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During the past three years, phenomena associated with pulsed and cw laser annealing

of semiconductors have generated intense interest among scientists in both fundamental

and applied areas of solid-state physics and materials science. As a consequence, a

coherent picture of the physical processes involved, at least on a macroscopic basis, is be-

ginning to emerge. In the first two papers of this series, the results of heat and mass

(dopant) transport calculations based on the melting model of pulsed-laser annealing were

described in considerable detail. It was shown that dopant profiles observed after pulsed-'

laser annealing could not be fitted when values of the interface segregation coefficient k;
appropriate for solidification under nearly thermodynamic equilibrium conditions were

used ln thc dopant redistribution calculations. In this paper, a lnodcl ls dcvclopcd which

relates the nonequilibrium interface segregation coefficient k; to k; and to the velocity of
the liquid-solid interface during recrystallization of the molten region created by the laser
radiation. The functional dependence of k; on the interface velocity cannot be calculated

exactly, but simple approximate expressions for this dependence yield results which are in

accord with the experimental data presently available. Moreover, with the use of the

velocity dependence of k;, it is shown that the model gives satisfactory agreement with

the maximum nonequilibrium dopant concentrations which have been observed for an in-

terface velocity of -4 m/sec. It is further shown that when the velocity-dependent k; is

used in the theory of Mullins and Sekerka for cellular formation during solidification,

agreement with the results of pulsed-laser annealing experiments is obtained, but if k; is

used there is no agreement. The relationship of the model to the general concept of
"solute trapping" introduced by Baker and Cahn is discussed and it is shown that the

model satisfies the criterion for solute trapping.

I. INTRODUCTION

This ls thc third ln a scfics of papcls on thc
melting model of pulsed-laser annealing. In paper
I, the physical models and finite difference tech-
niques used in the heat transport and melting ca1-

culations were explained and extensive results of
the calculations were given. In paper II, the re-
sults of paper I were used to obtain theoretical
dopant profiles in Si after irradiation with pulses

from a Q-switched ruby laser and these were com-

pared to profiles measured primarily by secondary
ion mass spectroscopy (SIMS), and Rutherford
backscattering {RBS). Segregation effects were in-

cluded in the calculations, but the interface segre-

gation coefficient k; was taken as an adjustable
parameter. The values of k; needed to fit the ex-

perimental dopant profiles were greatly different
from reported va1ues of the equilibrium segregation

coefficient k;, which is appropriate for crystal
gfowt4 Undcf condltlons close1y appfoachlng thcI'-

modynaInlc equilibrium. In this papcf, a modc1
which relates k; to k;" is developed in detail. The
model is based on kinetic rate equations and intro-
duces an activation energy for dopant transitions
from the solid to the liquid which is a. function of
the velocity of the liquid-solid interface. The func-
tional form of thi. s activation energy cannot bc
dctefIIlincd completely, bUt lts llmltlng bch.avlof
can be defined. Simple approximate forms for ihe
velocity-dependent activation energy allow k; as a
function of k; and thc lntcffacc vcloclty to bc
determined. The velocity-dependent k; is then
Used in we11-developed theories to explain several
nonequilibfium segregation effects which have been
observed during pu1sed-1asef annealing.

The papcI' ls dlvldcd into scvcn sections. In Sec.
II a brief survey of the experimental evidence for
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the occurrence of nonequilibrium thermodynamic
processes during pulsed-laser annealing is given.
The kinetic rate model for nonequilibrium segrega-
tion, originally given in Ref. 3, is further developed
in Sec. III, and in Sec. IV the implications of the
Inodel for the question of solubility limits as a
function of laser annealing conditions are explored.
In Sec. V„ it is shown that the Mullins and Seker-
ka" theory of cellular formation during solidifica-
tion provides a satisfactory description of the ob-
served data for nonuniform segregation of various
dopants in silicon if the velocity-dependent inter-
face segregation coefficients are used. In Sec. VI,
additional discussion of various aspects of the cal-
culations Rnd cxpcfiIIlcnts Rrc given Rnd 1t 1s

shown that the model satisfies the criterion for
"solute trapping. " A brief review of other attempts
to develop a theory of nonequilibrium segregation
is also given in this section. Finally, the contents
of the three papers in this series are summarized
and some concluding remarks are made about the
importance of the laser-annealing phenomenon for
the development of our understanding of ultrarapid
crystallization and related areas of materials sci-
ence and solid-state physics.

II. EXPERIMENTAL EVIDENCE
FOR NONEQUII. IBRIUM
SEGREGATION EFFECTS

In one of the earliest papers on laser annealing
of ion-implanted Si, Khaibullin et al. reported
that the concentration of dopants after annealing
could exceed conventional solid solubility limits. It
was recognized that this result implied that none-

quilibrium thermodynamic processes occur during
laser annealing. Early calculations ' of the pene-
tration and velocity U of the liquid-solid interface
or melt front during pulsed-laser annealing showed
that the near-surface regions of the samples melt
and recrystallize in times of the order of 100 nsec
and that during recrystallization U is of the order
of a few m/sec; these and other results were dis-
cussed thoroughly in papers I and II of this series.
Nonequilibrium segregation effects during rapid re-
crystallization have been considered in the litera-
ture, ' but until the discovery of laser annealing
the range of crystallization velocities attainable
under well-controlled experimental conditions was
too small to test various proposed models, most of
which can now be shown to be inadequate or in-
complete.

Values' of the equilibrium interface segregation
coefficient k; for 8, P, and As in Si are 0.80, 0.35,
and 0.3, respectively. Standard theories of solidifi-
cation based on diffusion cquatlons, when applied
to the laser-annealing process, show that in As-
and P-implanted Si these values of k; should pro-
duce large concentration spikes at the surface
which would be easily observable by a variety of
techniques such as secondary ion mass spectros-
copy and Rutherford backscattering. These sur-
face spikes are not observed in 8-, As-, and P-
implanted laser-annealed Si, ' nor in As-doped
amorphous Si layers recrystallized by a laser. '

Moreover, satisfactory fits to the dopant profiles in
these cases can only be obtained with values of k;
nearly equal to unity. ' ' The fact that equilibri-
um solubility limits can be exceeded in systems
such as these, which have retrograde solubility, can
be taken as further evidence for nonequilibrium
growth processes. ' ' ' ' Although the question
of how and to what extent equilibrium solubility
limits can be exceeded during pulsed-laser anneal-
ing is one of the most fascinating aspects of the
process, in the author's opinion the absence of
scgI'cgatlon peaks for certain dopants Rt coIlccntra-
tions well below the solubility limit is of more fun-
damental importance for understanding the basic
mechanisms of ultrarapid crystallization.

Recently %hite et al. ' used RBS techniques to
measure the profiles of Ga, In, and Bi in ion-
implanted„ laser-annealed Si. The results, together
with earlier data on Sb and As, were analyzed us-

ing a model of dopant diffusion which included
segregation effects and utihzed melt-front informa-
tion supplied by the present author from calcula-
tions such as those in Ref. 1; from fits of the
measured profiles values of k; were extracted.
Similar, but some~hat more rigorous calculations,
were carried out in paper II of this series. The re-
sults of %hite et al. and of Refs. 2, 6, 12, and 13
provide data on the segregation behavior of B, P,
As, Sb, Oa, In, and Bi, in Si during laser anneal-
ing. Values of k; from the compilation of Trum-
bore' and of k; from Refs. 2 and 15 are shown in
Table I. The most striking feature of these data is
the very large differences between k; and k;, espe-
cially when k; is small. Table I also shows the ap-
proximate ratios of the nonequilibrium dopant con-
centrations C& to the maximum equilibrium con-
centrations C&' reported in Rcf. 15. The remark-
able extent to which the equilibrium solubility lim-
its can be exceeded is evident. The values of B~,
the dopant diffusion coefficient in liquid Si shown
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TABLE I. Experimental data. Values of k; are not directly measurable; they can be
determined only by theoretically fitting experimental dopant profiles.

