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Dynamical aspects of correlation corrections in a covalent crystal
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A central problem in one-electron band calculations is the proper inclusion of exchange
and correlations. We have performed a first-principles calculation by utilizing the

Qreen's-function method with an energy-dependent nonlocal self-energy operator obtained'

by replacing the Coulomb potential in the exchange operator by a dynamically screened

interaction. Diamond was chosen as a prototype of covalent materials. To be consistent
with a variety of experimental facts, we have taken the dielectric matrix of the medium

within the time-dependent screened Hartree-Fock approximation, thereby including both
local-field and electron-hole (excitonic) effects. Previous calculations along similar lines

have been restricted either to a random-phase-approximation frequency-independent

dielectric function or to a plasmon-pole approximation. We have investigated for the first
time the role of a realistic frequency and wave-vector-dependent dielectric matrix, and ex-

amined the relative importance of the electron-hole excitations and of the plasma reso-

nance across the range of the valence and conduction bands. The correlated band struc-
ture was calculated by diagonalizing the quasiparticle equation of motion in a local orbi-

tal basis in order to exploit the local character of both the self-energy operator and the
orbitals spanning these bands. We have found that the plasma resonance does not contri-
bute appreciably in the energy range about the band gap while it contributes significantly
to the valence bandwidth. Our values of 7.4 eV (band gap) and 25.2 eV (valence band-

width) are in good agreement with reflectivity and photoemission experiments. Implica-
tions for the local-density and the energy-independent Coulomb-hole plus screened-

exchange approximations are discussed. In addition, our method, by utilizing an energy-
dependent self-energy, has also enabled us to calculate quasiparticle damping times

(specifically, intraband Auger decay rates) that are consistent with photoemission spectra.

I. INTRODUCTION

The inclusion of many-body effects, such as ex-
change and correlations, in the calculation of elec-
tronic bands of crystals has been an argument of
continuous interest over the years. Systematic ap-
proaches to this problem have been provided by
the Green's-function method' and by the density-
functional formalism. ' The purpose of this paper
is twofold. On the one hand, through a pilot cal-
culation on diamond, we aim to draw attention to
several features of quasiparticle band calculations
in covalent materials that have previously been
overlooked or ignored. On the other hand, we try
to provide a bridge between the two approaches by
making a meaningful comparison of our results,
obtained via the Green's-function method, with
previous local-density and Xa (Ref. 7) calculations

on the same material.
The density-functional formalism in its local-

density version ' rests its practical utility on a
Thomas-Fermi type approximation that holds best
for systems, such as metals, with slowly varying
electronic density. This approach has indeed be-
come a matter of routine for calculating band
structures of metals and has furnished very en-
couraging results. However, the direct extension to
systems with rapidly varying density, such as sem-
iconductors and insulators, is not justified on
theoretical grounds and it has also given appreci-
able departures from experiments, as in the case of
diamond and silicon. ' Furthermore, it is well
known that the density-functional formalism ap-
plies in principle only to the calculation of
ground-state properties, ' e.g, the ground-state en-
ergy and density. An extension of the ideas of the
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local-density approach to deal with excited states
pI'opcftlcs hss bccn pl"Gvldcd by Sham and Kohn,
but its sppllcstloQ has remained limited.

The Green's-function method has specifically
been conceived to deal with excited states proper-
ties such as the excitation spectrum of 8 system
(quasiparticles). ' Although this method can be
apphed to systems with arbitrary density profiles,
its main shortcoming is that a detailed knowledge
of the screening properties of the medium is re-

qUlfcd ln advance ln oldcI to gct reasonable qussl-
particle properties.

The key quantity in the Green's-function method
is the self-energy kernel. In this respect, the usual
HaxtI'cc-Pock approximation px'Qvldes 8 par tlculsl
approximation for the self-energy [Fig. 1(a)].
However, such an approximation is deficient in-
sofsI' Rs lt docs not lncludc Rny dynaIIllcal fclsxs-
tion effects of the medium (screening), thereby pro-
viding band gaps and bandwidths that are too large
compared with the experimental values. Neverthe-

less, it is customary to take the Hartree-Fock ap-
proximation as a "reference level" approximation
so that whatever is beyond is generically referred
to as "correlations. "There are, in fact, reasons to
bcllcvc that thc Hsftfcc-Fock approximation
fcpI'cscQts 8 x'cssonablc starting point to lnclUdc

correlation effects. ' ' This fact is borne out also
in model calculations. For instance, the
Overhauser plasmon model' and the Toyozawa-
Kunz polaron model' ' are examples of second-
order configuration-mixing treatments of correla-
tions' where the bare electrons and holes are as-
sumed to interact with a cloud of virtual plasmons
Rnd excitons, respectively.

An approximation for the self-energy kernel
beyond the Hartree-Pock approxiInation that has
become rather popular is the so-called G% approx-
imation. It consists of replacing the bare
Coulomb Interaction I the Hartree-Fock approxi-
mation by a screened interaction (Fig. 1), thereby
taking Into account thc dynamical rearrangement
of the medium as an electron or a hole travds by.
This is the approximation that we shall adopt in
QUf calculation of qUaslpaftlclc properties ln dlR-

mond. Previous calculations based on the G% ap-
proximation have been restrained. by treating the
cncfgy dcpcndcncc of the dlclcctrlc matrix ln two
rather extreme limits, i.e., either as (almost) energy
independent or as a delta function peaked at the
frequency of a plasmon branch. The first is the
so-called Coulomb-hole plus screened-exchange ap-
ploxllllRtloll (COHSEX) of Hcdln, ' wlllcll has

been employed by several authors to calculate ener-

gy bands of semiconductors Rnd insulators ' " in
conjunction with other approximations (screening
models) to be discussed below, The plasmon-pole
approximation, on the othex hand, has been mainly
applied to metals, but calculations on seImcomIuc-
tors have also been attempted.

This is, in short, the present status of the inclu-
sion of correlations in band calculations. It is ap-
pRlcnt that~ cspcclally fof scmlconductoI"s Rnd in-
sulators, the situation is not fully satisfactory. Ac-
cofdiIlgly, wc have cndcRvolcd to perform 8 Qcw

calculation that would remedy some of the defi-
ciencies of the previous approaches. SpecificaBy,
wc hRvc Rdd1csscd Gufsclvcs to the following ques-
tions.

(i) The influence of the energy dependence of
the didetric matrix on self-energy shifts. The en-
clgy range covered by ghc diclcctflc matrix ls Usu-

ally partltloncd into 8 10%-lying clcctron-hole con-
tinuum and a plasma resonance. In metals the
first portion is strongly suppressed by screening for
small values of the momentum transfer q, whereas
it dominates for large q. Combining the two por-
tions into a single-plasmon branch for all values of
q has then been considered sufficient for calculat-
ing self-energy shifts in these materials. ' For
nonmetals, however, there has been no detailed in-
vcstlgRtloll of thc relutlve importance of tllc
electron-hole cxcitations versus the plasma reso-
nance across the range of valence and conduction

) (1 2)- ii

FIG. 1. Graphical representation of the Hartree-Pock
(a) and non-Hartree-Fock (b) parts of the 6% approxi-
mation fol' thc self-energy operator. The shaded box
will include bubble and ladder-bubble polarization di-

agrams (cf. Fig. l of Ref. 30).
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bands. As we shall see, the energy-independent ap-
proximation (COHSEX) that has invariably been
used in the past for nonmetals, ' implies that
only the electron-hole continuum is in effect re-
tained in the dielectric matrix, but no justification
for this procedure has been supplied. Our calcula-
tion on diamond will show that, while the sole in-
clusion of the electron-hole continuum is indeed
sufficient to reproduce the band structure in the
neighborhood of the band gap, the contribution of
the plasma resonance becomes increasingly impor-
tant as one moves down in the valence bands. %'e

will interpret this result as an indication that, even
for nonmetals, a local-density approximation can
be appropriate to describe the bands about the gap,
whereas it fails for higher excited states.

(ii) The question of the energy dependence of
the self-energy is closely related to the choice of
the functional form of the dielectric matrix. Since
these two quantities are functionals of each other,
a consistent procedure is required to disentangle
them in approximate calculations. In their review

paper Hedin and t.undqvist have discussed the use
of the GW approximation in conjunction with a
random-phase-approximation (RPA) treatment of
the screening, regarding this procedure more as an
ansatz rather than justifying it on the basis of phy-
sically plausible criteria. Moreover, in the applica-
tions of the 6% approximation to nonmetals '

the question of the interconnection between the
functional forms of the self-energy and of the
dielectric matrix has been hindered by the invari-
able use of Penn s semiempirical dielectric func-
tion. As we shall discuss, the charge conserva-
tion criterion is the legitimate candidate to guide
the combined choice of the self-energy and of the
dielectric matrix. However, as this criterion can
only be approximately fulfilled in practical calcula-
tions, the internal consistency of a given approxi-
mation can ultimately be checked only by com-
parison with experiments. The inclusion of certain
vertex corrections beyond the RPA approximation
(the so-called ladder-bubble diagrams) has been
shown by Hanke and Sham to be essential and
sufficient for a quantitative account of the optical
response in covalent materials. Quite generally, we
make detailed use of this earlier work on the
many-body effects in the optical spectra, in partic-
ular diamond, ' which resulted in quantitative
agreement with the experimental data. It is our
guideline for choosing approximations on the
screening part of the self-energy employing the
same wave functions, energies, overlap assump-

tions, etc., and many-body corrections. In this pa-
per we will verify that the inclusion of the same
kind of vertex corrections is required in order to
obtain values for the band gap and the valence
bandwidth that are consistent with the experimen-
tal values.

