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Recent experimental ev'idence has established that the scattering of phonons by disloca-
tions at low temperatures in [110]LiF rods is primarily a dynamic rather than a static
process, but calculations of the effects of vibrating dislocations have failed to provide
quantitative agreement with experimental observations of the magnitudes and temperature
dependence of the effect. We have performed a calculation which includes many factors
previously neglected and show that the effects of resonance angle scattering, phonon
focusing, and the resolved shear stress factor have an important influence on the effect of
vibrating dislocations on thermal conductivity. However, the detailed calculation shows
that in the case of [110]LiF rods the inclusion of these previously neglected factors still

does not resolve the discrepancies observed and it is concluded that independently vibrat-

ing dislocations are not the important phonon scatterers above 0.1 K in LiF. It is shown,
however, that the experimental data may be fit by assuming reasonable densities and dis-
tributions of "optically" vibrating dislocation dipoles.

Recent experimental studies by Anderson and
co-workers' have established that the increase in
thermal resistivity in LiF at low temperature after
plastic deformation is primarily due to dynamic,
rather than static, scattering of phonons by dislo-
cations. However, up to now it has not been possi-
ble to obtain quantitative agreement between the
observ-d effect and calculations based on either
static or dynamic models. ' We present here the
results of a detailed calculation based on the dislo-
cation vibrating string model, which show that
independently vibrating dislocations are not the im-
portant phonon scatterers above 0.1 K in LiF, but
the experimental data may be fit by assuming rea-
sonable densities of "optically" vibrating disloca-
tion dipoles. As this problem has been a center of
interest and controversy for the past 25 years, we
will first brieAy review the historical background,
and further explain the motivation for this investi-

gation.

I. HISTORICAL BACKGROUND

Though they made no reference to the effect of
dislocations on thermal conductivity, Eshelby
(1949) and Nabarro (1951) made the earliest im-

portant contributions by discussing the two

mechanisms by which sound waves or phonons are
scattered by dislocations. Eshelby proposed that if
the sound wave induces the dislocation to vibrate,
the incident energy will be dissipated as the dislo-
cation radiates elastic waves. Taking into con-
sideration the wavelength dependence of the effec-
tive mass of the dislocation, Nabarro showed that
the scattering cross section for this process (reradi-
ation scattering) increases with the wavelength A,,
though not as fast as linearly. Even if the disloca-
tion does not vibrate, phonons will be scattered due
to the anharmonicity of the dislocation strain field.
Nabarro suggested that the scattering cross section
for this process (static strain-field scattering) is in-

versely proportional to k.
The first detailed treatment of the effects of

dislocations on thermal conductivity was given by
Klemens' in 1955. He considered static strain-
field scattering and predicted that the effect would
be small even in deformed specimens and would
have a temperature dependence of T . (If the cross
section is proportional to A;, the thermal conduc-
tivity" is proportional to T +' at low tempera-
tures, and, as Nabarro had suggested, z= —1 for
this process. )

In 1958, using the reradiation scattering cross
section calculated by Nabarro, Granato' found
that the dynamic scattering by vibrating disloca-
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tions should be 3 orders of magnitude greater than
Klemens's' calculated value of the static scattering

at a temperature of 1% of' the Debye temperature.
Approximating the wavelength dependence of the
cross section as A,', Granato also predicted that
the temperature dependence of the thermal conduc-

tivity would be T
Shortly thereafter Sproull, Moss, and %ein-

stock made the first quantitative comparison be-

tween thermal resistivity and dislocation density in

a nonmetal. For LiF deformed by compression

they found the thermal conductivity was approxi-
mately proportional to T between 2 and 8 K, as

predicted for static strain-field scattering. Howev-

er the size of the effect was 3 orders of magnitude

greater than originally predicted by Klemens's, '

and 2 orders of magnitude greater than found in
Klemens's 1958 calculation. '

The measurements of Sproull, Moss, and Wein-

stock' stimulated a large number of theoretical ef-
forts' to predict a larger magnitude for the

static strain-field scattering. However, as pointed

out by Granato, a 2 order of magnitude increase

in the strain-field-scattering rate would also imply

a corresponding 2 order of magnitude increase in

the viscous dislocation damping constant, so that

the calculated value would be much greater than

the measured value.
The reradiation scattering mechanism was ig-

nored for the most part for 10 years after
Granato's 1958 paper,

' although in 1962 Ishioka

and Suzuki ' reaffirmed his conclusion that

dynamic scattering is much greater than static

scattering. In 1968 Ninomiya, using a more so-

phisticated formalism, independently calculated the

reradiation cross section for the case of phonons

incident obliquely onto dislocations. The new

feature which this treatment predicts (beyond the

normal incidence treatment of Nabarro and

Granato' ) is that at a certain critical angle of in-

cidence the scattering is much greater than at other

angles. However, Ninomiya's expressions are very

complicated so that the result which has been

used in fitting experimental data is that for the

case of angles of incidence far from the critical

angle —which does not differ significantly from the

earlier Nabarro-Granato result.
Actually Nikolayev (1964) treated, prior to Ni-

nomiya, the case of a periodic stress wave incident

obliquely onto pinned dislocations in an isotropic
solid in an extension of the Granato-Liicke vibrat-

ing string model. He did not discuss the reso-

nance angle effect (nor did he explicitly consider

«radiation scattering) but an elaboration of his
work makes it possible to describe this effect in a
simple way as discussed in Sec. II.