Dopant

(Ref. 14) (Ref. 2)

CSyCS0

(Ref. 14)

DI BI
(Ref. 24) (Ref. 22)

10 cm /sec

8
p
As
Sb
Ga
In
Bi

0.8
0.35
0.3
0.023
0.008
0.0004
0.0007

1.00
0.7
0.2
0.15
0.4

—1.0
—1.0
-1.0

0.8 —1.0
0.15—0.3
0.10—0.20
0.25 —0.35

2.4+0.7
5.1+1.7
3.3+0.9
1.5+0.5
4.8+1.5
6.9+1.2

3.3 +0.4
2.7 +0.3

1.4 +0.5
0.66+0.5
0.17+0.3

Table I, will be used later.
At least two groups' have reported cellular

structure in the distribution of impurities in Si
samples coated with thin metallic films and irradi-
ated with Q-switched lasers. More recently, a
number of groups' have observed similar struc-
tures in ion-implanted, laser-annealed Si samples.
Cellular structure is characteristic of solidification
processes in which for one reason or another the
planar liquid-solid interface becomes unstable dur-

ing crystallization. In a two-component system,
the cells themselves consist primarily of one com-
ponent while the second component is segregated
to the cell walls. Experimental data on laser-
annealed silicon samples is not yet extensive

enough to give a complete picture of the cellular
formation process; however, the data that are avail-
able clearly indicate that the dopant concentrations
at the onset of cellular formation during pulsed-
laser annealing greatly exceed those found in

growth Ilear equ111br1uIIl.

III. KINETIC MODEL
OF NONEQUILIBRIUM

SOLIDIFICATION

general, the rate constants will depend on condi-
tions (e.g. , phases, temperature, etc. ) in both the
liquid and the solid. For the present, it will be as-
sumed that the dopant atoms are in a dispersed
phase in both liquid and solid, although this as-
sumption is not strictly necessary for the develop-
ment in this subsection. In the absence of any sig-
nificant diffusion in the solid, the rate at which the
concentration of h and d appear in the solid is just
the growth velocity U times the concentration ob-
served in the solid, or RJ =vCJ'. Adding Eqs. (I)
and noting that

Cg+Cd ——Cp+Cd ——1

and, for j=d,

UCd =Ed Cd —Kd Cd

The explicit dependence of Eqs. (3) and (4) on U

can be eliminated to obtain [again using Eq. (2)]

KIChCd+Kd CuCd (KI" Kd)CI'Cd —=Kd/C—d

A. Rate equations and
the segregation coefficient

Rate equations' for the incorporation of host h

and dopant d atoms into the solid can be written

R) —K~ ej E~CJ, j —h, d .f I r s

C, and C~' are the concentrations (in atomic frac-
tions) of j-type atoms in the liquid and solid at the
interface, and KJI and KJ are the f-orward (liquid
~ solid) and reverse rate constants in m/sec. In

Let us assume that the dopant concentration in the
solid does not exceed-5 —10%, put C~ ——1 —Cd in
the third term on the left-hand side of Eq. (5),
neglect terms in (Cd ), and thus obtain the equa-
tion

(KgC/, +KdICd )Cd (Kh Kd )Cd =Kgb—d . —

The interface segregation coefficient for the dopant
&s def1ned by
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k;=Cg/Cg . (7a)

(7c)

An alternative expression for k;, obtained by set-

ting C~ ——1 —C~, is

K~f
'

Kg K„" K(—Kf, ' —'

k;= 1+ Cg'E." 'E: E."

(7d)

It will be shown below that the expression in the
parentheses of Eqs. (7c) and (d) are nearly unity for
most cases of interest here. However, it is useful

first to consider the expression for k; which comes

from Eq. (4) above i.e.,

k; =Kq~(u +Kq)

1+~r ~r

If Kf and Kq are assumed not to depend on U, then

k; will decrease as v increases, which is completely
contrary to the experimental data. In Eq. (7d), on
the other hand, the exphcit dependence of k; on U

has been eliminated and if it were again assumed

that the K's are independent of U, the only depen-

dence on the interface velocity would have to come
through C~ (this is not quite trueas w, ill be dis-

cussed below). Of course, C~ does depend on U

(Ref. 11),but if this were the dependence of impor-
tance here Eq. (7d) would predict that k; would at-
tain its maximum value only when C~ ——1. It is

highly unlikely that the case C~ ——1 could occur for
a binary system since it would mean that C~ ——0.

It is useful to note that for a pure material

(C~ ——C~=0},Eq. (3} gives

U=K( Kf, . —

It should be noted that at this point this definition
does not involve a phase diagram or any related
thermodynamic considerations, and therefore it
does not specify the phases that are present in ei-

ther the solid or liquid. It follows directly from
Eq. (6) that

ki =Kd((K( Kd)Ch+Kd Kh+Kd]

(7b)

Chalmers has estimated that rate constants en-

countered in equilibrium freezing are of the order
of 100 m/sec; hence, the K's are expected to be
much larger than v. For dopant atoms in Si which

maintain the same bonding characteristics existing
between the Si atoms themselves (e.g., III, IV
dopants), the forward rate constants should be

roughly related to the diffusion coefficients in the
liquid D~. From Table I, it can be seen that
values of Di do not vary greatly for group III and
V dopants in Si. Furthermore, because D~ is not
likely to be significantly affected by the crystalliza-

tion velocity, it should be a good approximation to
put

K~f=KJ=KP =Kg .

This approximation may be questionable for
dopants such as Fe, Co, Ag, Au, etc. whose bond-

ing properties in Si differ greatly from those of
group III and V dopants, but the equalities ex-

pressed in Eq. (10) will be used throughout this pa-
per.

Turning now to the consideration of the terms in

the parentheses in Eq. (7d), it is seen that the
second term is the difference between two nearly

equal large quantities divided by a large quantity
and must therefore be small. Using Eq. (9), this
term can be written to a good approximation as
U/Kz which, as we have seen in Eq. (8), gives the
wrong velocity-dependence to k;. Since C~ cannot
exceed 1 (and, in fact, is expected to be much less
than 1), the third term is also small, and tends to
cancel the second term. Therefore, it can be con-
cluded that for dilute solutions and for U &&K~, k;
is given to a quite good approximation by the sim-
ple form

k, =K~f/K,' .

Since there is no explicit dependence of k; on U in
this equation, we are forced to the conclusion that
the velocity dependence must come in through the
rate "constants" themselves. I.et us consider next
how the rate constants can be expressed in terms of
velocity-dependent activation energies.

B. Velocity-dependent activation energies

It was noted above that forward rate constants
are not expected to depend strongly on the dopant
since diffusion coefficients in the liquid do not
vary greatly (i.e., by orders of magnitude, as in the
solid) with dopant. It will be assumed now that all
of the rate constants are of the activated form, e.g.,
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K~ ——Ad exp( —Uq /k T), (12)

in which U~ is the effective barrier height against
jumps of a dopant atom from the solid into the
liquid. The coefficient A~ is a product of a
geometrical and a frequency factor, an "accommo-
dation coefficient, " and possibly other factors. ' lt
seems reasonable that none of these factors will

depend strongly on u, and hence it will be assumed

thatA =A andA'=A' for j=h and d. To ac-
count for dopant trapping, Ud is written as

its maximum possible value when the temperature
of the liquid is at the melting point and the solid
just on the other side of the interface is at the
lowest possible value (T=0K). It follows that T
can be taken as the melting temperature, which for
a dilute solution is very nearly that for the pure
host material, i.e., TI, . Because of the assumption
about the A' s, F in Eq. (1S) is constrained to be un-

ity and hence

k; =k; exp[( —kTslnk; )f(u)/kT] .

Ug(u)=Ud +b, Ud(u), (13)

where Uq is the "equilibrium" (u =0}value of the
activation energy. b, Ud(u) may be a complicated
function of u, but it must go to 0 as U —+0 and to
an asymptotic value as v becomes large; simple
analytic forms for it will be discussed shortly. It
should be understood that only Ud is being as-

signed a velocity dependence; all other U's remain
constant. Introduction of the factor F=A&/A&-
and use of Eq. (13) allows Eq. (12) to be written as

Kq =FAq exp( —Ud lkT)exp[ AUd(v—)lkT]

=FKg exp[ b, Ud(u)lk—T] .