(iii) Lifetimes of quasiparticle excited states can
be calculated only when the approximation for the
self-energy kernel is energy dependent. ' Especial-

ly for materials like diamond with a wide valence
bandwidth, such an investigation may be of some
theoretical interest on its own and may also serve
to stimulate comparison with photoemission data.
Our approach will enable us to produce for the
first time the energy-dependent intraband Auger
decay time of a valence hole in diamond.

The plan of the paper is as follows. The
theoretical framework is presented in Sec. II, the
details of the calculation for diamond are given in
Sec. III, and the results are discussed in Sec. IV.
Section V contains our conclusions.

In this section we comment on the coupled set
of integral equations defining the self-energy
operator and present a truncation procedure (or
decoupling) of this set of equations which is sug-
gested by charge conservation criteria. %e discuss
also properties of the self-energy operator that are
relevant to our purposes, namely, the symmetries
under space-group operations and under inter-
change of the position variables, and the short-
range property. By utilizing an expansion into lo-
calized orbitals, we then cast the quasipartiele
equation of motion in a form that is particularly
suited to the study of semiconductors and insula-
tors. Finally, we review briefly the theory of the
dielectric response in insulators. To keep our
presentation reasonably selfcontained, some materi-
al other than ours will be included.

A. Beyond the Hartree-Pock approximation:
The link between the self-energy operator

and the dielectric matrix

Quasielectrons and quasiholes signify approxi-
mate excited states of the (N + 1) particle and
(N —1) particle system, respectively. Their excita-
tion energies (measured from the N particle
ground-state energy) and the corresponding energy
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spreads (which are related to the lifetimes of the
approximate excited states) can be obtained by lo-
cating the singularities of the one-electron Green's
function in the complex energy plane. For a cry-
stalline system this manifold of states can be or-
ganized into a many-body (or correlated) band
structure that generalizes the ordinary inde-

pendent-particle band picture.
The exact expression of the one-electron Green's

function for a system of interacting particles is, of
course, not known since it would imply a complete

knowledge of the many-body ground and excitm1

states. Conventional perturbative treatments' can-

not be applied in a realistic many-body problem

owing to convergence difficulties. A nonpertur-

bativc approach is provided by thc dcnsity-
functional formalism, but has so far only been con-

sidered in connection with the local-density approx-
imation. ' ' Another, in principle, nonperturba-
tive approach is provided by the functional-
derivative formalism (see, for example, Refs. 2 and

20}. A central role in this approach is played by
the self energy o-perator X(r, r ', E) from whose

knowledge the excitation energies E; of the quasi-

particle states can be obtained by solving the equa-

tion

[H„(r)—«]y;(r) + f dr'X(r r" «)0 (r }=0.

X(12)= —iA f d34G(23)G(42)l (34, 1),
I (12,3)= 5(12)5(13)

(2.3c)

X(12)=iA'8'( I+2)G(12), (2.4)

while the screening properties of the medium
entering 8' were treated within the random-phase
approximation (RPA) by setting

+ f d4567 — G(46)G(75)I(67, 3) .
5G(45)

(2.3d)

» Eqs. (2 3} the»beis I» . . stand for the set of
position, spin, and time variables, while 1 implies
that the time variable I;& is augmented by a positive
infinitesimal. These equations explicitly show how
the self-energy X depends on the dielectric matrix
e= 1 —UX through the vertex function I' and how
I, in turn, depends on X. This is precisely what
we meant in the introduction for interconnection
between X and e.

In any practical calculation there arises the ques-
tion of how to truncate the set of coupled equa-
tions (2.3). Common practice has been to make
specific ansatz on the functional forms of X and I
separately. A popular choice for X has been the
use of the so-called GW approximation, ' where
one sets

I (12,3)=5(12)5(13) . (2.5)

+ p Q f —r 5 I

where we have set u(r —r ')=e /~r —r '
~.

As for the Green's function, the exact «rm of
the self-energy kernel is not explicitly known. Yet
one can derive a set of coupled integral equations
connecting the exact self-energy to the exact
Green s function (G), the irreducible polarizabihty

(X), the vertex function (I },and the dynamically
screened interaction (W) (Ref. 37):

X(12)=ih' f d34$V(1+3)G(14)l (42,3),
W(12}=U(12)+f d34u(13}X(34)W(42},

(2.3a)

(2.3b)

Here H,„(r) is an average (Hartree) local Hamil-
tonian that includes the Coulomb effect both of
the nuclei and of the average electronic charge dis-
tribution in the ground state, (n(r ) ):

0,„(r )= — V~ —g Z„u( r —R„)
(22

No criterion, however, has been supplied to justify
this specific decoupling of the set of equations
(2.3). We notice in passing that the familiar
Hartree-Fock approximation for X reappears as a
particular limit of Eq. (2.4) when one replaces the
dynamically-screened interaction 8' by the bare in-
stantaneous Coulomb potential u. In fact, one may
sort out the Hartree-Pock from the GW approxi-
mation by splitting the expression (2.4) in terms of
X„Fand of a remainder X':

X(12)=XHp(12)+ X'( l2) . (2.6)

The two terms in Eq. (2.6) are represented graphi-
c»ly i»igs. 1(a) and 1(b), respectively. It is obvi-
ous that within the Hartree-Pock approximation
for X the question of the corresponding choice of
I does not arise.

Criteria to justify a particular choice for X and
I cannot emerge from Eqs. (2.3) themselves but
should rather be imposed as external constraints,
exploiting„ for instance, special symmetries of the
system. In particular, the invariance of the theory
under local gauge transformations of the first and
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= —J d 3A(12,3) . (2.7)

An identity of this kind is known in quantum elec-
trodynamics as the Ward-Takahashi identity.

In order to gain insight in Eq. (2.7) in the
present context, we recall that in the derivation of
Eqs. (2.3) the system of N interacting nonrelativis-
tic particles is coupled to a time-dependent weak
external scalar potential which at the end is al-
lowed to vanish. We can then take advantage of
the freedom in the choice of this potential and
vary it by a constant infinitesimal amount —a by
introducing a particular class of gauge functions

F(r, t) =act,
c being the velocity of light. To preserve gauge in-
variance, the field operators must at the same time
be multiplied by exp(iear/A'), thereby inducing the
Green's function to vary by the amount

4

56(12}=—ea(t t
—t2)6(12) . (2.9}

The corresponding variation of the inverse Green's
function can be expressed in terms of the seif-

energy as

4

56 '(l2) =ea 5(12)——
(t& —t2)X(12)

(2.10)

On the other hand, from the original definition of
the vertex function one may also state that, under
the infinitesimal gauge transformation generated

by the function (2.8),

56 '(12)=ea f d31(12,3) . (2.11)

Comparison of Eqs. (2.10) and (2.11) leads to Eq.
(2.7).

To investigate the implications of Eq. (2.7) it is
convenient to take its time Fourier transform,
which reads

A BN
X(r, r ',m) = — d r "A(r, r '; r "

~
co,co) .

(2.12)

second kind (which is related to current conserva-
tion) provides an explicit interconnection between
X and I in the sense that the following identity is
satisfied:

—(t, —r, )X(12)=5(12)—J 831 (12,3)

We stress that this relation is but an identity be-
tween the exact X and A. In approximation
methods used in finding approximate solutions,
however, Eq. (2.12) provides a criterion to make
the choices of X and A, although in practice one
might not be able to fulfill Eq. (2.12) exactly.
Consider, in particular, the GW approximation for
X, Eq. (2.4). Utilizing a formal expansion in terms
of the bare Coulomb potential u and of the Hartree
Green's function Go (that corresponds to the ap-
proximation X=0) one may verify that, to satisfy
Eq. (2.12), it is sufficient to take the vertex func-
tion I as the solution of the integral equation
(2.3d) with X given by Eq. (2.4). This approxima-
tion for I contains three kinds of terms: (i) the
RPA term (2.5) that does not include any vertex
correction, (ii) the ladder diagrams corresponding
to the time-dependent screened Hartree-Pock ap-
proximation (TDSHF), which are obtained by
retaining only the functional derivative of the ex-
plicit 6 in Eq. (2A), and (iii) other terms which are
obtained by taking into account also the depen-
dence of the screened interaction on G. Inclusion
of the last class of terms constitutes a rather for-
midable task that exceeds our purposes. In our
calculation we will limit ourselves to the GW ap-
proximation for X and also consider the RPA and
the TDSHF approximation for screening 8' only,
postponing any comment on the validity of either
approximation to comparison with experiments.