The effect of pinning on the reradiation scatter-
ing rate was first explicitly considered in 1970 by
Garber and Granato. They showed that the
scattering due to vibrating pinned dislocations ex-
hibits a resonance peak which rises above the
asymptotic value of the scattering predicted for un-

pinned dislocations, as the resonance is under-
damped. At low frequencies the scattering is
predicted to decrease to zero in contrast to the
divergent behavior predicted for unpinned disloca-
tions. This latter feature was incorporated artifi-
cially in 1972 into the Ninomiya formalism by
Suzuki and Suzuki, who cut off the scattering at
low frequencies. This, however, underestimates the
resonance scattering at the peak.

In addition to the theoretical work, further ther
mal conductivity measurements were made for a
variety of deformed alkali halides. ' ' ' ' lt
was found that the temperature dependence at low

temperature was T with x ranging from less than
2 to greater than 3. This temperature dependence
does not clearly favor either static or dynamic.
scattering.

In 1972 Suzuki and Suzuki presented experi-
mental evidence suggesting that vibrating disloca-
tions were the important source of scattering at
low temperatures. After annealing deformed LiF
samples at 300'C for 10 min, they observed that
the recovery of the thermal conductivity was

greater at lower temperature where the proportion
of low-frequency phonons is greater. This is con-
sistent with their interpretation that the disloca-
tions are progressively pinned by point defects dur-

ing annealing. However, annealing may also cause
dislocations to annihilate so that the strain-field
scattering would also be expected to decrease.

More direct evidence that pinned vibrating dislo-
cations are the important source of scattering was

provided in 1972 by Anderson and Malinowski. '

They observed that by y irradiating deformed Lip,
the thermal conductivity progressively increased to
the undeformed-state value at least for temperature
below 1 K. Static scattering by dislocations should
be unaffected by irradiation, while dynamic
scattering should be affected first at the lowest fre-
quencies (i.e., at the lowest temperatures) and pro-
gressively higher with increasing does of irradia-

tion, as was observed by Anderson and Mali-
nowski.

Disturbing discrepancies remained, however.
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The average dislocation lengths deduced from ther-

mal conductivity measurements in freshly de-

formed LiF (Refs. 1 and 2) were much less than
those determined ultrasonically. In addition, the
observed effect' was broader than expectai,
remaining surprisingly large above 2 K. The
status of the problem has recently been reviewed

by Anderson, who concludes that low-temperature
thermal conductivity measurements in deformed
LiF are inconsistent with static scattering models
but are qualitatively consistent with dynamic
scattering models. He observed, though, that it
has not been possible to obtain quantitative agree-
ment between experimental data and the calculated
effects of reradiation scattering.

However, the qualitative evidence in favor of
dominant scattering by vibrating pinned disloca-
tions is so impressive that it raises the question of
whether factors previously neglected could account
for the discrepancy. It is conceivable that effects
such as phonon focusing, the Ninomiya resonance
angle effect, and the resolved shear stress factors of
the phonons mainly responsible for thermal con-
ductivity could conspire together to produce the
observed magnitude and temperature dependence
of the effect on the thermal conductivity. Our cal-
culation, outlined in Secs. II and III, includes the
following:

(1) the frequency-dependent dislocation effective
mass and tension,

(2) the anisotropy of the tension,
(3) the Ninomiya angle resonance effect,
(4) the effect of phonon focusing on each pho-

non,
(5) the difference in scattering between edge and

screw dislocations,
(6} the finite dislocation length,
(7) the rod length-to-width ratio,
(8) the effect of elastic constants of various ma-

terials,
(9) the resolved shear stress factor for each in-

cident phonon,
(10) the wavelength dependence of the reradia-

tion scattering,
(11) the calculation for each phonon of boundary

scattering plus dislocation scattering,
(12) the dislocation density, and

(13) the rod orientation.

II. THE VIBRATING STRING MODEL
FOR WAVES INCIDENT OBLIQUELY

ONTO DISLOCATIONS

The calculation on the effect of vibrating dislo-
cations on thermal conductivity divides naturally
into two parts. In this section we will consider the
frequency dependence of the dislocation scattering
rate using parameters appropriate to low-tempera-
ture thermal conductivity in alkali halides. In Sec.
III we will consider the combined effects of dislo-
cation scattering and boundary scattering ' on
thermal conductivity in the presence of phonon
focusing.

A. The unpinned dislocation

Because pinning effects were observed by Ander-
son and co-workers, ' a realistic treatment must
consider the case of pinned dislocations. However,
it is useful to consider the case of unpinned dislo-

cations first, as the calculation is easy and the re-
sults give simple analytic expressions which are the
high-frequency asymptotes for those of the more
complicated pinned-dislocation case.

Consider a periodic stress wave ozcos(k. r cot}—
incident obliquely on an unpinned dislocation lying
along the x direction as in Fig. 1. Because the
wave is incident obliquely, it hits one end of the
dislocation first so that a traveling wave pro-
pagates along the dislocation with wavelength
A, =A&/sing. If O.

o is the shear stress component of
0~ resolved in the x-y glide plane in the direction
of the Burgers vector b, the glide force per unit
length on the dislocation is F=boocos(kx cot), —
where k=k& sing. The position of the dislocation
in the glide plane is y (x). Treating the dislocation
as a damped oscillating string with effective mass
A, damping constant 8, and line tension C, the
equation of motion is

Effects (2), (3), (4), (7), and (9) have not, to our
knowledge, been included before in a calculation of
the effect of vibrating dislocations on lattice ther-
mal conductivity.