Using Eq. (14) and Kd KP from E——q. (10) in Eq.
(11) then gives

k;=(Kd /FKd )exp[6 Ud(v)/kT]

= (k; /F)exp[5 Ud(u) /kT], (15}

where k;
—=Ed /Ed is the equilibrium interface

segregation coefficient. Note that the condition
imposed on the A factors just before Eq. (13) re-

quires that F=1. Next let us write

6Ud'(u) =6 UPf (u), (16)

aUd"= —kr ink, .' . (17)

The value of T can be fixed by noting that b Ud' is
obtained when U ~ ao. Assuming that the liquid is

not significantly supercooled, the velocity will have

where f (u) is a function that goes to 0 as u~0
and to 1 as u~ op, and EUd is the asymptotic
value of b, Ud(u) as v becomes very large. It should

be noted that u can never exceed K( (the so-called
"sticking" limit), but for convenience the notation
u~ oo will be used frequently. If it is required
that k;~1 as u~ 00, then it is easily shown that

It is interesting to note that the condition F=1
follows not only from the requirements on the A

factors (A~ =A~ ), but also from the limiting
behavior of k; (at small v) as long as the A factors
are independent of v. However, it would be possi-
ble to make Ad and hence F a function of U such
that F~1 as u~0 and to some constant value as
k; ~1; this would involve a redefinition of 6Ud'

and make it velocity dependent. It would also be
possible to let k; go to some maximum value of k;
other than 1 as v~ (x), but this would also involve
a redefinition of EUd'. These seem unwarranted
complications at this stage in the development of
the model.

Approximate forms for AU~(u) can be justified
on the basis of the physical process illustrated
schematically in Fig. 1. Assume that during
steady-state recrystallization the material in the vi-

cinity of the advancing melt front can be divided
into three regions. In regions S and L, the materi-
al has the properties of the solid and liquid, respec-
tively. In the interface region I between S and L,
the properties change in some continuous fashion
between those of regions S and L. At time t =0, a
dopant atom is deposited at the beginning of I. As
solidification proceeds and the interface region
moves across the original position of the deposited
atom, a time-dependent, effective, one-dimensional
potential barrier Ud(u, t) against escape back into
the liquid is created because of the addition of
layers of host atoms. This effective barrier arises
from a series of potential wells in region I between
which the dopant atom hops. The exact form of
U~(u, t) would be extremely difficult to calculate,
even if the deposited atom remained fixed while re-

gion I moves. A molecular dynamics calculation,
e.g. , might give some insight into Ud(v, t) under
this condition. However, while region I is moving
across the original position of the deposited atom,
the atom itself will tend to diffuse toward the L
region and this further complicates the problem.
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T) =0

SOLID (S) INTERFACE (I) LIQUID (L)
"o

k i ii

Ud(v) = Ud +b, Ud'I 1 —(vo/v)

X [ 1 —exp( —v /v o )] ]

(19b)

For both forms, Ud(v) goes to Ud' as v~0 and to
U~ +hU~' as v becomes large, as required. Equa-
tion (19b) was obtained by time averaging (over t; )

the expression

Ud(v, t)= Ud +b Ud'[1 —exp( vtl—vot;)] .

(20)

FIG. 1. Schematic illustration of a dopant atoms pro-
gression through the interface region.

In any case, a time-independent activation energy
Ud(v) can be obtained from an average of Ud(v, t)
over the time t; the dopant atom spends in I. Of
course, because of diffusion, t; may be much
longer than the time required for region I to pass a
stationary point. The reader should realize that
there is a great difference between the kinetics of
interface processes for dopant and host atoms in a
dilute solution. Host atoms are constantly under-

going transitions between the liquid and solid
phases also, but whenever a host atom leaves the
solid there is almost always another host atom at
the interface to take its place, whereas this is not
true for a dopant atom. A dopant atom has a high
probability of being replaced by a host atom as a
consequence of an interface exchange process.
This probability is high (and therefore k; is low) at
low interface velocities where many interchanges
occur before the interface passes.

Several simple forms for Ud(v) have been inves-
tigated in the calculations to date. The two which
have been used most often are

Urm Uro+gUra Us

Using Eq. 17, it is then found that

Ud ——Ud+k7glnk;

(21)

(22)

which can be used in Eqs. (19a) or (19b) to calcu-
late numerical values of Ud(v), if desired. When
the solution is no longer dilute, Ud will depend on
the concentration in the solid and on the phase be-
ing formed and its interpretation may not be sim-
ple [see, e.g., the comments following Eq. (18)].

In the rest of this paper, the model developed
above will be referred to as the VDAE (velocity-
dependent activation energy) model.

C. Calculations of k;
for various dopants in silicon

The quantity Uot; can be interpreted loosely as the
distance xo the atom diffuses while in region I and
vo can be related to an average diffusion coefficient
D; of the dopant in I by D; =Uoxo. Experimental
values of D; are probably completely unattainable,
so in the calculations it will be assumed that
D; ~Dt and xo~xo, with vo ——Dt/&I&. An expres-
sion for Ud(v, t) which yields Eq. (19a) is not as
simple as Eq. (20), but its interpretation is basically
the same.

The maximum value that Uq(v) attains when v

becomes very large will be denoted by Ud,' it is
given by U~ +EUd'. Considering the above dis-
cussion and Fig. 1, it seems reasonable that in a di-
lute solid solution Ud should be approximately
the activation energy Ud for impurity diffusion in
the solid; therefore let us take

and

Ug(v) = Ud +EUd'[1 —exp( —v/vo)],

(19a)

Calculations of k; (from Eqs. 17—19) at the
present stage of development of the VDAE model
are quite simple, but they involve input data which
are not known at all for many dopants and are of
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sized that DI cannot be the appropriate value of
D;, the average diffusion coefficient in the inter-
face region. Values of D; can be expected to lie
between DI and D, (solid), although probably much
closer to the values of DI. Since the range between

D~ and D, covers about five orders of magnitude
for the dopants considered here, good estimates of
D; cannot be made at this time. Thus, a difference
of a factor of four in the values of x' when dif-
ferent forms of Ud(u) are used cannot be of partic-
ular significance at this stage of our understanding
of the processes in the interfacial region.

Table II shows some of the results of the calcu-
lations. The second column of Table II gives the
values of EUd"', this is a fixed quantity (for any
particular dopant) and its significance will be dis-
cussed in more detail below. The third column
shows the values of k; obtained when a single
value of uo for all dopants is used in Eq. (19a).
These results demonstrate conclusively that the ex-
traordinarily large departures of k; from k; ob-
served after pulsed-laser annealing can be account-
ed for by the VDAE model. The fourth column
gives the results of calculations when Eq. (19a) was
used and Uo was made proportional to values of DI
within the ranges given by Kodera. These data
achieve better agreement with the experimental
data (Table I) than do those in column 3 and indi-
cate that the values of D; may indeed follow the
trends in the values of DI. In fact, it is interesting
to note that if the dimensions of the interface re-

gion are of the order of an interatomic layer spac-
ing in silicon (-2.5 A), the values of D; cannot be
less than those of D~ by more than about two ord-
ers of magnitude if satisfactory values of
Uo D;/xo are to ——be obtained. If it is assumed

that the interface region is of the order of 10
atomic layers, which does not seem unreasonable
(especially if it is recognized that the likelihood of
atomic layers going down in perfect order is re-
mote), then the values of D; need be less than those
of Dt by only about an order of magnitude. The
fifth column gives the values of D) actually used in
obtaining the curves of Fig. 3. The last column
gives the values of k; calculated using Eq. (19b).
In carrying out the calculations with Eq. (19b),
only two values of Dt were changed from those
shown in the fifth column, ' DI for Bi and In were
assumed to be 5.5&10 cm /sec and 8.1&(10
cm /sec, respectively. The latter value is still
within the range given by Kodera and, as already
mentioned, no values of DI for 81 In S1 have been
given.