We note at this point that, in the TDSHF ap-
proximation, the potential entering the ladder di-
agrams for I should itself be the fully screened po-
tential 8', the process repeating itself in an open-
ended way. In our calculation we have truncated
this process by approximating the potential in I
(i.e., the screening of the electron-hole interaction)
by a static screened potential calculated from a
phenomenological dielectric function. As pointed
out before, this choice as well as the general stra-
tegy of implementing many-body effects in the
screening entering X, is justified on pragmatic
grounds. Previous detailed studies of optical
response in covalent crystals, including diamond,
achieved quantitative agreement with experimental
data using precisely the approximations dis-
cussed above (TDSHF).

A few words of comment on the choice of the
GW approximation for X are also worthy. This
approximation undoubtedly represents an impor-
tant improvement over the Hartree-Fock approxi-
mation since it includes the dynamical polarization
of the medium. Yet it leaves out several other



6. STRINATI, H. J. MATTAUSCH, AND %. HANKE

correlation effects that might turn out to be dom-

inant in some cases. ' In particular, one might ex-

pect the G% approximation to break down in the
case of narrow valence bands, as for LiF, ' ' or in

the case of core levels, where it might not be ap-

propriate to treat the screening of the sole valence

electrons around a localized hole within the linear

response approximation. By the same token, one

may hope that the GW approximation is sufficient
to describe wide valence bands, as in the case of di-

amond. This expectation will indeed be fulfilled

by our calculation. Finally, going beyond the G%
approximation will make it harder to satisfy the
current conservation criterion, Eq. (2.12), even ap-

proximately.

X(r, r ',E)=X(r ', r;E) . (2.14)

Equation (2.14) (that holds in the absence of mag-
netic fields) can be proven in general following the
same steps indicated at (i), and can again be expli-

citly verified for the 6% approximation.

(iii) The self-energy is a short range-kernel in

~

r —r '~. This property has been proven by Sham
and Kohn on the basis of general graphical con-
siderations, "and has been checked numerically by
Hedin in his work on the electron gas. The
short-range property implies that, when viewed as
a matrix in the continuous indices r and r ',
X(r, r '; E) will have matrix elements appreciably
different from zero only in a neighborhood of the
diagonal, r =r '.

B. Properties of the self-energy operator

In order to cast the quasiparticle equation (2.1)

in a form suitable for numerical solution, we make

use of the following properties of the self-energy

operator.
(i) The Hartree Hamiltonian (2.2) is inuariant

under the replacement r —+ I R~ w }r =R r + w,

I R~ w } being an operation of the space group of
the crystal. Similarly, one can show for the full

self-energy

X(t R
~
w}r, I R

~

w }r';E)=X(r,r';E) .

(2.13)

This property can be established first proving the
analogous property for the Green's function 6 by
exploiting the structure of its spectral representa-

tion, and then utilizing the functional relation be-

tween 6 and X given by Dyson's equation. Equa-
tion (2.13) can also be explicitly verified within the
approximation we have adopted for X, Eq. (2.4), by
recalling the symmetry properties of the dielectric
matrix.

Equation (2.13), when specialized to the subset

of operations belonging to the translational sub-

group of the crystal, implies that the wave func-
tions P;(r) in Eq. (2.1) can be chosen to satisfy the
Bloch condition. The label i will thus stand for
the pair (n, k), where the wave vector k is con-

fined to the Brillouin zone and n is a band index.
(ii) The self-energy operator is symmetric under

the interchange of r and r ', that is

C. The quasiparticle equation in local

orbital representation

For a homogeneous system, such as an electron

gas in jellium, symmetry arguments alone enable us
to solve Eq. (2.1) directly. In this case, in fact,
X(r, r '; E) —.—X(r —r '; E), so that the wave func-
tions P;(r ) are plane waves of wave vector k and
the corresponding eigenvalues are
E(k) =k + X(k; E(k)). In contrast, our efforts in

this paper are focused on physical systems, like co-
valent materials, where the electron gas limit can-
not be applied owing to the strong modulation of
the periodic part of the Bloch functions. In this
case it seems most appropriate to express the Bloch
functions in terms of a set of orbitals 4,(r —1 )

that are localized about the lattice sites 1:

p„p(r)= g M '~ ge'" '4„(r—1) c (k),

(2.15)

M being the number of lattice sites. The number
of indices I v } equals the number of bands that are
in contact with each other but are isolated from
other bands. "

The quasiparticle equation (2.1) can now be re-

duced to an algebraic eigenvalue problem for the
coefficients c„„(k) of the expansion (2.1S) by in-

serting Eq. (2.15) into Eq. (2.1) and projecting onto
alternative 4„(r). At any given k in the Brillouin

zone (BZ) one then has to solve
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g [(v~e(k) (v'&+&v~ X(k;E„(k))
~

v'&]c~„(k)=E„(k)c (k) .

We have introduced the notation

(v
i
c(k) i

v') = ge'"'' (4,(r) i H,„(r)
i
4~(r —1))

(2.16)

(2.17)

(v
~

X(k;E)
~

v') = g e'"' ' (4„(r)
~
X(r, r ';E)

( 4„(r ' —1 }) . (2.18)

Owing both to the short-range property of the
self-energy operator and to the localization of the
orbitals 4„(r), we expect the summation over 1 in
Eq. (2.18) to extend up to a few shells of lattice
vectors about 1 =0, akin to the summation in Eq.
(2.17). The explicit form of the local orbitals
4„(r) will be discussed in Sec. III.

We notice that, at any given k in the Brillouin
zone, the eigenvalues E„(k) of Eq. (2.16) have to
be determined through a self-consistent loop since
they also appear as argument of the self-energy
operator. In addition, we recall that the matrix
(v~X(k; E)~v') is in general non-Hermitian. In
fact, one may verify using the symmetry properties
(2.13) and (2.14) that the real and imaginary part
of the self-energy operator yield the Hermitian and
skew-Hermitian part of the matrix (v~X(k; E)~v'),
respectivdy, This implies that the eigenvalues
E„(k) of Eq. (2.16) are in general complex, the real
part fum1shlng tllc cxcltatloll cllclgy of a11 appI'oxl-
mate eigenstate of the (%+1) electron system and
the imaginary part providing the corresponding en-

ergy spread. In the particular case when X is as-
sumed to be energy independent, as in the
Hartree-Fock and in the COHSEX approximation,

the matrix (2.18) becomes Hermitian, thereby
preventing the calculation of the lifetimes of the
quasiparticle states.

To calculate the matrix dements (2.18) we start
by taking the time Fourier transform of the GW
expression for X, Eq. (2.4),

+ CO

X( r, r ';E)= dE'e' sG(r, r ';E+E')
IN

X W(r, r ',E'), (2.19)

where 5 is a positive infinitesimal needed to ensure
convergence of the Hartree-Pock term. Equation
(2.19) acquires the usual form of a convolution in-
tegral when recalling that 8' is an even function of
the frequency. The Green's function that appears
in Eq. (2.19) (also through the screened interaction
$p) should, in principle, be the full self-consistent
Green's function obtained by solving Dyson's equa-
tion with X given by Eq. (2.19) itself. In actual
calculations one starts by approximating 6 by the
expression

BZ , k(r) „i,(r')'G(r, r ';E)= g g
i, E—E„(k)+irisgn[E„(k}—E~]

(2.20)

where ri~0+ and the Fermi level EF is placed somewhere within the gap. The Bloch functions P„+kr)
and the corresponding band eigenvalues E„(k) in Eq. (2.20) are borrowed from a preliminary calculation
(i.e., Xa or local density) that includes exchange and correlations in an approximate way. Once the new
band structure is obtained by solving Eq. (2.1), the calculation should be repeated, using again for G an ap-
proximate expression of the type (2.20), until self-consistency is attained. We have not aimed, however, to
achieve this kind of self-consistency in our calculation for diamond where we have assumed 6 of the form
(2.20) with the bands taken from a previous Xa calculation.

The Green s function (2.20} can also be expressed in a local orbital basis by utilizing the expansion (2.15).
We get

G(r, r ';E)= g g 4 (r —s )G ( s —s';E)4' (r ' —s'},
f«) s s'

(2.21)
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where the matrix elements 6 (m;E) are given by

1 Bz (k) ik'm, (1 P
G..(m;E)= g E E„—(k)+ii) sgn[E„(k) —E~j

(2.22)

It is clear that what is still needed to calculate the matrix (2.18) exphcitly are the matrix elements of the
screened interaction W( r, r;E) between pairs of local orbitals. To this end, we should first find a suitable
expression for 8'.