FIG. 1. The excitation of traveling waves along an
unpinned dislocation by obliquely incident phonons.
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A iB —C =ho pcos(kx tot—) .dy dy dy
dt d& dx

Substitution of the trial solution

y=y; cos(kx cot)—+ yp sin(kx cot) y—ields

( At—o +Ck )bop

( A 2i( k2)2iB2 2

QAGb s

cpA[(R —1) is ]
(4)

where s=B/Atp and
R=(C/A)'r k/t=p( C/A)'~ (sing/v). The Ni-

nomiya resonance angle condition corresponds to
R = 1, while the head-on case treated by Granato'
corresponds to R=0. This simple expression for
r„' describes the scattering rate for arbitrary an-

gles of incidence and damping.

B. The pinned dislocation

The effect of pinning points at x=O and x=1. is
to add the boundary conditions y (0)=y (L)=0.
The Fourier series solution is of the form

y = g A~ sink~x costot +B~sink~ x sinajt,
m=1

—Bcobo p

(A 2i( k2)2iB2 2

The energy lost by the incident wave may be ex-
pressed in terms of the logarithmic decrement
6=68'/2$' where 68' is the work done on the
dislocation per cycle, W=o~/2G is the energy
stored per cycle, and G is the appropriate elastic
constant. The dislocation strain is ed ——Aby, where
A is the dislocation density. Then

b, W= I crdded J trpcos(kx——cot)Ab d—y,
so that the decrement for unpinned dislocations is

mOAGb Bco

( Ato iCk —) iB to

where the resolved shear stress orientation factor is
&=(op/os) and takes account of the fact that
only the shear stress component on the slip system
moves the dislocation. ' The decrement describes
how quickly the amplitude of a wave decays. The
scattering rate describes the rate at which the in-
cident wave loses its energy to the dislocations and
is given by

where k =me. /1. . The decrement is

b(x) = f os(x)des(x),
1

28
L

b xdx.
p

The result is b = g &
b~, where

4QAGb I.
mC

l

m(m —Ru )

2

su 2[1—( —1) cosrrRu ]X
[(1—u /m ) i(su /m ) ]

In Eq. (8), u is the normalized frequency cplcp~,

and co~ is the mth normal mode resonant frequen-

cy given by co~ =me/l(C/A. )'r Nikol. ayev gives
a similar result.

C. Parameters of the model

1. Effective mass A

The effective mass is A =(p'b /4m)lng, where
p'=p (the density of the solid) for a screw disloca-
tion and p'=p[1+ (c,/ct) ] for an edge dislocation
where c, and cl are the transverse and longitudinal
velocities of sound. At low frequencies g is given

by Rp/fp where Rp and rp are the upper and
lower cutoff distances for the dislocation strain
fields so that g - I/~Ah For high .frequencies the
wavelength or frequency dependence of the mass
becomes important and Eshelby gives
g= 1 + cp,„/to, where cp,„may be approximated
by the Debye frequency coD.

2. Line tension C

The line tension is given in terms of the energy
per length of dislocation line bye C=E+ d E/dg,
where P is the angle between b and x. An aniso-

tropic calculation of C for Nacl structure materi-
als may be performed in the same way as by deWit
and Koehler and by Stern and Granato for fcc
materials. In an anisotropic cubic solid, Foreman
has shown that (neglecting the dislocation core)
E=Eb /4mln(Rp/rp). For dislocations on the
(110) planes (the NaC1 structure slip planes) it may

be shown that for screw dislocations

K, =(C~C')'~, while for edge dislocations

E, =aE„where
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2(C»+ C&2)

Ci)(C)) +C12+2C44)

1/2

Huntington, Dickey, and Thomson evaluated K
numerically for intermediate angles in NaC1 and
found the results could be fit by

E=Eo + E&cos2$. Thus C=(yb /4n)ln(RO/ro),
where the maximum value of y is y, =E,(2a —1),
while the minimum value is y, =K, (2—a). At
high frequency, the tension, like the mass, depends
on the frequency and again we assume g= 1/v Ab
or 1+boa/to, whichever is less.

3. Damping constant 8

At low temperatures in insulators at thermal phonon frequencies, the damping constant is due almost en-

tirely to the reradiation damping mechanism. Eshelby calculated the rate of radiation from a dislocation
vibrating as a rigid rod in an isotropic solid to yield the results B,= (pb co/8) and B,=B,[1 + (c, /ct) ] for
screw and edge dislocations, respectively. Because we are considering the general case of oblique incidence,
giving rise to spatially sinusoidal dislocation vibration, it is more appropriate to use the results of the calcu-
lation of Laub and Eshelby for the rate of radiation from a sinusoidal dislocation. Recalling that the wave

vector is k=(co sinai/v, we may express their k+0 results in terms of the quotient Q(k) =B(k)/B(0) for
screw and edge dislocations:

r sin1—
V2

Q (k)=' 3c, sin ri1—
V

2

4c, sin g+ 'z 2, sing&v/ct
V CI

4sin4g
+ 4, v/ct &sin'g & v let

V
(10)

0, vlc, &sinri

Q, (k)=
v/ct &sins) & vlc,

2sin 'g
, sing & v/c,

v ct(1/c, +I/ct )

(I/ct +sin ri/v )1—
( I/ct +1/c,

0, v/c, &sinri .

Cubic solids do not have a single shear velocity cr
and a single longitudinal velocity c~. %e choose cr
to be the minimum shear velocity (the slow trans-
verse velocity along [110))and ct to be the longitu-
dinal velocity along [001].

The resonance angle condition is fulfilled at R = 1.
In agreement with Ninomiya it is found that the
condition R, = 1 (for edge dislocations) cannot be
fulfilled for sing (1. In addition, 8=1 cannot be
fulfilled for screw dislocations if v is too large (e.g.,
if the phonon is longitudinal).