In assessing the agreement between the experi-
mental and calculated values for k; it must be kept
in mind that both sets of results are subject to the
same types of problems. The calculations which
must be carried out to extract values of k; from
the experimental data involve values of DI of limit-
ed accuracy, recrystallization velocities which are
approximated by an average value (the results in
paper I and Ref. 24 show that U actually changes
somewhat during the recrystallization process), and
solutions of the dopant diffusion equation with

segregation treated in an approximate manner.
The calculations with the VDAE model involve
values of DI of limited accuracy (which are only
used as a guide to values of D; ), values of k;
which have substantial uncertainties associated
with them, and functional forms of KUg(U) wh1ch
can only approximate the correct form. %ith
these considerations in mind, the agreement be-

TABLE II. Results of the calculations of k; using Eqs. (19a) and (19b) in the expression
for k; [Eq. (18)]. Recrystallization velocities of 4 m/sec were assumed for all dopants except
Sb for which u = 3 m/sec.

Dopant
k; [Eq. (19a)]

Uo =const
k; [Eq. (19a)]

Uo ——Dl/x 0

DI [Eq. (19a)]
10 cm /sec

k; [Eq. (19b)]
I

uo ——DI/x o

8
P
As
Sb
Ga
In
Bi
A1

0.032
0.152
0.175
0.547
0.700
1.134
1.053
0.901

0.98
0.90
0.88
0.68'
0.61
0.45
0.48
0.53

0.99
0.93
0.97
0.88'
0.31
0.15
0.39
0.52

2.4
3.4
2.4
2.0
6.3
6.4
4.4
4.0

0.98
0.90
0.92
0.74'
0.41
0.16
0.31
0.48

'U = 3 m/sec



R. F. %000

tween experiment and theory must be considered
satisfactory at tliis time. The results of the next
two sections will further reinforce this conclusion.

Figure 4 shows values of k; as a function of
melt-front velocity fot' selected impurities over an
extended range of the velocity. The curves for Cu,
Au, and Ag clearly show the large differences ob-
tained when Eqs, {19a)and (19b) are used. It is
possible that the expi'essions in the parentheses of
Hqs. (7c) and (7d) at'e no longer approximately uni-

ty at the higher velocities shown in Fig. 4.
Nevertheless, . it is of interest to see that with Eqs.
{11)and (19a)„k;does very nearly reach 1 for Bi
and In at velocities which may be attainable under
some laser annexing conditions. In the calcula-
tions on Cu, Au, alid Ag in Si, the values of k;
shown by Trumbore were use'd and D~ was given a
value of gg 10 cm /sec. VVith the same assump-
tions the calculated curves for Fe and Co fall just
between those for Ag and Au, but they are not
shown on Fig. 4 to avoid confusion. Because of
some of the undei'lying assumptions of the model,
the curves for the noble and transition metal im-

purities may be of orily qualitative significance,
especially at the higher melt-front velocities. How-

ever„ in Sec. V it will be shown that the size of the
segregation cells observed for Fe in Si are predicted
fairly well by the values of k; shown in Fig. 4.

Greater insight into the physical content of the
VDAE niodel can be obtained by consideration of
the energy of a dopant atom as it traverses the in*

$.0

0,9

0.8

terfacial region between the liquid and the solid,
and this ill now be investigated.

D. Energy diagrams for dopant atoms

%ith certain of the results from above, and ap-
proximations frequently used in the literature, it is
possible to t:or|struct semiqoantitative energy di-

agrams for a dopant atom as it moves from the
liquid, through the interface region, and into the
solid. One of the difficulties in constructing such
diagrams is to define energies which can be associ-
ated with individual atoms. To illustrate this diffi-
culty and to set the scale of the energy diagrams,
let us consider the following. The cohesive energy
of a solid is the difference in energy of the collec-
tion of atoms forming the solid when the atoms
are at infinite separation and when they are in the
solid at T=0 K. ' The sublimation energy (as-

suming coinplete separation into atomic species) is

usually taken as the experimental measure of the
cohesive energy. In a covalent material such as Si,
the bonds between the nearest-neighbor atoms ac-
count for very nearly all of the cohesive energy
and therefore the cohesive energy can be used to
obtain an estimate of the energy per covalent bond.
In the silicon crystal structure, each covalent bond
is shared by two atoms while each atom shares

bonds with its four neighbors. The binding energy

E& of an atom in a solid is the energy required to
remove the atom from the bulk of the solid (held
at T=0 K) and to place it at infinity (with no
kinetic energy). It is not difficult to see that for
crystals with the Si structure, E~ can be approxi-
mated by twice the sublimation energy per atom
E „b, e.g. , for Sl,

z~ 0.7—
~ 0.6 —:

O

o 0.5

2) 0.4

LLI
v) pp

0.2

Eb(Si)=2E,„b(Si) .

In a similar manner the binding energy of a Si
atom in the liquid Eb(Si) is given by

Et(Si) =2t'E,„b(Si)—EF(Si)],

(23)

(24)

Q. I

2 4 6 8 10 &2 $4 i6 tS 20
V, MEl T-FRONT VELOCITY (m/sec)

FIG. 4. Vai'iation of k; with i over an exte'itched

range of U for selected dopants using both Eqs. (I9a) and

(19b). See text for the details of this calculation.

where Eq is the latent heat of fusion per Si atom.
On the schematic energy diagrams displayed in

Fig. 5, the zero of energy is taken as the energy of
a perfect Si crystal plus a single Si atom at infini-

ty. If the Si atom is added to the solid the total
binding energy of the system is increased by E&(Si)
and if the atom is added to the liquid, the binding

energy is increased by Eb{Si);vibrational energies
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(25)

in which E,„b(d) is the sublimation energy of the

pure dopant crystal. For simplicity, it will be re-
quired that

Eb ( Sl ) —Es (d )=Eb (Si )—Es (d ),
(26)

from which it follows that

Es(d) =Eh(d) —2EF(Si) . (27)

A better estimate for Eb(d) could undoubtedly be
made by some modification of the ideas leading to
Eq. (25), but this seems an unwarranted complica-
tion at this time.

Having established a scale for the binding ener-

gies, the activation energies for diffusion of the
dopant atoms can be displayed on the same di-
agram Activa. tion energies for diffusion of many
impurities in solid Si [Ud of Eq. (21)] have been
reported in the literature but none in liquid Si
have appeared. Rough estimates of Ud, the activa-
tion energy for impurity diffusion in the liquid,
can be made as follows. The diffusion coefficients
in the solid are given in the form

D, =D, exp( —Ud IkT),

and presumably by a corresponding form in the
liquid. The preexponential factors will be assumed
to be the same in the solid and liquid, i.e., D~ ——D,
(an obvious oversimplification); then

1n(D, /D() = —(Ug —Ud)/kT„. (29)

Even if D, is greater than D~ by a factor of two or
three it will not greatly change the estimates of Ud

arrived at. In fact, as already discussed, it is not
D~ but the effectiue diffusion coefficient in the in-

terface region D; which is needed in the VDAE
model. Nevertheless, estimates of Ud are of in-
terest for illustrative purposes.