D. RPA and TINHF treatment of the screening in local orbital representation

A closed-form expression for W(r, r;E) can be obtained by solving formally the integral equation (2.3b)

and then taking the time Fourier transform of its solution:

W(r, r ';E)=U(r —r ')+ I dridrzv(r —r))Xr(r„r2,E)u(r2 —r ')—=U(r —r ')+ W'(r, r ',E) . (2.23)

We have here introduced the (time-ordered) polarization Xr and we have sorted out from W the bare
Coulomb interaction U. The two terms on the right-hand side of Eq. (2.23) correspond to XHF and X' of Eq.
(2.6), respectively.

Notice that writing Eq. (2.23) assumes both (i) that the integral equation (2.3d) for I has been solved and

the corresponding solution inserted into Eq. (2.3c) to obtain the irreducible polarizability X, and (ii) that the

integral equation (2.3b) for W has also been solved. Step (i) is straightforward within the RPA approxima-
tion where I is given by Eq. (2.5), but becomes already nontrivial in the TDSHF approximation. However,

it has been shown by Hanke and Sham in the context of the linear response theory that the inclusion of
the ladder diagrams for I becomes feasible when using a local orbital representation similar to Eq. (2.15) to
express the Bloch functions of the valence and conduction bands that are coupled in the screening process.

By the same token, they also showed that step (ii), which involves the inversion of the dielectric matrix since

X=X@ ', can be readily performed using a local orbital representation. The result is that the (retarded) po-

larization matrix acquires the following form:

BZ
(~ ~~.E) g g i(q+6) rX (~+G ~+G~.E) i(q+6')—r'

q GG'
(2.24)

where

R(q+Gtq+G lE)= g g & i ~(q+G)S i i y (q~E)A i y (q+G )
Jvp, 1 Vp, '

(2.25)

In Eqs. (2.24) and (2.25) q is a wave vector confined to the Brillouin zone G and G' are vectors of the re-

ciprocal lattice, and 00 is the volume of the Wigner-Seitz cell ( V=~AD). The A s in Eq. (2.25) are given

by:

A7„„(q+G)=I dr@'„(r)e "q+ ''4»(r —1),
and the screening matrix S(q;E) is given by ( in matrix notation):

S(q;E) =N(q;E) I 1 —[V(q) ——,V"(q)]N(q;E) J

Here we note the following.
(i) N(q;E) is the RPA irreducible polarizability in local orbital representation:

(2.26)

(2.27)
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(~q.E) ~ ei( k +g) ( I —i ')
j vp, 1 Vp, '

k

2[f„,(k+ q) —f„(k)]
n(e,

' ' E„,(k+ q) —E„,(k) —E—ill

(2.28)

(g~ 0+ ), f„(k ) being the occupation number of the state n k. Note that the band eigenvalues and the
Bloch functions [represented by the coefficients c (k)] entering Eq. (2.28) are the same as those utilized in
the expression (2.20) for the Green's function.

(ii) V(q-) is the Fourier transform of the matrix of the bare Coulomb potential between pairs of local orbi-

tals:

V i ~ 7.~„(q)=pe '' (4'„(r—m)4„(r —1 —m) ~u(r —r') ~4&(r')4„.(r' —1')} (2.29)

g&*(„„(q+G)U(q+G)A ),~„,(q+G)
00 G

[i)(q+G)=gn/~ q+G
~

], and V"(q) is its screened exchange counterpart:

Y"i 7,&„,(q)= pe 'q' (4'„(r'—m)4„(r —1 —m) ~i),(r —r') ~4~(r')4„(r —1')}.

As discussed in Sec. IIA, the potential u, in Eq.
(2.30) is a static approximation to the full screened
potential W. Its explicit form will be considered in
Sec. III C. %e only remark here that screening the
Coulomb potential in the exchange integral was
found essential for getting meaningful values for
the optical constants, in particular for the static
dielectric constant. Note also that the RPA ap-
proximation for the screening matrix S(q;E) can
be simply obtained from the TDSHF expression
(2.27) by setting V"(q )=0, and that, in both the
RPA and the TDSHF forms the so-called local-
field effects (i.e., the off-diagonal terms in G and
G') are automatically included.

To obtain the time-ordered polarization matrix
Xr(r, r ',E), which is needed in the expression
(2.23) of the dynamically screened interaction,
from the retarded polarization matrix of Eqs.
(2.24) —(2.30}one has to recall that the two func-
tions are related by the prescription

XT( r, r ';E}=[e(E)y e( E)&]Xi'(r—
(2.31)

for real E, where e(E) is the unit step function
and E is the complex-conjugation operator.

The matrix elements

( 4&„(r )
i
X( r, r ';E)

i
(P, ( r ' —1 ) }

of Eq. (2.18) which are needed to solve the quasi-
particle equation (2.16) can now be expressed in
terms of the screening matrix (2.27) and of the
Coulomb matrix (2.29). In particular, we need to
obtain an explicit expression only for the matrix
elements of X'(r, r ';E) [cf. Eq. (2.6)] because we
can get the Hartree-Pock matrix elements from a
separate procedure (Sec. III A). We start by re-
stricting the range of the integration in Eq. (2.19)
to the positive real energy axis where, according to
Eq. g.31), XT and Xi( coincide. This can be done
by recalling that XT is an even function of E and
replacing G(r, r ',E+E') by

G(r, r ';E,E')=G(r, r ',E+E')

+G(r, r ';E E') . —(2.32)

Moreover, the convergence factor exp(iE'5) can
no~ be dropped from the integration over E' since
one can show that Xi((r, r ',E')=O(E' ) for large
E'. Inserting the expression (2.24) for Xi( into the
second term on the right-hand side of Eq. (2.23)
and entering the resulting expression together with
the expansion (2.21) for the Green's function into
the convolution integral for X'(r, r ';E), we get
after some rearrangements
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g 00 HZI dE' g g G...( —m;E,E) ge-"-W'-. ,, -...-. , -...(q;E').

W- -. ,~(q;E)= g g V-, 7„(q)&7„7.q (q;E)&i p ~ - ~ ~(q)
l vp 7'v'p'

(2.34)

is the Fourier transform of the matrix of the po-
tential W'(r, r ';E) between pairs of local orbitals.
The expression (2.34) is particularly attractive since
8"(q;E) is obtained by a simple matrix multiplica-
tion of the Coulomb matrix with the screening ma-

trix. Evaluation of the matrix elements (2.33) con-
stitutes the main numerical effort of this work.

III. NUMERICAL CALCULATION

The excitation energies E„(k) of the quasiparti-
cle states are obtained as the (complex) eigenvalues

of the matrix (v~ @(k)
~

v') +(v~ X(k;E)
~

v') de-

fined by Eqs. (2.17}and (2.18). Within the GW
approximation for the self-energy operator, we
have split up the matrix elements (v

~

e(k)
~

v')
+ (v

~
X(k;E)

~

v') into an energy-independent
Hartree-Fock part (v

~

e(k)
~

v') +(v~ XHF(k)
~

v')
and an energy-dependent remainder
(v

~

X'(k;E)
~

v'). We shall determine the
Hartree-Fock part by making a Slater-Koster fit to
an existing Hartree-Fock band calculation, while
the remainder will be determined by evaluating the
matrix elements (2.33) explicitly. This procedure
is, however, not completely rigorous because the
one-particle density matrix p(r, r ') that appears in
the Hartree-Pock matrix elements should in princi-

ple be recalculated as correlations are added. %'e

then justify neglecting this change in p(r, r ') by in-

voking Brillouin's theorem' which states that the
mean value of any onc-particle operator is station-

ary to first ordeI under correlation corrections.

Diamond was chosen as a prototype of covalent
materials. There were several reasons for this
choice, namdy, the availability of accurate
Hartree-Fock calculations for this light core ma-

terial, the appropriateness of a local orbital

C

description for the valence and conduction bands
(in particular, for describing the screening proper-

ties), the possibility of studying the effects of the
cncrgy-dcpcndcncc of the self-energy operator ow-

ing to the large valence bandwidth, and the resem-

blance to the covalent semiconductors.
Equation (2.16}was then decoupled into two dis-

joint 4&4 matrix equations for the two sets of
valence and conduction bands by taking the local
orbitals 4„(r) as normalized bonding and anti-

bonding combinations of s-p hybridized orbitals,
respectively. ' The label v=(1,2, 3,4) stands for
the four tetrahedral directions [111],[111],[111],
and [111]in the order. By an extension of stan-
dard arguments used to reduce the number of in-

dependent matrix elements of a local Hamiltonian
between pairs of local orbitals centered at different
lattice sites, the number of the parameters

(@,(r)
~

X(r, r', E) ~4p(r ' —1)) can be consider-

ably reduced by utilizing the symmetry properties
(2.13) and (2.14) and the assumed reality of the lo-
cal orbitals. Specifically, the minimal set of ten in-

dependent matrix elements listed in Table I is ob-

tained by extending the lattice vector 1 up to
second nearest neighbor unit cells.