4. Resonance angle ratio 8 5. Resoived shear stress orientation factor 0

' 1/2
K, (2a —1) sinri

P V
(12)

E,(2—a)
p[1+(c,/ct) ]

1/2
sin'g

(13)

Using the above expressions for C and A we find
for screw and edge dislocations:

(14)

For arbitrary mode waves incident on disloca-
tions in arbitrary slip systems, expressions such as
(3), (4), and (8) may retain their simple form if the
expression for Q is modified. Following the pro-
cedure used by Green and Hinton for fcc metals,
we find for slip systems S in alkali halides:

—Agc'Egk 0
&s= 28'A



GARY A. KNEEZEI. AND A. V. GRANATO

where a is the wave amplitude, A& is the disloca-
tion density on slip system S, and A=+As. The
slip systems and Fq are given in Table I, as well. as

Q for the pure mode [110]phonons. The stored

clastic cncrgy pcr cycle ][s

W = , r—rtej = ——,k a I C„(a l +p m +y n )+2C,~(aplm +ayln+ pymn)

+C44[(am+pl) +(an+yl) +(pn+ym) ] I,

where the wave vector is k =k [lmn] and the po-
larization vector is [aPy].

6. Distribution of dislocations loop length L

Because the pinning points on the dislocations
are expected to be randomly distributed, the decre-
ment (or scattering rate) must be averaged over
loop lengths. The integration in (16) must be
done numerj. cally:

I l exp( I/L)h(l) —dl,

where I. is the average dislocation loop length.

7. Dislocation density A

The most direct measurements of dislocation
density are by electron microscopy and by etch-pit
studies. Johnston and Gilman's classic etch-pit
studies ' in LiF suggested that A-10 e~ for plas-
tic strain e& in the range 10 —10 '. Both elec-
tron microscopy and etch-pit studies lead to esti-

mates of the ratio of edge-to-screw dislocations.
However, many of the etch pits on edge-type sur-

I

faces may be due to debris (dislocation dipoles and
deformation-induced point defects) rather than iso-
lated dislocations. Most edge dislocations appear
to be present as close pairs of opposite sign (dislo-
cation dipoles and higher-order multipoles), while
most screw dislocations are unpaired.

D. Decrement and scattering-rate cnrves

Figure 2 shows the normalized decrement
6/GAL =gb ~ (summed over the first 80 modes)

as well as the individual contribution of the first
mode and the 25th mode assuming 8=0, Q= 1, all

the dislocations are the same length I, and the fre-

quency is low enough that the mass and line ten-
sion are not frequency dependent. The unpinned
dlslocatlon asymptote ls also shown and 1s ap-
proached to within 10 jo by ~/co~ ——30. Figure 3 is
similar except for R = 1 (the Nlnomlya resonance
angle). In the head-on incident case (Fig. 2) it can
be seen that the contribution of the first term alone

h~ is a good approximation to the decrement for
the pinned dislocation as originally observed by
Granato and Lucke. At the fundamental resonant

frequency ro~, the decrement is nearly 2 orders of
magnitude greater than that calculated for the un-

TABLE I. Slip systems and I's for NaC1 structure alkali halides and orientation factors
for [110]propagation vector phonons.

Slip system

(110)[1TO]

(110)[110]

(101)[10T]

(101)[101]

(011)[011]

{01T)[011]

{al—Pm )2

{al—Pm)2

(al —yn)

(o,l —yn)

(pm —yn)

(pm —yn)'

AsC'

2A(C) [+C)2+2C44)
AsC'

2A(C1].+C12+2C44 )
AgC'

2A(C)] +C]2+2C44)
AsC'

2A(C] ) +C]2+ 2C44)



25 EFFECT OF INDEPENDENT AND COUPLED VIBRATIONS OF. . . 2857

10

O
10

N
~ ~
0
E
~~ 10'

IO
.I

I

0.3
I I

10

Normalized Frequency m/Ml

25

50
I

100

FIG. 2. The normalized decrement 6/OAL vs the normalized frequency ~/co~ for head-on incidence (R =0).
Shown are the decrement summed over the first 80 normal modes g' 6, as well as the individual contributions of the
first mode (h~) and the 25th mode (625), and the decrement for an unpinned dislocation 6„.
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FIG. 3. The normalized decrement 5/QAL vs the normalized frequency co/m~ for the Ninomiya resonance angle
(R= 1). Shown are g' 6, b ~, 625, and 6„.
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pinned dislocation because the unpinned disloca-
tion is not at resonance. If the unpinned disloca-
tion is at resonance (the Ninomiya angle resonance)
as in Fig. 3, the effect of pinning is to inhibit the
dislocation from vibrating as freely so that the de-
crement of the pinned dislocation is less than that
of the unpinned dislocation. For the R=1 case it
can also be seen that the first mode contribution is
a good approximation only up to 1.Sco~ and the
major contribution at a given frequency is due to
the mode which is resonant near that frequency.
At frequencies greater than 2'&, the decrement is
much greater for the R= 1 case than for the R =0
case, while at co& the R =0 decrement is slightly
greater, and at low frequencies they are the same.
There is negligible difference at ~ && co~ because
the stress wavelength is large so that the variation
in stress along the dislocation is small regardless of
the angle of incidence. The first mode contribu-
tion is dominant at such low frequencies because
the nearly constant stress primarily excites the
longest wavelength mode.

Figure 4 shows the normalized scattering rate
'/2co~QAI. for the same assumptions as above

(for R =0, 0.8, 1.0, and 1.2) but averaged over the

Koehler distribution of loop lengths. It may be
seen that the averaging smears out the peak struc-
ture, but an enhancement near the maximum with

respect to the unpinned dislocation asymptote
remains for the R@1 curves. The pronounced
peak is due to the undamped character of the reso-
nance. Although the resonance angle enhancement
is greatest at R =1, it is still considerable at R =0.8
and R=1.2.