Before constructing the energy diagrams it is

are not included in these quantities.
Next let us assume that a Si atom has been re-

placed by a dopant atom, such as As, which has

strong covalent bonding with the Si host. Follow-

ing the procedure used by Weiser, which is based
on an approximation suggested by Allen, the
binding energies of group III and V dopants in

solid Si can be estimated from the equation

1 1 1

4 E,„b(d) E,„b(Si)

useful to have one other piece of information. The
ratio of rate constants for the solidification of an

undoped host is usually written ' in terms of the
molar latent heat of fusion as

/$ ///, —(As /A@exp[( Ug UP—/RT]

=(A&~/Af, )exp(L~/RT) . (30)

The ratio Azf/AJ, is determined by noting that at
the melting temperature T~ the liquid-solid inter-
face in the pure host material is not moving (u =0)
and hence Ef /Ef, = 1 [Eq. (9)]; therefore,

Af/A„"=exp( L„IRT—, ) . (31)

Since the A's and U's are assumed to be indepen-

dent of temperature, Eq. (30) can be written as

K&/Ef, =exp[(L~ /R)(T Th )1—

Kf/IC/, =exp[ [2EF(Si)/k](T-' —T„') ] . -

(33)

EF(Si), the latent heat per atom, appears with a
factor of 2 in Eq. (33) because the total energy
change of the system has been associated with the
transferred atom. Consistent with previous as-
sumptions, we now have

Ag/Ad =Ay /Ag'=Aq'/Af;

=exp[ 2EF(h)/kT~ ]—,

and, as a special case of Eq. (11),

(34)

k,'=rc~f'Izd

=exp[ 2EF(h)/kTq ]-
Xexp[(Ud —Udf )/kT] . (35)

This form, which follows simply from the approxi-
mations that have been made, is of no special sig-
nificance in itself, but it can be used to obtain Eq.
(37) below. To see this, let us consider again the
case that k; —+1 as v~ Oo, and T=T~. Using Eqs.
(17), (21), and (35), we obtain

This expression can be converted to one applying
to a single host atom transferred between the liquid
and solid by setting
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=—kTs [—2E/(h)+ Ud —Ug/ ]/kTI,

or

Ud/ ——Ug —2'(h) .

(36)

(37)

It may seem peculiar that the effective activation
energy for transitions from the liquid to the solid
should involve Ud explicitly, but it should be kept
in mind that all of the activation energies have
been deliberately related to Ud, which is considered
to be known with fair accuracy.

Equations (23)—(25), (27), (29), and either (19a)
ol' (19b) provide tllc I'clatlollslllps needed to coI1-

struct the energy diagrams. The data used in the
calculations are given in Table III for the common
group III and V dopants in silicon. Values of B,
and Ud were taken from the compilation of Shar-
ma, where references to the original literature can
be found. Measurements of diffusion coefficients
over a range large enough to include the melting
point are rarely ever made because of the obvious
experimental difficulties in collecting data near
T=T&. Nevertheless, Eq. (28) was used to esti-
mate D, (Ts ) from the information in Ref. 30.
Two sets of values for D, , Ud, and Ud have been
given for some dopants to illustrate the variations
in these quantities from various sources given in

Ref. 30. Values of the sublimation energies were
taken from the tabulation of Stull and Sinke and
from Table I of Chapter 3 in Ref. 26. For Si,
EI', (Si)=9.25 eV and Zb(Si)=8 eV.

Table III shows that for the group III and V
dopants in Si, values of U~, U~, and El', (d) fall
within a fairly limited range and on schematic di-
agrams such as those in Fig. 5 there is little point
]tn indicating the differences. It is in the values of
the effectiue activation energies Uz(u) of Eqs. (19a)
and (19b) that major differences show up and
demonstrate how the model functions. This is il-

lustrated in the two diagrams of Fig. 5 by the
dashed curves in region I which represent Ud(U)
calculated from Eq. (19a) for various velocities.
The right-hand portion of the uppermost curve in
both diagrams has been made solid to indicate the
value of Ud/', which is given by Eq. (37) and is not
velocity dependent. The maximum height obtained

by the dashed curves cannot exceed that of the
solid curve and equality may be achieved only as U

becomes large. In Fig. 5(a) the dashed curves show
the rapid increase of Ud(u) as a function of U for
dopants such as As, and 8, and P. For these
dopants Ud(u) and K~ have very nearly reached
their maximim values [see Eq. (21) and Fig. 2] for
V=4 m/sec. Figure 5(b) illustrates the much more
gradual increase in Ud(U) with U for dopants such
as Bi and In. For these dopants Ud(u) and k; do
not reach their maximum values until U 12 m/sec

TABLE III. Data for the construction of dopant energy diagrams. The symbols are ex-

plained in the text; see also Fig. 5.

Dopant Dso

(cm /sec)

Ul

(eV)

E,„b(d)
(eV/atom)

8 3.69
3.51

0.32
68.6

3.56
4.23

1.00
1.78

5.6
12.9

3.95
3.98

1.52
1.65

3.6 1.29 6.96

In

10.30

3.34 7.76
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E~(d)
Eb(Si)

SOLID
(S)

I tlm
Eb(d)

E, (Si)

(a) As IN Si v (rn/sec)
0.0

2 4.0

E=Q

(b) Bi IN Si v (m/sec)
0.0

2 4,0
&2.0

SCHEMATIC ENERGY LEVEL DIAGRAM

E=Q
INTERFACE LIQUID

(I) (L)

ized solid and liquid regions; however, the di-
agrams are incomplete as far as the solidification
process itself is concerned. The heat transfer cal-
culations of paper I show that there are very large
temperature gradients across the interface region
and in the solid itself; the temperature gradients in
the liquid are much smaller. Thus, a dopant atom
after traversing the interface region will not find
itself at the botton of one of the potential wells
shown in the solid region of Fig. 5, but will be in a
highly excited vibrational state. In this connection,
it should be noted that Eq. (35) has been used to
relate Udf' to Ud Rnd is not an ~uation for calcu-
lating k; because Ud remains undetermined. .
Similarly, Eq. (22} gives a relationship between Ud

and k; which must hold for the internal consisten-

cy of the model, but it does not provide a method
for calculating either quantity.

FIG. 5. Schematic diagram of the energy of a dopant
ion in the liquid, interface, and solid regions. This di-

agram is discussed in detail in the text.

[using Eq. (19a)].
It can be seen from the energy diagrams in Fig.

5 that the VDAE model works in the following
manner. A dopant atom in the liquid (assumed to
be at temperature Ts ) requires an effective activa-
tion energy of Ud~'= Ud 2EF(h) t—o make a transi-
tion into the solid; Ud' does not depend on the
liquid-solid interface velocity and therefore applies
also when u =0. Once the dopant atom is "in the
solid" it requires an effective activation energy of
Uq(u) = U~ —kTslnk; f(u) to make a transition

back into the liquid. When u =0, Ud (0)=Ud,
which is the minimum value that U&(u) can have,
and hence k; takes on its minimum value, i.e., k;.
As the velocity increases, Ud(u} increases thus de-

creasing the rate at which dopant atoms make a
transition from the solid into the liquid, and hence
k; increases. When u —mao and Ud(u)~Ud, the po-
tential barrier against a transition back into the
hquid exceeds UP by 2EF(h). It might seem that
k; should go to unity when Ud(u) =UP, but Eq.
(11) shows that it is the rate constants and not the
activation energies which determine k;. Also, the
reader is cautioned against associating the activa-
tion energies with chemical potentials; this will be
discussed in more detail in Sec. VI.

The energy diagrams described in this subsection
are of use in obtaining a qualitative (and even sem-
iquantitative) estimate of the energy of a dopant
atom as it goes back and forth between the ideal-

IV. SOLUBILITY LIMITS

By requiring that k; —+1 as U becomes large, 1t 1s

virtually ensured that complete incorporation of
the dopant into the solid will always occur at suffi-
ciently high crystallization velocities [subject, of
course, to the limitations imposed by Eq. (9) and
the rate constants]. However, the definition of k;
[Eq. (7a)] is noncommittal about the phases which
form in the liquid (or in the interface region) or
which subsequently appear in the solid behind the
interface. If one examines the theory of one-
dimensional solidification due to a moving melt
front, it is also seen that there is nothing in the
theory which specifies the phases appearing in the
liquid or the solid. Moreover, the theory does not
require that a crystal lattice be formed or that the
processes occur near thermodynamic equilibrium,
i.e., k; need not be k; . All information of a ther-
modynamic nature has to be incorporated into the
theory in a somewhat ad hoc manner. When cry-
stallization is slow enough that thermodynamic
equilibrium holds locally, this can be done with
some assurance. When local equilibrium is known
not to hold, the entire problem becomes much
more complex, as we have already seen above. The
ldclltlflcRtloll of Ug —U» wltll 'tllc latcllt llcRt of
fusion in Eq. (30) is an example of the process by
which thermodynamic information is related to
quantities appearing in the kinetic theory of soli-
dification. Of course, the relationships between
kinetic theory, thermodynamics, and crystal
growth have been discussed often in the literature,
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but almost invariably the authors appear to assume
implicitly that the processes are occurring near
thermodynamic equilibrium (e.g., at very low soli-

dification velocities).
In a purely thermodynamic approach, the equili-

brium segregation coefficient k; for a binary alloy
is referred to the phase diagram and identified
with the ratio of the concentration of solute atoms
at the solidus to that at the liquidus for a given

temperature. For convenience, ideal, dilute solu-

tions are usually assumed in both the liquid and
solid phases, although corrections for real solutions
and higher concentrations can be made. In this
section, a simple approach, following along lines

often discussed in the literature, ' is taken to inves-

tigate the increase of solubility with melt-front

velocity to be expected from the VDAE model of
the pulsed-laser annealing process.

