This effective phase shift 5$„modulates the tuning

equation (13) of the Fabry-Perot-type cell. A
straightforward differentiation of Eq. (13}gives the
frequency width 8'„:

Je
W„ =2nrt 5$„ .

As a matter of fact the physical transmission factor
T„ofEq. (19) corresponds to two rms total phase
shifts, namely, +5/„, and as a consequence to the
two frequency widths + 8'„.Diff'erent parts of the
sample experience difFerent local barriers, and
therefore different 5$„.So 8'„defined from Eq.
(21a) with the mean value of 5$„ is a true
linewidth measurement. And the results of Eqs.
(17) read

ad b, (ZI)
b,P„= ni ~&n ~no

nm' 8Je2

8'„-n, n 2 &~ n g n,2

8'„const, ni ~~n ~no

(21b)

(21c)
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where the limiting values of W„at the boundaries
n

&
and n2 can be estimated in the case of p identi-

cal impurities in the sample:

8'„= b,(ZI)p'i n =
5(ZI)d

a m (Je) )g2 Je
d d (EJe )

'
b(Je )

(22)

These results, valid for the central part of the
spin-wave spectrum, are consistent with the experi-
mental results. ' Now one has to consider the two
other parts.

b. hn/n non-negligible and n &np. n (n~. In
this case the condition (11) for a wave equation
without damping requires a very small value of
AJ/J in order to still be valid, as assumed here.
The Schrodinger-like equation (12a) gives rise to a
reflection at the barrier which is don1inated by the
anisotropy fluctuations. Because of the random
character of the impurities, the reflected waves
badly interfere and so are practically lost. As a
result the amplitude

~
T,

~
of the transmitted wave

decreases at each inhomogeneity barrier. Quite ob-
viously this is an exponential decrease and

~
T,

~

looks like

0 dp
Np —— (23)

~

T,
~

—exp[ —(z/No )],
where the effective damping length Np is a coher-
ence length which is determined by the one-impu-
rity scattering t& and by the mean distance dp be-
tween the two-dimensional scatterers:

50$„= -n
Np

(25)

By application of Eq. (21), this induces an n law
for the additional Wp.

Wo-n 'b, (ZI) . (26)

This explains the strong increase of W near n =0,
which is shown to be driven by the fluctuations of
anisotropy.

c. 6 n/n not weak and n))np. n)n2. There
is no drastic condition (11) on b,J/J in order to
have undamped equations. However, Eq. (12a)
shows a reflection at the barrier which arises from
the fluctuations of the exchange. As in the previ-
ous paragraph the reflection simulates a penetra-
tion depth X~ of the wave, which can be read

Je d 1
Ni =4do—

4 (Je ) a n m
2. (27)

with a similar exponential damping. Since the ob-
served spin waves in SWR do not have a very
short wavelength, Ni remains large compared to d.
So the supplementary phase shift 5&g„ introduced
by the new interference condition 5~$=rrd/N& in
analogy with Eq. (25) is always negligible. Howev-
er, the finiteness of Ni means a weaker effective
weight for the scatterers, and thus the total phase
shift 5$„ is weaker than that derived from Eq.
(17a). So we introduce the typical root-mean-square
value b,P„ofhP for a one-impurity layer. A
straightforward calculation shows that the total
phase shift 5$„ is proportional to b,g„and to N &'

5$„-N,' h„P -n, (28)
In terms of the local fluctuations Np, it reads

J2 4

Np =64dp
b, (ZI)d a

where n has been written instead of n', for the sake
of simplicity. When the coherence length Np be-
comes of the same order of magnitude or smaller
than the film thickness d, one has to deal with two
complementary effects. Firstly, the number of
scattering centers involved in Eq. (19) decreases,
each of these scattering centers has a more or less

strong contribution according to its z location in
the sample; as a result 5$„and W„decrease from
the value calculated with formulas (17a) and (21a).
On the other hand, the coherence length Np in-
volves a loss of memory of the phase shift for a
distance Np and so a supplementary mean phase
shift 5+„ for one run through the sample:

where n is independent. Finally, the frequency
linewidth W is proportional to n when n is large
enough. This saturation effect of W„ is due to ex-
change fluctuations, but W„becomes independent
of AJ in the simple model of similar impurity
layers, W„ is connected with the spatial density of
defects, namely, proportional to dp

One can notice that for large n, i.e., for strongly
damped spin waves, the damping terms included in
Eq. (10) cannot be neglected. This means a com-
plex behavior of n and co which has already been
assumed by some authors in order to explain the
SWR experimeiltal data. '

II. CONCLUDING REMARKS

This model describes the four parts of the curve
W(n) in agreement with the known data with more
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or less symmetrical contributions of anisotropy
fluctuations and exchange fluctuations, as shown in
Fig. 1. From the given analysis of the phase-shift
widths hP, one can derive the mean phase-shift
drift 5P, both for even and odd n modes. For the
same reasons as before, four kinds of behavior are
expected. Finally, this means that from the intensi-
ties of even modes in SWR one can measure the lo-
cal fluctuations of exchange and anisotropy.

A mean feature of this theory is that long-range
defects such as dislocations are neglected. This is

probably valid for annealed amorphous thin films,
and depends on the mechanical treatment. For
crystalline samples, long-ranged defects are more
probable and such defects are very efHcient in
long-wavelength spin-wave scattering. This is
probably the reason for a larger linewidth in crys-
talline materials as observed by Vittoria et al. '

,'hcJ)

0

FIG. 1. Typical curve 8'(n) linewidth versus mode

number with the four regions of different behavior. The

slope of 8'(n) for large n has been chosen to be nearly

zero for the sake of simplicity.
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