The curves of Fig. 4 do not include the frequen-

cy dependence of the dislocation mass and tension.
Figure 5 shows the normalized scattering rate in-

cluding this effect for the case coD ——1000co~. It
may be seen in comparison with Fig. 4 that the
high-frequency side of the peak is enhanced for the
R+1 curves. The frequency dependence of the
mass and line tension has no effect on the R = 1

curve at high frequency, as can be seen by rewrit-

ing Eq. (4) as

—1 SQAGQ

pro I [(2/a)(R —1)lng] +g

For the unpinned dislocation at resonance (R =1)
the scattering rate is determined by the damping
alone so that the frequency dependence of the mass
and tension is not important in this limit. For
R@1,however, the enhancement is large at high
frequencies.

For both Figs. 4 and 5 it is assumed that Q= 1,
that is, the wavelength dependence of the reradia-
tion damping constant is neglected. Figure 6
shows for the intermediate R=0.8 case, the nor-
malized scattering rate for Q=0.5, 1, 1.5, 2. The
wavelength dependence of 8 is seen to have a
smaller infiuence than the resonance angle effect
and the frequency dependence of C and A.

To obtain the scattering rate from the normal-
ized scattering-rate curves one must multiply by
2QAco&I. . The effects of A and Q are straightfor-
ward: a larger scattering rate comes from a larger
density of dislocations and/or a larger orientation
factor. The effect of average length is shown in

Fig. 7. The frequency at which maximum scatter-
ing occurs is inversely proportional to I., while the
magnitude of the maximum is proportional to I..

FIG. 4. The normalized scattering rate
'/2'�&QAI. vs the normalized frequency co/~&, aver-

aged over the Koehler distribution of dislocation lengths

for 8=0, 0.8, 1.0, and 1.2. The frequency dependence

of the dislocation mass and tension is neglected.

III. EFFECT OF INDEPENDENTLY VIBRATING
DISLOCATIONS ON THERMAL CONDUCTIVITY

In insulators and superconductors the conduc-
tion of heat is via phonons. " At the lowest tem-
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FIG. 6. The normalized scattering rate vs the nor-
ma1ized frequency for 8=0.8; con ——1000mI', and Q=0.5,
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perature the limit to thermal conductivity is due to
scattering of phonons by the surface of the sam-

ple (boundary scattering) and by lattice defects.

In this section me &vill consider boundary scattering

and reradiation scattering in an anisotropic solid,

explicitly including phonon focusing, and compare

the results to experimental results in I.ip.

A. Boundary scattering-limited thermal conductivity

There are several approaches' ' to the problem
of the effect of phonon focusing on boundary
scattering-limited thermal conductivity, but the one
which may be extended most easily to include rera-
diation scattering is that of McCurdy, Maris, and
Elbaum. In a relaxation-time approximation, the
thermal conductivity per volume is'

3

K= g Jq r~(q)CphVJ(q)
2m

)&cos~gssin8dq d8dg, (18)
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where q is the phonon wave vector having coordi-
nates (q, 8„$) with respect to the rod axis, j is the
polarizat1on index, V is thc gioup vcloc]tty making
an angle 0 with the rod axis, ~ is the reciprocal of
the scattering rate, and

(fico) exp(fico/kT)
(19)

kT [(exp(fico/kT) —1]

The collision free path in a square-cross-section
rod of side B is given by

D 3 [cosg
f

—]sin(I)

sln8S cos fs

AJ(q)=rj(q)VJ(q)= ' ——
stn8s sin q&s

icos(I)s
/

p
f
sings f

(20)

(21)

(22)

The thermal conductivity may be written as K= , Cvf, w—here C is the specific heat, u is the average phase

d 'V/U' asvelocity, and &t is the mean free path. Defining the quantities (u "& and ( V/U

1 1 I Sin8d8~d
4m' v "(8,(II) )

V ) ( V, cos'eg)"(()~, ()g)s(n8d()dg

u 3 )w U. (e,())

; D (V/"&
(23)

the average velocity and mean free path may be ex-

pfcsscd as
the rod length or by Eq. (20), whichever is less.
The result of this correction for length-to-width ra-

tio of 7.5 is 1=0.99D, while Q.IJ ——(0.35+ 0.38

+0.28)D=1.01D.

{24)

The total mean free path is

We may get an indication of the contribution of
each mode j to the mean free path by defining

D (V/"&,
(U '&,

B. Boundary scattering plus reradiation scattering

In order to include the effects of dislocation

scattering we simply add the boundary scattering
and reradiation scattering rates for each phonon,
i.e., ~ '=v~ '+ ~~ '. The boundary scattering rate

r . (q) =6V, (q)/DI'(8„P, ) . (26)

but I-gl turns out to be a reasonable approxi-J
nation. In particular, a numerical calculation with
b,8=6,&)) = —,

' for a [110]LiF rod gives l= 1.33D,

while g lJ II + 1FT+ 1sT ——{041+0 6——5+.0.29. )D
=1.35D. Notice that due to phonon focusing the
fast transverse mode (FT) makes the largest contri-
bution to the mean free path in this case. Figure 8

shows schematically the focusing of phonons along

[110]in LiF.
We have overestimated the mean free path (espe-

cially of the fast transverse mode) by implicitly as-

suming thc rod is of infinite lcIlgth. A siIIlplc
finite-rod correction is to assume AJ is given by

jI Io]

LONGITUDINAL FAST TRANSVERSE SLOW TRANSVERSE

FIG. 8. Schematic representation of phonon focusing
of the three modes in a [110]LiF rod.
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(27)

The calculation proceeds as follows: a set of
master scattering-rate curves for various Q, R, and

coD/co& is calculated. For the chosen material the
dislocation effective mass and tension are calculat-
ed from material constants. For a particular aver-

age dislocation length co~ is calculated. Given the
Debye frequency we can interpolate between the
various ro/co~ curves. A density of a particular
type of dislocation is assumed and the angle of in-
cidence, Q, R, and 0, is calculated for each pho-
non. Interpolation is done between the master Q
and 8 scattering-rate curves to give the dislocation
scattering rate w~ '. This is done for each of the
three phonon modes with angle intervals
68=hP =1'.