For an ideal, dilute, binary solid solution which
is crystallizing from an ideal, saturated, liquid
solution, the molar concentration of the host in the
liquid is

Cs =expt: Ls(Ts »—/~Ts]— (38)

This expression can be obtained, for example, from

Eq. (4.6) of Ref. 31 under the assumption that T is

not greatly different from T&, the melting tempera-
ture of the host material. Also, from Eq. (4.33) of
Ref. 31

u/K)", =LI, ( Ts —T)/8 TI, (39)

(recall that Lh is the molar latent heat of h and Kl",

is the reverse rate constant for h). Then, since

Cd =k; Cd =k; (1—Ci', ) .

Cd =k;(u/K» ) (42)

obtained. Equation (41) gives a simple estimate of
the maximum concentration of dopant which will

appear in the solid solution (i.e., substitutionally

for the III and V dopants in Si) at a given crystall-
ization velocity. Of course, the equation does not
predict an absolute solubility limit because the as-
sumption on which it is predicated cannot hold at
arbitrarily high concentrations and recrystallization
velocities.

Table IV shows some of the quantities related to
the calculations of Cd/C~ which have been made

following the simple theory outlined above. The
second column gives values of the maximum

equilibrium concentration in atoms/cm extracted

by the authors of Ref. 15 from Fig. 2 of
Trumbore's compilation. In the third column,

these values have been converted to atomic percent

by assuming that there are 4.9)& 10 Si

atoms/cm, which corresponds to a silicon density

of 2.3 g/cm . Columns four and five give experi-

mental data taken directly from Ref. 15. Values of
Cd calculated from Eq. (42) using the values of k;
shown in Table II are listed in columns six and

seven. The interface velocity was taken equal to 4
m/sec for all dopants except Sb for which it was 3

m/sec to correspond to the conditions of Ref. 15.
The rate constant EI, was assumed to be 100
m/sec. The fifth and six columns show values of
the ratio Cd/Cd which follow from the data in

Cd ——k;[1—exp( u—/Kf, )] .

Vixen U is much smaller than E~, as will usually be
the case, the exponential can be expanded and the
very simple expression

TABLE IV. Experimental data and results of calculations of the solubility limits using Eq. (42). Calculations were

made with values of k; from both Eqs. (19a) and (19b). The recrystallization velocity was taken to be 4 m/sec except
for Sb where 3 m/sec was used.

Dopant

~$0
d

(Ref. 10}

CSO
d

(Ref. 10)
Ad

(Ref. 15)

CS/g$0

(R f. 15)
Cg

[Eq. {19a)]
Cd

[Eq. (19b)]

CS/CSO

[Eq. (19a)]

CS/CSO

[Eq. {19b)]

B
P
As
Sb
Ga
In
Bi
A1

6.0 X
1.4 X
1.5 X
7.0 X
4.5 X
80 X
8.0 X
2.0 X

10
1021

1021

10"
1019

10"
1017

0.0122
0.029
0.031
0.0014
0.00092
0.000016
0.000016
0.00041

6.0 X 1021

1021

45X10
1.5 X 1020

4.0 X 10"

18
10

188
500

0.0396
0.0372
0.039
0.0264
0.0124
0.0060
0.0156
0.0208

0.0392
0.0360
0.037
0.0220
0.0164
0.0064
0.0124
0.0192

3.2
1.3
1.3

19.0
13.5

375.0
975.0
51.0

3.2
1.2
1.2

16.0
18.0

400.0
775.0
47.0



MACROSCOPIC THEORY OF PULSED-LASER ANNEALING. III. . . .

columns 3, 6, and 7.
The agreement between experiment and theory is

certainly acceptable when one considers the various
uncertainties to which both the experiments and
calculations are subject. However, there are a few

comments which need to be made about the re-

sults. White et al. '5 shorn N~ ——8g10' cm 3 for
the case of In in Si and seem to imply that this
value comes from Trumbore's compilation; in fact,
all Trumbore states is that the value of Nq for In
is probably &4)&10' . Also, Fig. 12 of Ref. 15

appears to indicate that the measured value of the
maxiIQufQ concentration In In should be appI'oxi-

mately 2.0&10 rather than 1.5&10, as shown

here and in Table III of the same reference. In
that case, the experimental value of Cq/Cq could
be as high as -500 rather than the 188 shown in

Ref. 15; this would significantly improve the agree-

ment between the measured and computed values.

The calculated value of Cz/Cq for Ga is signifi-

cantly higher than the measured value. Approxi-
mately 50% of the Ga was lost during the laser

annealing and this makes an accurate determina-

tion of k; difficult. Also, the calculations of k;
seem to be consistently too high and this may
mean that Kodera's value of D& for Ga is substan-

tially in error or is not a good indication of the
value of D; needed in the calculation of k;. Ironi-

cally, the greatest percentage disagreement betmeen

theory and experiment is for arsenic, which should

be well-behaved because its atomic radius is very

close to that of silicon. This disagreement prob-

ably occurs because the assumptions leading to Eq.
(42) are overly simplified. It should be noted that
Eqs. (41) and (42) make Cq~O as u~O and this
cannot be correct. For dopants with small values
of k; this is of little importance, but for dopants
such as As which have large values of k an ex-

pression which behaves properly at small U mould

be useful. Such an expression might also affect the
choice of Kf, for which the value of 100 m/sec
may seem rather high to some readers. Finally, it
should be noted that the value of E~ observed for
As means that Cq-0. 12, and therefore the concen-
tration of dopant atoms can no longer be con-
sidered dilute.

Formation of cellular structure due to the break-
down in stability of a planar melt front during the
solidification of materials is a well-known

phenomenon. " In the laser-annealing experiments,
the cellular structure consists of regions of host
material containing the solute or dopant atoms at
relatively low concentrations surrounded by the cell
walls in which the concentration of dopant is
much higher. Clearly, the questions of the depen-
dence of the solubility on interface velocity and the
solubility limits which are ultimately attainable are
closely related to the question of how the stability
of the planar interface is influenced by the various
physical parameters entering into the problem

A. Review of the Mullions and Sekerka theory
of cellular structure

Mullins and Sekerka have given an elegant for-
mulation and solution of the interface stability
problem by considering the effects of a sinusoidal
perturbation imposed on the planar interface. The
interested reader should study Ref. 4 for the details
of the Mullins-Sekerka (MS) treatment, but here it
seems appropriate to discuss briefly the three major
assumptions underlying that treatment. The first
assumption is that steady-state solidification has
been attained and that mass (dopant) and heat
transport can be described by the appropriate con-
ventional diffusion equations" (no convection).
The use of diffusion equations to describe redistri-
bution of dopants in the molten material is in ac-
cord with the melting model of pulsed-laser an-
nealing, but it frequently happens that steady-state
conditions are not attained for some dopants in the
shallow surface region melted by the laser radia-
tion (see Ref. 2). The second assumption imposed
by Mullins and Sekerka is that the sinusoidal per-
turbation is sufficiently weak that its effects ori the
dopant concentration and temperature distributions
a few wavelengths from the moving liquid-solid in-
terface are completely negligible.