The Hartree-Pock band eigenvalues of diamond

to be used as input to our fitting were taken from
the recent self-consistent calculation by Mauger
and Lannoo. The parameters eo—e& (cf. Table I)
were at first obtained from the knowledge of the
energy eigenvalues at the high-symmetry points I,
X, and I.. The parameters e7, es, and e9 were then

determined by fitting the shape of the bands along

the symmetry lines 5 and A connecting these

points; at the same time, the parameters e&, e3, and

e5 were readjusted for each trial set of values of the

shape-fitting parameters e7—e& so as to leave un-

changed the energy eigenvalues at the high-

symmetry points. Actually, we expect this pro-
cedure to limit the degree of arbitrariness of the

parameters that is inherent to any Slater-Koster fit.
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TABLE I. "Best estimate" values of the parametric integrals for the Hartree-Fock and the Xa band structures of di-

amond.

Parameter
name

HF
valenceb

(eV)

HF
conduction"

(eV)

Xa
valence'

(eV)

Xa
conduction'

(eV)

0
0

—(1,1,0)

—(1,1,0)

—(1,1,0)

—(0, 1,1)

—(2,0,0)

—(1,1,0)

—(0, 1, 1)

—'(2,0,0)

—15.3687
—2.6646

1.2198

—0.4463

—0.5011

—0.1640

—0.0323

0.02

0.10

0.04

18.2813
—0.6296
—1.1302

1.5438

0.4740

—0.2315

—0.0990

—0.10

0.14

—0.18

-- 9.8844
—1.4844

0.8203

—0.5844

—0.3172

—0.0622

0.0318

0.175

—0.400

—0.055

9.1719
—0.0490

—0.6724

0.5479

0.2318

—0.1172

—0.0339

0.1495

—0.300

—0.989

'The meaning of the indices v, v, and 1 is specified in the text. a is the lattice constant (6.7269 a.u.).
Fitted from the Hartree-Fock band structure of Ref. 47.
Fitted from the Xa band structure of Ref. 7.

The "best values" of the ten Hartree-Fock parame-
ters for both sets of valence and conduction bands
of diamond are listed in Table I.

We remark that the value of the parameter eo

(where the orbitals are located at the same lattice
site and point along the same tetrahedral bond)
corresponds to the absolute energy scale which is
provided by the Hartree-Fock calculation. In par-
ticular, the top of the valence bands at I is set at
—4.0 eV by the calculation of Mauger and Lan-
noo. This is an additional information that can
be extracted from a Hartree-Fock but not from an
ordinary band calculation where the zero of the en-

ergy scale is set arbitrarily.

B. The one-particle Green's function

We pass now to the calculation of the matrix
elements (2.33). To this end, we can considerably
reduce the amount of numerical labor by making
the approximation of retaining in the expression
(2.34) of the matrix W'(q;E) only the terms with
m=m'=0 and with the bonds cr parallel to ~ and
o' parallel to ~'. On the other hand, the indices of
summation on the right side of Eq. (2.34) extend
over a wider range needed to a better convergence
that will be specified in the next subsection. With
this approximation the matrix elements (2.33) be-
come

(@b,(r) ~&'(r r';E. ) I@;.(r' —t))

f dE'[Gb b( —t;E,E')8'g, ps' (t;E')+G,', , ( ,
—, t. ;E,E') W, b,, b (t;E')].

for the valence bands [the subscript b stands for bonding orbitals and (i,j)=(1,2, 3,4)], and

(@,.(r) i
X'(r, r', E)

i
4&, ,

(r' —t ))

= ' f dE'[G,'",'. ( —t;E,E)W, ..(t;E)+G.".'( t;E,E)W.'....(t;E')] (3.2)
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for the conduction bands (the subscript a stands
for antibonding orbitals). We have introduced the
notation

(3.3)

+i Iryb".s ( —t;E) (3.4)

—
ivory,", ( —t;E), (3.5)

where the symbol H means that the principal
value of the integrals has to be taken and where
the real functions yI,"I, {—t;E) and y,",' ( —t;E)
afc dcflncd as

Note that in Eqs. (3.1) and (3.2) the summation
over bRllds 111 tllc dcflllltloll (2.22) of tllc 111Rtrlx

elements of the Green's function has been explictly
separated into occupied (U) and unoccupied (c)
bands. In particular, in our calculation we shaH

include only the four valence and the four conduc-
tion bands, thereby neglecting the contribution of
high cxclted bands fol which thc cnclgy denomina-

tors get larger and the effective overlap between

the wave functions get smaller. Owing to the reali-

ty of the local orbitals, we may split the real and

imaginary parts of 6"and 6" as follows:

have RllcRdy dlscusscd whllc colIllIlcntlng on Eq.
(2.20), the band structure to be used in Eqs. (3.6)
and (3.7) should be as close as possible to what is
expected to be the outcome of our calculation. For
this reason we have taken it from a previous Xu
calculation that already includes exchange and
correlations even though in an approximate way.
The "best values" of the Slater-Koster fitting
parameters for this Xa band structure have been
given in Ref. 30 but are also reported in our Table
I for a prompt identification of the indices
(v, v', 1). We note that the value of the parameter
eo corresponds to setting the top of the correlated
valence bands at —1.5 eV on the absolute energy
scRlc. Tllls Inlpllcs Rll lllltlR1 gllcss of 2.5 CV fol'

the upward shlftlng of thc top of thc valcncc bands
with respect to the Hartree-Fock value. However,
our calculation will actually set the top of the
valence bands at 0.25 CV so that a suitable adjust-
ment of the energy scale for the Green's function
will be required.

The functions (3.6) and (3.7) whose indices
(i,j, t ) run over the set of Table I, have been cal-
culated pcrfoIming thc summation ovcl k by thc
linear tetrahedron method. Having partitioned
the irreducible wedge of the Brillouin zone into
754 tetrahedra, for each band the density of states
contributed by a selected tetrahedron was multi-
plied by the value of the integrand in Eqs. (3.6)
and (3.7), taken first at the "center of mass" k, of
the selected tetrahedron, and then summed over
the corresponding values at the star of k, . Once
the functions (3.6) and (3.7) have been calculated
over the entire energy range spanned by the valence
and conduction bands, respectively, with a step of
0.25 eV, the real part of 6'"' and 6"were ob-
tained by evaluating the principal-value integrals in

Eqs. (3.4) and (3.5) where the singularities at
E=E' were isolated using standard procedures.

yIS"bI ( —t;E)= g pe '"''cs.„(k)cb.„(k)

&&5(E—E„(k)), (3.6)

X5{E—E,(k)) .

Expressions (3.6) and (3.7) can be calculated by
standaId methods of lntcgI'ation ovcI thc Brillouin
zone once the band structure is known. As we

C. The screened interaction

There remains to calculate the three types of
matrix elements (3.3) entering Eqs. (3.1) and (3.2).
The linear tetrahedron method, which we have
used to calculate the Green's functions, cannot be
adopted to perform the q integration in Eq. (3.3)
because it is quite costly to generate the matrix
8"(q;E) over a fine mesh of points in the Bril-
louin zone as required by that method. The special
points method, on the other hand, cannot be ap-
plied either because the matrix elements
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, ~, (q;E) are not smooth functions of qii' jj
when o =I =b or cr =r=a, behaving like

~ q ~

about q =—0. This behavior can be checked by re-
calling the limit of X(q, q;E) as q —+0. ' To in-

tegrate over the Brillouin zone functions with these
types of singularities and yet keep the number of
mesh points rather limited, the special directions
method by Bansil seems thus to provide the most
su1tablc pI'occdUrc. According to th1s method,
when a function has a weak angular dependence
around the center of the Brillouin zone even
though 1t might bc s1ngUlal thc1c to R good dcglcc
of approximation one can evaluate its integral over
thc Brillouin zone by calculat1ng only onc-
dimensional integrals over an optimally chosen set
of directions determined by the condition that suit-
able linear combinations of cubic harmonics (up to
a given order) vanish on that set. In our calcula-
tion we have taken the minimal set which consists
simply of the line

(k„ky, k, )

(0.83539,0.40747,0.25714)g (0 & g &1)

(3.8)

in the irreducible wedge of the Brillouin zone, and

of all the other lines related to this one by cubic
symmetry. This minimal set takes explicitly into
account the angular variation carried by the totally
symmetric cubic harmonics up to I =6. %c have
then selected eleven equally spaced poi.nts along the
line {3.8), including the extrema at the center
{(=0)and on the boundary (/=1) of the Brillouin
zone.