Because v.d
' changes relatively slowly with fre-

quency we may make the dominant-phonon ap-
proximation' which assumes that at temperature T
the dominant-phonon frequency is the peak of
co C~h and is given by

Cgdo 5 0g 10 T3.SkT

2.5

2.0—

—I.O

—0.9
- 0.8

1.5—

—0.5
I

IO
O. I

I —E
I I

O. l 0.3 I 3 30
(0/(d

)

FIG. 9. The calculated mean free path vs frequency
for boundary scattering plus dislocation scattering in a
3-cm long by 0.2-cm-wide square-cross section [110]LiF
rod, assuming 2.5X10 -cm screw dislocations on the

I 101] planes and including phonon focusing and the
resolved shear stress factor for each phonon. (A) The
resonance angle effect 8, the frequency dependence
A (co) of the dislocation mass and line tension, and'the
wavelength dependence Q of the reradiation damping
constant are all neglected. (B) A (co) is included; R and

Q are not. (C) R is included; A(co) and Q are not. (D)
A (co) and R are included; Q is not. (E) A (co), R, and Q
are all included.

Thus if we plot the calculated mean free path
versus frequency, the relation T=2 X 10 ' ro may
be used to indicate the corresponding temperature.

C. Influence of the frequency-dependent mass,
the Ninomiya resonance, and the wavelength

dependence of reradiation damping

Figure 9 illustrates the influence of including the
assumptions of a frequency-dependent dislocation
mass, the Ninomiya resonance angle effect, pnd the
wavelength dependence of the reradiation damping
[denoted, respectively, by A (ro), R, and Q]. The
ratio of mean free path l in the deformed sample
to mean free path l~ for boundary scattering alone
is plotted versus frequency. The parameters as-
sumed to be held constant in these curves are as
follows: (a) the sample is a 3-cm long by 0.2-cm
wide LiF square-cross-section rod oriented along
[110];(b) there are 2.5 X 10 -cm screw disloca-
tions of average length 3)&10 cm situated on
any or all of the (101), (101), (011),or (011) planes
(hereafter designated collectively as I 101]);(c) pho-
non focusing and the resolved shear stress orienta-
tion factor are calculated for each of the 24300
phonons (3X90X90) considered in the octant. As
can be seen, the effa:t of the A (ro) and R assump-
tions is to broaden the frequency dependence of the
mean free path and shift the minimum to higher
frequency. The most important influence is the

Ninomiya angle resonance which has been assumed
negligible in previous calculations. The effect of Q
is comparatively small, but all three assumptions
are included hereafter to make the curves as realis-
tic as possible.

D. Combined effects of phonon focusing
and the resolved shear stress orientation factor

Phonon focusing and the resolved shear stress
factor are anisotropic and mode dependent and
must be considered together as illustrated in Fig.
10. Figure 10(a) is plotted for the same assump-
tions as Fig. 9(E) but is separated according to the
contribution of each mode, the horizontal lines
representing the contribution for boundary scatter-
ing alone. Because the fast transverse mode is
focused more strongly along [110]than longitudi-
nal or slow transverse, its contribution to the
mean-free path is dominant. In LiF, where the
fast transverse mode is C44, , dislocation scattering
has a relatively weak effect because the C44 mode
is weakly scattered. The fast transverse mode
scattering is not zero (as would be suggested by
Table I for the [110]pure mode), emphasizing that
the resolved shear stress factor must be calculated
for each phonon.

The difference in scattering for C'- and C44-like
phonons is demonstrated more clearly for disloca-
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FIG. 10. The mean free path vs frequency and tem-

perature for boundary scattering and boundary scatter-

ing plus dislocation scattering for each model. (a) Lip
[110]: screw dislocations on f 101] slip planes. (b) LiF
[110]: screw dislocations on (110) slip planes. (c) NaF
[110]: screw dislocations on (110) slip planes.

tions on the (110) planes as seen in Fig. 10(b),
where the assumptions are the same as in Fig.
10(a) except for slip planes. Here the dominant

fast transverse phonons are very weakly scattered
while the slow transverse phonons are very strong-

ly scattered. This has two important results.
First, the size of the effect is smaller and the curve

is flatter for dislocation on (110) as compared to
[101]. Second, there is a saturation effect as sug-

gested by Anderson and Malinowski. ' Due to a
certain density of dislocations, the contribution of
the strongly scattered slow transverse phonons be-

comes negligible. Adding more dislocations does
not decrease the minimum mean free path appreci-

ably, the remaining phonons being more weakly

scattered. Thus the minimum mean free path
changes more slowly with dislocation density for
dislocations on (110) as compared to j 101].

In Nap the fast transverse mode is the C' mode
and again in the absence of dislocation scattering
the fast transverse mode is dominant due to pho-
non focusing. As shown ln Fig. 10(c), this implies
that the dislocation smttering effects should be
much greater for a given density of dislocations on
(110) in NaF as compared to LiF.