The tlill'd assuiilptioil of tile MS treatiileflt con-
sists of two boundary conditions imposed at the
liquid-solid interface. The first condition is of par-
ticular interest here because it relates the tempera-
ture at the interface to the hquidus curve on the
phase diagram. Let T~ be the temperature of the
sinusoidally varying interface when the solute is
present and Tz the temperature in the absence of
the solute. Then the MS theory requires that

Ty may+ Tyg, —— (43)

in which m is the slope (including sign) of the
liquidus 1irie on the phase diagram and C~ ~ is the
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dopant concentration in the liquid at the interface.
T~ is assumed to be related to the melting tem-
perature of the host T~ for a planar interface con-
dition by the capillary (surface tension) formula

T~ ——Tp+TpI E'.

SoCd(x) =Cd 1+ exp( —ux/D~ )
k;

(46)

In this relationship, E' is the average curvature at
a point of the interface and I is a capillary con-
stant. For the purposes of this paper, the impor-
tant point about Eq. (43) is that m is the slope of
the liquidus line and local equilibrium is assumed
to hold in the liquid; nothing is assumed about the
thermodynamic conditions in the solid.

The second condition to be satisfied at the inter-
face requires that the interface velocity used in the
dopant diffusion calculations must be consistent
with the velocity obtained from the heat diffusion
equations. This condition is expressed by

'-'(&) = E, — Eg-
Lp

' Bx ~ Bx

Dd BCd

Cg p(k; —1)
(45)

&n which E, and E( are the thermal conductivities
of the pure host in the solid and liquid states,
respectively, T, and T~ are the corresponding tem-
peratures and all other symbols have been previ-
ously defined; the subscript P means that the quan-
tities involved are to be calculated at the sinusoid-

ally varying interface. The partial derivatives in

Eq. (45) indicate that the interface is assumed to be
moving in the x direction. The dependence of U on
z comes about because the interface is no longer
planar once the sinusoidal perturbation has been

superimposed, and hence the velocity varies from
point to point on the interface. Of course, U will

depend on y also, but the extension to include this
dependence is trivial, as Mullins and Sekerka point
out. The relationship between the velocity of a
melt front and the thermal gradients is well

known; it is just an expression for the heat-flow
equation. The relationship between the velocity
and the derivative of the dopant concentration
comes from an expression apparently first derived

by Tiller et al. but now found frequently in the
literature. This expression if just the steady-state
solution of the dopant diffusion equation for the
case in which the initial dopant concentration Cd
is uniform and the melt-front moves with constant
velocity, ' the solution is

in which x is measured relative to the moving
liquid-solid interface. The boundary condition at
the interface is Cd(0) =Cd /k; and at x = 00,

Cd( m ) =Cd . Differentiation of Eq. (46) and use
of the interface boundary conditions gives the rela-
tionship between velocity and concentration at the
interface expressed in Eq. (45). It appears that
Mullins and Sekerka meant for k; in Eq. (46) to be
the equilibrium interface segregation coefficient,
i.e., k; in the notation of this paper, but there is
nothing in the derivation of Eq. (46) that restricts
k; to be k; . This is an important point and to-
gether with the fact that Eq. (43) involves only the

slope of the liquidus implies that the MS treatment
is not restricted to conditions of thermodynamic
equilibrium. More serious objections to applying
the theory to the laser annealing of ion-implanted

samples might be that (1) the initial concentration
of dopant will generally not be uniform, and (2) for
low values of k; steady-state conditions will not be
attained before the solidification front reaches the
surface of the sample.

In any case, the central result of the MS theory

is an expression for the time derivative of the in-

finitesimal sinusoidal perturbation of the interface

[Eq. (20) of Ref. 4]. Analysis of this expression

shows under what conditions instability of the

planar interface is expected to occur. The analysis

also provides an estimate of the cell size, but Mul-

lins and Sekerka point out that in general the

theory cannot be expected to give reliable predic-

tions concerning the cell size unless the instability

is known to be weak. Cahn et al. have applied

the MS theory to an analysis of cellular formation

under conditions which they apparently felt ap-

plied to the ultrarapid crystallization characteristic
of pulsed-laser annealing. However, they did not

have available to them at the time certain experi-

mental and calculated data which would have un-

doubtedly influenced their application of the MS
theory. In particular, the experimental data which

are now available show that the stability against

cellular formation is much greater than predicted
in Ref. 35 and that the predicted cell sizes are con-

siderably different from those actually observed.

The thermal gradients at the interface assumed by
Cahn et al. are much smaller than those calculated

by Wood and Giles, ' but the most serious short-
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coming of their calculations is the assumption that
local equilibrium has to apply in the MS treatment
and that as a consequence equilibrium or near-
equilibrium values of the segregation coefficient
should be used. As mentioned above, this is an un-

necessary assumption, and Narayan found that
when he used in the MS theory values of k; given

by White et al. ' and/or the expression for k;
given by the present author in ref. 3, he obtained
fairly good agreement with his experimental data.
The results of calculations which clearly show this
to be the case will now be presented and discussed.

B. Calculations pertaining to cellular structure

Figures 6 and 7 show the results of stability cal-
culations with Eq. (20) of Ref. 4 for Sb and In in

Si, respectively. The two dark solid curves on each
figure give the demarcation lines between stable
and unstable regions of the plots of concentration
vs melt-front velocity. The lower curve was calcu-
lated with k; =k; and the upper curve with

k; =k;(U) given by Eqs. (17), (18), and (19a) using
exactly the same data used to generate the curves
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of Fig. 2. Values of m (slope of the liquidus curve)
were estimated from the phase diagrams of Sb and
In in Si and the capillary parameter was taken
from Ref. 35. The dashed curves in the figures
give the "capillary limit" for which

kg TI, I U

m (k; —1)Di
(47)

[see Eq. (27) of Ref. 4]. This is an absolute stabili-
ty criterion which holds when the capillary effect
completely dominates the effects of constitutional
supercooling due to the presence of the solute. The
thermal gradient or constitutional supercooling
limit given by (see Ref. 35)

DIk; GL

m (k; —1)U
(48)
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FIG. 6. Results of an interface stability calculation
for Sb in Si following the Mullins and Sekerka theory
and using values of k; calculated with Eq. (19a).

represents the opposite extreme; these curves do
not appear in Fig. 6 because they lie so close to the
ordinate on the scale chosen. The light horizontal
line, labeled C, (k; =0.023), in Fig. 6 gives the
equilibrium solubility limit (U=O) estimated from
the compilation of Trurnbore (see Table IV). The
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other horizontal line, labeled C, (v=3m/sec), indi-
cates the approximate nonequilibrium concentra-
tion given in Ref. 15. The corresponding lines on
Fig. 7 were obtained in the same manner, but with
U =4 m/sec for In in Si. It should be realized that
because k; ~k; as v ~0, the stability curves for
k; =k~(U) and k; =k; must go to the same values
as v~0.

From Fig, 6 it can be seen that when k; =k;(U),
no cellular structure is expected to appear at v =3
m/sec for the concentrations of Sb used thus far in
the experiments. On the other hand, if at v=3
m/sec, k; had the equilibrium value of k, , the
planar melt front would be unstable against cellu-
lar formation at a concentration more than an
order-of-magnitude lower than for k; =k;(U). No
cellular structure has been reported yet for laser-
annealed samples of Sb-implanted Si and the agree-
ment between experimental and calculated [Eq.
(42)] values of C, /C, ( =C»/C» ) ~s good, as md~-

cated in Table IV.
In the case of In in Si, shown in Fig. 7, the ratio

of C»/C» observed experimentally was reported to
be 188, wher|;as the calculated values shown in

Table IV are higher. It can be seen from Fig. 7
that the line for C,=0.003 atomic fraction crosses
the k; =k;(U) stability curve at =4 m/sec. Thus,
small errors in the melt-front velocity and/or con-
centration of dopant could account for the factor-
of-2 discrepancy which does exist between the ex-

perimental and calculated C»/C» ratios. Also it
should be recognized that when cellular formation
does occur the amount of dopant left within the
cells is not necessarily the maximum that can be
placed substitutionally in the lattice at the particu-

lar crystallization velocity. The MS theory does

not give quantitative information about the concen-

tration in either the cells or the cell walls. It
would seem that the correct way to establish the

maximum concentrations is to approach the insta-

bility curves in Figs. 6—8 from below, i.e., by

keeping the velocity fixed and gradually increasing

the concentration until the instability just sets in.
Of course, this would also be the best method for
establishing the critical cell sizes discussed below.