In spite of the considerable reduction in the
QUQ1bcr of q po1nts where thc matrix elements
II'o,.~, ,o,~j(q'E) need «bc gen«ated by using the

special directions method, the sum over the star of
any given mesh point along the special line (3.8)
was still prohibitively time-consuming. %e were
thus urged to fully exploit the transformation pro-
perties of the matrix elements 8"p ., o, (q;E) as

q is replaced by 8q, 8 being an operation belong-
ing to the cubic group OI, . These properties,
which are altogether nontrivial as they involve
complex q dependent phase factors, can be ob-
tained from the knowledge of the symmetry pro-
pcrtlcs of thc polarlzatlon IBRtflx

X(q+G, q+O';E) and of the transformation law
of the local orbitals under the operations of the
crystal space-group. The effort is, however, largely

rewarded by the gain in computing time which is
reduced by about a factor of 10.

The local orbitals q& (r) we used in our calcula-
tion were expressed as linear combinations of
GRusslRll fuIlc'tloIls; tllc cocfflclcnts of tllc cxpRII-
s10Q Rnd thc cxponcnts of thc Cyauss1ans wc1c
determined in Ref. 30 by optimizing the overall
agreement between the dipole and current forms of
the optical response within the RPA approxima-
tion without local-field effects. The justification
foI' this cntc110Q 1s also R pragmatic onc 1Q that
two-particle cxc1tRtlons Rrc foUQd 1Q qURnt1tat1vc
agreement with a variety of experin1ental facts."
We remark that pairs of these orbitals pointing
along different bonds or centered at different lat-
tice sites are not exactly orthogonal as they should
be in principle, the larger overlap integrals being of
the order of 0.1. We have remedied this shortcom-
ing when strictly necessary (as, for instance, to
avoid divergencies) by forcing the overlap integrals
to be identically zero, but wc have not bothered
about thc not-exact orthogonality otherwise. In
particular, tbc overlap matrix which should be
present on the right-hand side of the eigenvalue
equation (2.16) has been set equal to the identity
matr1X.

We found it sufficient to extend the lattice vec-
tors 1 in the generalized form factors (2.26) up to
the first-nearest neighbors while the pair of indices
v and p refers either to the same bond or to adja-
cent bonds. In addition, the indices (v, v') and
(p,p ) tllat label tllc sclccIllllg lllatrlx 5(q;E) 111

Eq. (2.25) were further restricted to represent bond-

1ng Rnd antibonding ofb1tRls, respectively, thereby
reducing the dimensionality of that matrix to
28&&28. However, one may verify that this limited
labcllng 1s exact. only W1thln thc RPA Rppmxlma-
tlon whclcRs 1t holds approximately wlthln thc
TDSHF RppI'ox1IIlRtlon slncc thc cxchangc IDRtr1x
(2.30) does not bear the same symmetry properties
as the Coulomb matrix (2.29) under the inter-
change of v with p.

The Coulomb matrix (2.29) was calculated at the
choscll q polIlts alollg tllc spcclal llllc (3.8) fl'onl lts
definition 1Q terms of thc rRpldly convcI'gent sUm
ovcI' thc I'cclprocal 1Rttlcc vcctol's G rather than of
1ts slowly convcrgcnt Fouricr cxpI'css10Q. Thc ex-
change matrix (2.30), on the other hand, can be
calculated fron1 1ts dcf1nitlon 1Q tcI'ms of R Fouricr
tI'RnsfOIIIl by retaining only thc tcrIIl w1th IIi=0
owing to the localization of the local orbitals. The
resulting expression is then q independent. Mox'c-
over, we found it very important to take proper
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care of the screened potential u, (r —r ') in the ex-
change matrix. We have approximated u, ( r —r ')
by the phenomenological form given by Srimva-
san that we have found, on the whole, to be a
reasonable spherical approximation to the full
linear response screening of a point impurity in di-
RIDond.

The RPA irreducible polarizability X(q;E) was
calculated in Ref. 30 over the whole optical range

but at q =-0 only. Extending that calculation now
at the chosen q points along the special bne re-
quires a considerable effort which we have thought
possible to avoid by arguing that the q dependence
of the matrix N( q;E) may be regarded as being
rather weak. To substantiate this argument, we
have calculated the RPA static dielectric function
without local-field effects along the special line
(3.8) from the expression

c(q;E=O)=1——— g g A-I„„(q)X-Iu(q)
1', 1

1 vp, 1 'v'p, '
„„ I,~„,(q =0;E =0)A'7,~„.(q), (3.9)

I I

0 0.2 0.4 0.6 0.8 I.O

I Imax

FIG. 2. Comparison of the RPA e(q;E =0) (aver-

aged over the star of q along the special line) calculated

with a q-independent N matrix (+ ) with the (spherical)
Penn's interpolation formula (0).

that is, by taking the matrix X(q;E =0) at q =0
and letting the q dependence be carried only by the
generalized form factors. To reduce the effect of
anisotropy, Eq. (3.9) was then averaged over the
star of the special line and the result was compared
with Penn's interpolation formula ' properly nor-

malized to the value 4.8 of the expression (3.9) at

q =0. The rather good agreement between the two
funct1ons Rs shown 1n Fig. 2, 1s a stIong 1ndlcRtlon

that the q dependence of the E matrix may indeed

be neglected without making too serious errors.
This Rpprox1IDat1on IDlght gct wolsc Rt nonzcro
values of the frequency, expecially when one is

after q dependent features. Nevertheless, we re-

gard it as sufficient for our ultimate purpose of
calculating the matrix elements (2.33) since they

involve additional averaging over the Brillouin
zone.

We discuss now the energy-dependence of the
matrix elements (3.3) of the screened interaction.
We first note that the overall shape of different

matrix elements is expected to be quite similar
since it is controlled by the screening matrix

S(q;E) which is common to all of them. The
upper limit of the energy integration in Eqs. (3.1)

and (3.2) is thus determined by the common range
of these matrix elements and has to be set far
enough to exhaust the main features of the inverse
dielectric matrix, namely, the electron-hole contin-
UUID Rnd thc plasma Icsonancc. Thc experimental
value of thc plasma rcsonRncc 1n dla1Tlond 1s Rt

about 33.3 CV. This value has to be compared
with the electron gas value of 31.3 eV obtained
with an average electronic density of eight elec
trons per unit cell, the upward shift being attribut-
ed to the interaction of the plasma resonance with

thc electron-hole cont1nuU1Tl at its lower cncI'gy

s1dc. Thc theoretical pos1t1on of thc plasma reso-
nance at q =0 could be obtained by first calculat-

ing the optical constants eI(E) and cI(E) from Eq.
(2.25) with 6=0'=0 in the q —+0 limit, and by
tllc11 locat111g tllc zclo of E(Et) III 'tllc I'cg1011 where

e2(E) is small. However, the Xa band structure
that we have taken as input to our calculation
yields a joint density of states for the valence to
conduction bands transitions that terminates al-

ready at 34 CV, thereby shifting further the zero of
eI(E) to about 38 eV and leadIng to a delta func-
tion profile for the plasma resonance. This
shortcoming originRtcs from thc ovcrshr1nk1ng of
both the gap and the valence bandwidth which is
common to thc local Rpprox1mRt1ons of cxchangc
and Correlations, ' RS wC Shall d1SCUSS 1n thC nCXt

section. These circumstances„however, are favor-
able to extract the contribution of the electron-hole
continuum to the sum rule for —Im[c' '(E)j
which was found to be of about 10%. (In me-

tals„on thc other hand, thc plRSIIlon pole alone ex-

hausts the sum rule for small q.) In fact, by sum-

ming numerically over the electron-hole continuum

and including properly the strength of the plasmon
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FIG. 3. Energy dependence of the main matrix ele-
ment of the induced part of the dynamically screened
potential between two pairs of bonding orbitals centered
at the same site and pointing along the same bond

[1,1,1].

delta function, the sum rule for —. Im[e '(E)]
came out correctly to have the same value, to
within l%%uo, of the sum rule for e2(E).

To include the delta function numerically
without modifying the bulk of our input data, we
have simply extended the last nonzero values of the
matrix elements E(q;E) up to a maximum energy
of 40.5 eV, value which has proven sufficient for
the calculation of the energy bands of diamond.
Owing to the resulting numerical inaccuracy, the
sum rule for —Im[e '(q, q;E)] calculated at the
eleven mesh points along the special line lagged
behind the corresponding sum rule for ez( q, q;E)
on the average by about 10%. Besides, the latter
sum rule did not maintain the expected constant
theoretical value at different q but it was found to
be monotonically decreasing for increasing

~ q ~,
reducing at the boundary of the Brillouin zone to
about half its value at the center. This fact is an
indication that transitions to higher conduction
bands should be included in order to fulfill the
Thomas-Reich-Kuhn sum rule at finite q. In
practice, however, this inclusion is not essential for
the calculation of the matrix elements (3.1) and
(3.2) because the weight function there behaves like
E' ' for large E' in contrast to the weight func-
tion in the sum rule which is E'. In the next sec-
tion we shall make an estimate of how the improp-
er inclusion of the plasma resonance could influ-
ence the lower portion of the valence bands.