E. Attempt to fit experimental data

I I I I I I I I

QK 0 0
0 0 0 0

O.P. O'
I I I I I I (

I.O
T(K)

I I I I I I ~
IO

FIG. 11. 0: Measured (Ref. 2) ratio of thermal con-
ductivity ~/IIo in a bent LiF [110]rod to that before de-
formation. —:Calculated ratio of dislocation plus

boundary scattering mean free path to boundary scatter-
ing mean free path for dislocations on (110).
Calculated lilII for dislocations on [101].

Figure 11 shows the ratio of the thermal con-
ductivity of a bent [110]LiF rod to that before de-

formation as measured by Roth and Anderson.
The dislocation density was determined to be about
2.5&(10 cm by etch-pit counts. Also shown in

Fig. 11 are the calculated l/lq curves calculated
for 2.5)&10 -cm screw dislocations on the (110)
planes and on the [ 101] planes. An average dislo-
cation length of 6&10 cm was assumed in order
to produce a scattering-rate peak at a frequency
corresponding to the observed thermal conductivity
minimum near 0.25 K. This length is a factor of 3
less than that determined ultrasonically by Wire.
(Owing to the lower line tension and larger mass
for edge dislocations an average length of 4)& 10
cm would be required assuming all edge disloca-
tions. ) In addition it can be seen that the calculat-
ed effect is not as large as was observed—
especially in view of the fact that bending the

[110]rod about the [001] axis should have pro-
duced dislocations mainly on the (110) planes.

In conclusion, the results of the detailed mlcula-
tion show that in [110]LiF the various factors do
not conspire together to produce an effect as large
as observed (although in [110]NaF they would to
a greater extent). In addition, for a dislocation
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length 2g 10 cm, as obscrvcd ultiasonicall,
the minimum in thermal conductivity would occur
near 0.07 K.

The results suggest the data could be fit better

by assuming a dislocationlike defect having a
higher resonant frequency and being more
numerous than isolated dislocations. As shown in

Sec. IV these conditions are met by the optically
vibrating edge dislocation dipole.

IV. EFFECT OF VIBRATING EDGE
DISLOCATION DIPOLES ON
THERMAL CONDUCTIVITY

Two dislocations of opposite sign on parallel

glide planes a distance d apart have a stable con-
figuration when they are a distance of v 2d apartss

and the pair is called a dislocation dipole. Because
screw dislocations are able to cross glide and an-

nihilate, the great majority of dipoles are of edge
character.

A. Density of distribution of edge dipoles

Dislocation dipoles were first observed and dis-
cussed by Johnston and Gilman in their etch-pit
studies 1Q Lip. They suggcstcd that thc approxi-
mate range of dipole spacings is 3b & d & 300b.
Estimates of the density of dipoles and distribution
of spacings are difficult. If the etch pits get close
together they cinnot bc resolved. More important-
ly, because etching occurs primarily at the strained
region of the crystal, narrow dipoles may not etch
at all, the strained region being confined to the
space between the pair. Similarly it is difficult to
see very narrow dipoles via electron microscopy.
Estimates of the ratio of the dislocation dipole
density to monopole density range from 1000
(Gilman —strain-hardening measurements) to 100
(Davidge and Pratt '—deformation-induced bulk-
density changes) and less (electron microscopy). 2 s

A reasonable ratio appears to be 10—100, distri-
buted primarily at spacings of 3—300 b, with most
having spacings less thaQ a fcw' hundicd Ang-
stroms so that they are not easily detected by elec-
tron microscopy or etch-pitting techniques. A dis-
tribution of this character (for a =nb) is the ex-
ponential distribution A(n) =Aoexp[ —(n —3)/Xo]
for n &3.

8. Optical mode resonant frequency

Long-wavelength phonons Q,» d) will excite di-
poles into the optical mode of vibration (i.e., the

dislocatlolis iilove 111 opposite dli'ectioils). Foi
small oscillations a linear term Dy is added to the
left side of the equation of motion (1). The reso-
nance frequency of the mth normal optical mode is

Gb2

2m(1 —v)d
(29)

Thus the optical mode resonant frequency is higher
than the acoustical mode resonant frequency, espe-

cially for narrow dipoles.

C. Fit to experimental data

Dipole scattering rates were averaged over dipole
spacings and lengths with two simplifying assump-
tions: (a) the dislocations exhibit couplixl oscilla-
tions (dipole optical mode) for long-wavelength
phonons (specifically co & 2coi) but oscillate in-

dependently at shorter wavelengths; and (b) pinning
points are similarly situated on both dislocations of
a dipole.

It was found that by assuming an average dipole

spacing Lob=60 b the minimum could be properly
situated at 0.25 K for an average dislocation length
of 2X 10 5 cm, as determined ultrasonically.
Figure 12 shows Roth and Anderson's2 thermal
conductivity data in the deformed sample of Fig.
11 subsequently irradiated. Also shown are curves
calculated with Eq. (28), assuming dislocation

l.O— ~ ~ to ~ * I~ 4»N 4jP Q Oy~
~g

y i

O. l

o o

l.O

T(K)
IO

FIG. 12. Measured I',Ref. 2) a/xo before and after ir-
radiation, and calculated l/I~ for edge dislocation di-
poles with Xo=60 and vanous average lengths. 0:
Freshly bent sample, ' —;K=2&10 cm; 0: After
720-R y irradiation; —- —- —.: K=1&10 cm
2100 R ——— L=5y10 cm' 7 180000 R'

~ . . : I.=8&10 ' cm.