In Figs. 3 and 4 we have reported as functions
of the energy the main matrix elements (3.3) for
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FIG. 4. As in Fig. 3 for two pairs of bonding-
antibonding orbitals.

the two cases bb bb and ba-ba enterin-g Eq. (3.1) in
the order. Note that the first is about an order of
magnitude larger than the second owing to the fact
that, as

~
q+6

~

~0, the generalized form factors
(2.26) have a finite limit in the first case but not in
the second. This remark implies, in particular,
that the approximation of retaining only the
m=0 term in the calculation of the matrix ele-
ments (2.29) of the Coulomb potential, as it has
been done to obtain the inverse dielectric function
directly in real space, would lead to self-energy
corrections that are too small and even of the
wrong sign.

As we have previously discussed, the energy
dependence of other matrix elements (3.3) is quite
similar to those reported in Figs. 3 and 4. On the
contrary, the matrix elements G, ( t;E) of the

J
Green's function show a rather different energy
dependence for different values of the indices
(i,j, t ) because of the presence of the energy delta
function in thei~ definition [cf. Eqs. (3.6) and
(3.7)]. Specifically, these matrix elements show an
oscillatory behavior as function of the energy
which is more pronounced for increasing

~

t
~

. In
fact, it is precisely this oscillatory behavior, togeth-
er with the fact that the matrix elements of the
screened potential are rather energy independent
over most of their range (barring the region about
the plasma resonance) which leads to the short-
range property of the self-energy operator once the
convolution integrals in Eqs. (3.1) and (3.2) are per-
formed. (We have used Simpson's rule with a step
of integration of 0.25 eV.) We have indeed verified
numerically that, on the average, over the whole
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energy spectrum, the matrix elements (3.1) and

(3.2) get progressively smaller (even by several or-

ders of magnitude) as
~

t
~

gets larger.
Once the matrix elements (2.17) and (2.18) have

thus been calculated, the self-consistent non-

Hermitian eigenvalue problem (2.16) was solved by

performing the diagonalization (better, the block

diagonalization in general) at a fine mesh of energy

values (with a step of 0.25 eV) and by looking then

at the local minima of the functions
i
E —E„(k)

~

fof g1vcn wave vector k and band index 6. Thc
numerical subroutine which we have used to calcu-

late the eigenvalues of a general (non-Hermitian)
matrix was tested to work properly in cases where

degeneracies occur because problems related to the

fact that the matrix is not semisimple might show

up there. The resultant band structure is present-

ed in the next section.

25'

EXC——HF

The quasiparticle valence and conduction band

structure of diamond [that is, the real part of the

eigenvalues E„(k) of Eq. (2.16)] is displayed in

Fig. 5 for two symmetry directions. The label

EXC signifies that the full screening matrix (2.27)

including both local-field effects and the electron-

hole attraction has been used to calculate the wave

vector and energy-dependent dielectric matrix.

The Hartree-Pock (HP) band structure by Mauger

and Lannoo is also shown for comparison. The
energy eigenvalues at ihe high-symmetry points

I,X, and I. for the HF and EXC calculations are

reported in columns l and 2 of Table II, respec-

tively. We note the following features.

(i) Self-energy corrections make the valence

bands moving upwards and the conduction bands

PIG. 5. Comparison of the quasiparticle band struc-
tures of diamond calculated within the Hartree-Fock ap-
proximation (from Ref. 47) (dashed-dotted line) and
within the GW approximation with the screening taken
within the TDSHF approximation (full line).

moving downwards on the absolute energy scale,
thereby reducing the amount of energy required to
produce an electron-hole pair. This result matches
the general trends of correlation corrections as ob-

tained, e.g., by the configuration interaction for-
malism. Note, in particular, that the drastic
reduction of the band gap at I from the Hartree-
Pock value (15.0 eV) to the final correlated value

(7.4 CV) results from a combined positive shift of

TABI.E II pand structure of diamond at the high-symmetry points I, +, »d L for the HF, EXC, and RPA calcu-

lations. Values are given in eV relative to the respective top of the valence bands. u and c denote valence and conduc-

tion, respectively.

l U

1"zs

I is

Ip
Ll
X4
Xl

—29.0
0.

15.0
26.0

—17.0
—9.0
15.0

EXC
—25.2

0.

17.6
—14.75
—7.9

7.45

RPA
—26.1

0.
8.25

18.9
—15.25
—8.2

8.3

Xg
L U

L U

L U

I.3

L C

L C

HF
31.0

—23.1'
—17.0
—3.1

19.0
21,0
32.5'

21.35
—19.7
—15.0
—2.8
11.0
12.6
23.3

22.8
—20.75
—15.5
—2.9
11.85
13.75
24.5

'There exists some uncertainty about this value.
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the top of the valence bands by 4.25 eV and a
negative shift of the bottom of the conduction
bands by 3.35 eV, a result which is in agreement
with the general "rule of thumb" that "to larger
effective masses correspond larger self-energy
corrections. "' ' Our value for the optical band

gap is in very good agreement with the experimen-
tal value of 7.3 eV obtained by reflectivity experi-
ments. '

(ii) At any given k vector, the magnitude of the
self-energy corrections increases away from the gap
region. For the valence bands the net result is then
a narrowing of the bandwidth, which again is in

agreement with general trends. ' In particular, the
Hartree-Fock bandwidth (29.0 eV) is reduced to
25.2 eV by our calculation, a value which is rather
close to the experimental value of 24.2+1 eV ob-

tained by x-ray photoemission. On the other
hand, the value given by Brener in his calculation
using the (energy-independent) COHSEX approxi-
mation is 27.2 eV. We will discuss below the
reasons why we indeed expect an energy-
independent approximation for the self-energy to
fail away from the gap. Here we comment that we
have made a pessimistic estimate of how the ap-
proximate numerical inclusion of the plasma reso-

nance, as discussed in Sec. III C might influence
the width of the valence bands, the result being
that it could at most be reduced to a value of 23.6
eV.

(iii) The self-energy corrections show a notice-
able k dependence, being in general more pro-
nounced away from the center of the Brillouin
zone. The indirect absorption edge is found about
at k, =(0.75,0,0)2m/a with magnitude 5.70 eV, in

close agreement with the experimental values.
Figure 6 compares the quasiparticle band struc-

ture EXC obtained by using the full screening ma-
trix (2.27) that includes the electron-hole attraction,
with its RPA simplified form obtained by setting
V"=0 in Eq. (2.27). The magnitude of the self-

energy corrections in the RPA approximation are
manifestly smaller than the corresponding values
in the TDSHF approximation; in particular, the
RPA bandwidth and gap are increased by about 1

eV compared to the full calculation. (See also
column 3 of Table II.) This result indicates that
there exists a need to be as accurate as possible in
the calculation of the two-particle Green's function
(the inverse dielectric matrix being obtained from a
degenerate form of it) to get a satisfactory descrip-
tion of the single-particle spectrum. In addition,
this result provides an a posteriori answer to the

30—
—EXC

~ RPA

20

II ~ ~

„1 ~
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10 .3

0
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FIG. 6. Comparison of the quasiparticle band struc-
tures of diamond calculated within the G% approxima-
tion with the screening taken within the TDSHF ap-
proximation (full line) and within the RPA approxima-
tion (dotted hne).

question of the internal consistency of the theory
that we have left open in Sec. II A.

It is important to emphasize at this point that
our RPA and TDSHF dielectric matrices do not
contain any adjustable parameter to be fitted to ex-
perimental data such as the long wavelength static
dielectric constant e0. The ab initio values we get
for e0 are 4.25 and 6.10, respectively, thereby ful-
filling the other "rule of thumb" which has em-

erged from model calculations' that "self-energy
corrections increase with eo.

" However, we think
that a warning should be made against the tempta-
tion of utilizing an RPA functional form of the
dielectric matrix with an empirically adjusted eo (as
in the Penn's model) on the basis of the following
considerations. Since the self-energy operator is a
short-range kernel, the dielectric matrix needs to be
correctly described for relatively large values of q
and G where it is known that exchange and corre-
lations become most important. ' In fact, this was
precisely the context where in the literature' was
already felt the need of using dielectric functions
improved over the RPA approximation to describe
properly the exchange-correlation hole about each
electron.