(2g)

here co„ is the acoustical mode resonant frequency,
A is the effective mass, C is the tension, and
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lengths of 2)&10 cm, 1X10 cm, 5X10
and 3)(10 cm and a density of 7.5+ 10 -cm
edge dipoles on the (110) planes. These values of L
should be expected ' to correlate with

L =Lo/(1+Pt), (30)

where L'=+Cb /4Uo is of order of magmtude
10 cm for typical values of the constants with
the pinning strength U0-0. 1 eV. The second term
in Eq. (31), which becomes important only for
small loop lengths, represents the contribution
from the pinning-point compliance. When Eq. (31)
is used in place of L /I/m C in Eq. (28), one ob-

tains a fit to the data with L=8&10 cm for
Uo ——0.16 eV. This is a reasonable value for the
pinning-point energy. More data points would be
needed to check Eq. (31) more thoroughly. This
result also accounts for the observation that the
heaviest irradiation dose (180000 R) does not re-

store the thermal conductivity to its predeforma-
tion value for T & 3 K. Furthermore, , since the
dislocations are nearly completely pinned

,L=8X10 cm) at the heaviest dose, further irra-
diation would not be expected to decrease the
dislocation scattering anymore.

Remaining minor discrepancies at low tempera-
tures may be attributed to specular rather than dif-
fuse scattering at the surface, ' or to a small num-

ber of dipoles on the I 101) planes. It was found,

where Lo is the length before radiation, t is the ra-
diation time, and P is a constant. The first three
lengths (2, 1, and 0.5 X 10 cm) are consistent
with Eq. (30), but the fourth length would be ex-

pected to be 8)&10 cm rather than 3&(10 cm.
This discrepancy appears to arise from the as-

sumption implied in Eq. (28) that the dislocations
are rigidly pinned at the pinning points. This is a
good approximation for long loop lengths, but it is
known that the dislocations can also lean against
the pinning points. In general, the compliance of
the dislocations is make up of two parts, that aris-

ing from the displacement between the pinners and
that arising from the displacement against the
pinners as in a rigid rod. For short enough loop
lengths, the former displacement becomes less im-

portant than the latter. Isaac and Granato have

given an expression for the frequency of a disloca-
tion segment taking this into 'account which can be
written as

1 L A L+L'
N ETC

for example, that the freshly deformed sample data
could be fit better by assuming a total density of
5 X 10 cm of which 0.5% were on the t 101[
planes. Discrepancies at temperatures greater than
2 K (and especially greater than 5 K) are attributed
to processes neglected in our treatment —notably
point-defect scattering and normal and umklapp
processes. (See itiote added in proof. ) Roth and
Anderson indicated that heavy irradiation does
not restore the thermal conductivity for Tg 3 K,
although it is possible that the irradiation-induced
point defects scatter significantly at these higher
doses and temperatures.

In addition to fitting the experimental data, the
model makes an interesting prediction of an effect
which we will call the negative pinning effect. The
normal effect of pinning is that after a heavy dose
of irradiation the thermal conductivity of a de-
f'ormed sample progressively recovers toward the
undeformed sample value. The negative pinning
effect is a decrease in thermal conductivity fol-
lowed by the normal increase as the irradiation
dose increases as illustrated in Fig. 13, where the
normalized mean-free path is plotted versus nor-
malized time f3t [obtained from the relationship
L=I.O/(1+ pr) with Lo ——2X10 cm]. The nega-
tive pinning effect is a consequence of the under-
damped character of the dislocation or dipole reso-
nance so that the peak scattering rate due to short
dislocations exceeds the high-frequency asymptote
of longer dislocations as illustrated in Fig. 7. The
negative pinning effect should be observed if the
thermal conductivity of a deformed sample is con-
tinuously monitored during irradiation at constant
temperature (e.g., 1 K).

I.O

0.9

0.8

0.7

Ko

0.4

0 20 40 60 80 IOO

DOSE Pt
PIG. 13. Calculated thermal conductivity ratio a/~0

at various temperatures vs time f'or constant irradiation
rate. —:0.6 K; ———:1 K': 2 K. The nega-
tive pinning effect is the decrease before recovery to-
ward 1.
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Finally we disagree with the statement of
Matsuo and Suzuki that scattering in LiF is not
primarily due to vibrating dislocation dipoles below
3 K (based on Suzuki and Suzuki's' measurements
in heavily deformed LiF). Suzuki and Suzuki did
not measure at low enough temperatures to see the
thermal conductivity minimum. Far above the
minimum (i.e., the scattering-rate peak), the dislo-
cations are inertia limited and scatter as if they
were unpinned and uncoupled —regardless of dislo-
cation length or spacing —so that one cannot dis-
cern between dipole and monopole scattering. As
we have shown, the position of the minimum in
Roth and Anderson's data would require an
anomalously short average dislocation length, un-
less they were mostly arranged in dipole configura-
tions.

V. CONCLUSIONS

focusing, and the resolved shear stress factor for
each phonon. We have demonstrated that these
factors do not conspire together to produce a large
effect in [110]LiF, and that for a similar disloca-
tion (or dipole) density the effect would be larger
in [110]NaF. We have shown that the experimen-
tal data are fit with the assumption that a disloca-
tion dipole density of 30 times the observed etch-
pit density. We have predicted a negative pinning
effect which is still to be confirmed experimentally.
Finally we suggest that thermal conductivity stu-
dies in deformed alkali halides may be a good way
to study very narrow dislocation dipoles.

Note added in proof. Recent unpublished work

by R. A. Brown indicates that edge dipole strain-
field scattering becomes increasingly important
above 2 K in resolving the discrepancy between
this present work and Roth and Anderson's data.

We have calculated the phonon scattering rates
for dislocations and dislocation dipoles and have

indicated the importance of specifically including
the Ninomiya angle resonance effect, phono&
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