Note from Figs. 5 and 6 that, on the absolute
energy scale, the top of the valence bands is shifted
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from the Hartree-Pock value of —4.0 CV to 0.25
eV in the full EXC calculation and to —0.15 CV in

the RPA calculation. These values correspond to
the position of an ideal vacuum level whose posi-
tion is not affected by the presence of a physical
surface. Therefore, if one could calculate with suf-
ficient accuracy the shift of the bulk vacuum level

caused by the plesence of a physical surface, such
as the surface dipole barrier, then it would be also
possible to state, for instance, whether or not the
material has a negative electron affinity. Since
typical estimates of surface dipole potential in me-

tals range about from 2 eV up to 5 eV, one
would be tempted to conclude that diamond has a
negative electron affinity with its vacuum level ly-

ing within the fundamental gap below the
conduction-band minimum, even though this kind

of behavior would be rather unusual for a pure co-
valent solid. Unfortunately, it is not easy to ex-

tend these estimates to nonmetals, and thus no
convincing theoretical claim can be advanced.
However, in spite of our circumspection, a recent
photoemission experiment has clearly shown that
indeed diamond has a negative electron affinity
with a large quantum efficiency.

%e focus now on the question raised in the IQ-

troduction about the relative weight of the cou-

pling to the propagation of a quasiparticle of the
two different kinds of elementary excitations con-
tributing to the dynalnical screening of a scalar
longitudinal perturbation in the crystal (namely,
electron-hole pairs and plasmons). To this end, we
have performed an additional calculation where the
plasmon contribution to the self-energy is cut off
by restricting the energy integration in Eq. (2.33)

up to 32.0 eV only, that is, before the onset of the
plasma resonance. The results are that (to within

our numerical error that we have estimated to be

about +0.2 eV) the optical gap is found to be prac-
tically unchanged whereas the valence bandwidth
has increased to 26A5 eV (cf. the entries labeled

EH in Table III). We may thus argue that the
propcftlcs of tllc quaslpRrtlclcs 111 tllc vlcllllty of
the top of the valence and the bottom of the con-
duction bands are basically determined by the cou-

pling to the electron-hole excitations, whereas

predominantly nonlocal plasmon-type correlations
introduce a shrinking of about 1.25 eV in the
valence bandwidth. Since the electron-hole correla-
tion effects are predominantly of short-range char-
acter, we might conclude that correlation in the vi-

cinity of the band gap can bc accounted for by a
"local" description (that is, depending only on the

TABLE III. Comparison of the experimental band

gap and valence bandwidth of diamond with values
from different calculations (in eV).

Eg,p 7.3' 15.0 7.4 8.25 7.4 7.2
6E„g 24.2 29.0 25.2 26.1 26.45 28.85

+1b

6.3
20.4

Prom Ref. 9.
'Prom Ref. 47.
"This work.
'Prom Ref. 6.

local environment and thereby not properly includ-

ing long-range correlation effects such as
plasmons) along the lines of the work of Sham and
Kohn and others. "' ' Recent work on metalhc
surfaces has indeed shown that a local density
approximation correctly describes the large q por-
tion of a wave-vector decomposition of the total
ground-state exchange-correlation energy of an
electron gas whereas it fails badly at small q, but
this failure in the end is rather unimportant be-
callsc of pllasc space consldclatlolls. Oul Rlgll-

ment, however, does loot necessarily imply that the
local density approximation (LDA) in its formula-
tion for the ground state ' can correctly describe
low-lying excited states of the crystal. In fact, pre-
vious LDA calculations, which in addition made
use of a local exchange-correlation operator, have

g1veQ values fof the d1rect band gap 1Q diamond of
6.3 eV (Ref. 6) and 5.8 CV (Ref. 7) which are too
small compared with the experimental value (7.3
eV). The same situation occurs for Si where a
LDA calculation gives a direct gap of 2.5 eV (Ref.
10) versus the experimental 3.4 CV. We believe,

however, that such an underestimate of the values

of the band gapa occuring in the LDA approxima-
tion is mainly due to the use of a local (and

energy-independent) exchange-correlation operator
which overestimates the effects of screening over

and above the Hartree-Pock approximation, rather
than to the inadequacy of a "local" description of
the nonlocal self-energy operator itself. The fact
that approximations using local operators produce
band gaps that are systematically smaller than ex-

periment appears indeed to be a general trend. '8'65

A similar situation occurs also for the bandwidths.

For diamond, in particular, LDA calculations us-

ing local exchange-correlation operators have given
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values for the valence bandwidth of 20.4 eV (Ref.
6) and 20.6 eV (Ref. 7) compared to the experimen-
tal (XPS) value 24.2+ I eV, but again this appears
to be a general trend. ' As a matter of fact, the
need of using a nonlocal exchange-correlation po-
tential has repeatedly been invoked in the past.

The need for an energy-dependent potential has
also been realized. The same need results from
our calculation, too. In fact, as it can be seen from

Figs. 3 and 4, chopping out the plasmon-pole con-
tribution is in effect equivalent to approximating
the screened interaction (and, therefore, the self-

energy itself) by an almost energy-independent

quantity. To get closer to a truly energy-
independent approximation for the self-energy, we
have mimicked the often used COHSEX approxi-
mation ' by taking the value of the matrix ele-

ments (3.3) at E =0 and then extending it
throughout the chosen range of integration (i.e., up
to 40.5 eV). (Notice, however, that in this way we
do not evaluate the self-energy corrections exactly
within the COHSEX approximation which derives
from an analytical rather than a numerical approx-
imation. ) The energy-gap is found in rather good
agreement (7.2 eV) with our previous results
whereas the valence bandwidth now comes out to
be essentially unrenormalized (28.85 eV) with
respect to the Hartree-Fock value (cf. Table III).
This result suggests that an energy-independent ap-
proximation works well at energies about the gap,
as it is implied in the derivation of the COHSEX
approximation itself and as it has already been
remarked explicitly. As soon as we leave the gap
region moving down through the valence bands,
however, the energy-dependence of the self-energy
becomes progressively important, corresponding to
the increasing weight of the plasma resonance. We
have shown this effect to be conspicuous for a ma-
terial, such as diamond, with a wide valence band-
width, but we expect the argument to hold more

generally for other wide-band materials, such as Si.
Our conclusion matches the finding of a nonlocal
energy-dependent pseudopotential calculation for
Si 69

Finally, we comment on the decay of quasiholes
in diamond. Figures 7 and 8 show the imaginary
versus the real part of the quasiparticle levels

E„(k) with a hole in the valence bands along two
symmetry directions and within the EXC and
RPA approximations, respectively. The
corresponding lifetime of these approximate
(N —I) particle excited states is given by
I2im[E„(k)]j '. Since the mechanism respon-
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sible for the decay of the quasiholes is the
Coulomb interaction among the particles, we can
call the radiationless transition to a final state with
more than one hole in the valence bands an intra-
band Auger process that can be single, double, etc.
We notice from Figs. 7 and 8 that the decay rate
vanishes (to within our numerical error) below a
threshold. In fact, from the elementary treatment
of the Auger transitions we would expect this
threshold to be at Eq„,—Eg,„=—7.15 eV. How-

ever, since the first and most prominent broad
peak of the valence density of states has its half-
maximum at about —1.5 eV, the decay rate is ex-

pected to become noticeable starting from about
—10.5 eV. This expectation is indeed confirmed

by our (EXC) calculation which also shows a rath-
er sharp rise beyond the threshold. Direct com-
parison of our results with the experimental data
(obtained, e.g. , by photoemission experiments) does
not seem possible mainly because of uncertainties
in extracting the relevant experimental informa-
tion. Nevertheless, the values we obtain for the de-

cay rate are in accordance with empirical broaden-
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FIG. 8. As in Fig. 7 within the RPA approximation
(cf. Fig. 6 for the real part).

FIG. 7. Imaginary part of the quasihole levels in dia-
mond along two different symmetry directions and
within the EXC approximation (cf. Fig. 5 for the real
part). The vertical bar indicates the numerical uncer-
tainty.
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ing factors which are necessary to relate the XPS
valence-band spectra to theoretical line shapes of
the electron density of states. '

V. CONCLUDING REMARKS

We have presented an investigation on the
single-particle-like excitations in diamond where
we have allowed the exchange-correlation potential
to be nonlocal and energy-dependent. Emphasis
has been placed on describing the dielectric proper-
ties of the medium as accurately as possible. The
use of a local orbital basis has proven essential for
this combined purpose. By studying the relative
contribution of the electron-hole excitations and of
the plasmon resonance to the propagation of a
(quasi)particle throughout the medium, we have
drawn conclusions on the validity of the local-
density and of the energy-independent approxima-
tions, at least in the neighborhood of the gap (an

energy region which plays a primary role in many
applications). Direct extension of our method of
calculation to other materials like Si appears, in
principle, possible. However, here the starting
point for the inclusion of dynamical correlation ef-
fects can no longer be the Hartree-Fock approxi-
mation, because of lack of Hartree-Pock calcula-
tions for heavier materials. Investigations along
these lines, in particular a careful adding of corre-
lation corrections to band eigenvalues obtained,
e.g., by local-density methods, are presently under
way.
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