For this reason, the concentrations given by %hite
eI; al. ' are not necessarily the maximum ones that
can be attained at the velocities they used.

Figure 8, which is quite similar to Fig. 6 and 7,
shows the stability diagrams for Bi in Si using

both Eqs. (19a) and (19b) in the calculations of k;.
Both stability curves with k; =k;(u) predict that at
v =4—4.5 m/sec, no cellular structure should be

10
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FIG. 8. Stability calculations for Bi in Si using the
Mullins and Sekerka formulation; the results obtained
using both Eqs. {19a)and (19b) are shown.

observed for Bi in Si at the maximum concentra-
tion en1ployed ln the experiments of Ref. 15. Ex-
perimental conditions for which cellular structure

appears in the laser-annealed Bi-Si system have no(

been reported as far as this writer knows. Howev-

er, the results shown on Fig. 8 suggest that, for the

same ion-implantation conditions used in Ref. 15,
use of substrate heating to slow the melt-front
velocity to -2 rn/sec should lead to cellular for-
mation. Of course, annealing of samples with suf-

ficiently high implantation doses without substrate
heating should also produce cellular formation.

The calculations which lead to the curves

displayed in Figs. 6—8 also provide information
about the dependence of the cell size on various
parameters. In Fig. 9, the cell size at the onset of
the interface instability is shown as a function of
melt-front velocity. It can be seen that the cell
size initially decreases rapidly with velocity and
then goes into a region of much slower decrease.
The concentrations corresponding to these cell
sizes can be taken from curves like those of Figs.
6—8. It may be somewhat difficult experimentally
to determine critical ce11 sizes to compare with the
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FIG. 9. Cell size at the onset of the interface instabil-

ity as a function of melt-front velocity for Sb, Ga, and

In in Si using k; determined from Eq. (19a). The criti-
cal cell size decreases and the critical concentration in-
creases (see Figs. 6 and 7) with U.

calculated values because of the difficulty in

preparing samples with the correct concentrations
Rnd ln cstabllshlng lascl-anncallilg conditions
which give exactly the right melt-front velorities to
map out the boundary between the stable and un-

stable regions. Moreover, Fig. 9 shows that for v

in the range of 4 m/sec, the critical cell size is less

sensitive to the velocity than it is at lower values

of U.

The curves displayed in Fig. 10 give information

of a somewhat different type. To construct these

curves, a melt-front velocity ls chosen Rnd thc
dopant concentration at which a particular cell size

appears is determined. For example, in Fig. 7, let
us suppose that 4 m/sec has been chosen for U and
then determine the cell size for each concentration
above t4c cfltlcR1 conccntrat1OQ for instability.
This leads to curve 2 for the In group of curves on

Fig. 19. The point furthest to the right on each
curve on fig. 10 corresponds to the cell size and

dopant conccntlatlons at thc onset of the lntcrfa-
rial instability. It should be noted that if one

holds the concentration fixed and increases the
melt-front velocity, the cell size increases up to a
certain maximum value corresponding to that at
which the stability curve (Figs. 6—gi is crossed. It
is apparent from Fig. 10 that for a given concen-
tration, the increase in cell size is very rapid as the
velocity approaches that of the stability curve. As
already mentioned above, this means that reliable
values of thc cell size at the onset of the instability
will be difficult to determine experimentaBy.

Thc IDain point ln prcscnt1ng Figs. 6—8 ls to
demonstrate how the VDAE model leads to results
which are in satisfactory agreement with the exper-
imental data and to show the reader that calcula-
tions using k; in the MS formalism give results
which differ from the observed data by orders of
magnitud. As stated earlier, Mullins and Sckcrka
cautioned against the reliability of predictions
about cell sizes unless the instability is known to be
weak. However, from the sparse data that is now
available, it appears that the predictions of cell size
alc pclhaps IDoI'c accuI'Rtc than might bc cxpcctcd.
Narayan has reported cell diameters of 700 A,
520 A, and 350 A respectively for Ga, In, and Fe
in Si after laser annealing with pulses which
sllould have produced IIlclt-front vclocltlcs of ap-
proxirnately 4 m/sec. In fact, the Ga and In sam-
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plcs were the same as those used by White et al.
(see Figs. 11 and 12 of Ref. 15) in their experi-
ments. Thc conccntfatlon of In 1A thc ncaI'-sul face
region was —1.0&10 '. After converting this con-
centration to an atomic fraction, it can be seen
from Fig. 10 that the calculated cell size is -500
k The Ga results are somewhat more difficult to
interpret because of the loss of dopant that occurs
Rnd bccausc thc Ga disjr1but1on 1s 1athcl sharply
peaked in the near-surface region (Fig. 11, Ref. 15).
A concentration of 8&10 seems not unreasonable
and from Fig. 10 gives a cell size of —1200 A.
Smaller cell sizes would undoubtedly be obtained if
corrections for dopant loss could be made, or if the
valve of k; from the VDAE model were somewhat
smaller than that shown in Fig. 2. Trumbore has
reported a value of k; =8X 10 for Fe in Si but
no values of D~ for Fe in liquid Si are available.
As discussed in Sec. III C, a value of D~ ——8& 10
cm /sec was chosen for Cu, Au, Ag, Co, and Fe
when calculating k; =k;(U). An estimate of the
concentration of Fe in the samples examined by
Narayan is not available to the author, but Fig. 10
shows clearly that the calculated cell size for Fe
follows the observed trend quite well.

After this paper was virtually completed, a brief

account of experiments and calculations on cellular

formation of In in Si during pulsed-laser annealing

was published by Cullis et ah. It appears that

thcfc 1Tlay bc solTlc funda1Tlental differences be-

tween the experimental results in Ref. 15 and 37
and between the calculations reported here and in

Ref. 37, For example, the data in Table I given by

Cullis et aI. seem to imply that under experimental
conditions not greatly different from those used in

Ref. 15, approximately 1.1 atomic percent of In

can be put into Si substitutionally at a recrystalli-

zation velocity of 4 m/sec. White et a/. found that

only -0.3—0.4 atomic percent cf In could be in-

corporated into Si at a melt-front velocity of
4—4.5 m/sec. If this interpretation of the Cullis

et al. data is correct, the calculations in this paper

give results which fall in between the results of
Rcf. 15 Rnd 37. Howcvcl, without morc dctailcd

information about the work of Cullis eI: ah. , it is

difficult to make a meaningful comparison of their

results„ the results reported 1D Ref. 15, and the cal-

culated results reported here.

VI. DISCUSSION

The reader will have realized that numerous sim. -

pllfy1ng assuIIlptlons have bccn IIladc 1D Rrr1vlng Rt

the VDAE model and the results described in the
preceding sections. Many of these assumptions are
typical of those often made in traditional theories
o~ solidification processes in binary systems, e.g.,
ideal dilute solutions, and the success of these
theories argues for the basic validity of these as-
sumptions. Thc fact that thc assunlpt1ons also Rp-

parently work well in the present model indicates
that the ultrarapid solidification, as such, does not
alter their validity. It is really rather remarkable
that the introduction of the concept of velocity-
dependent activation energies within the frame-
work of R s11Ilplc kinetic 1atc mendel lcacls to sUch

satisfying explanations of so many of the observed
results. On the other hand, it is almost intuitively
clear that the activation ener'gy for a transition of
a dopant atom from the solid to the liquid must
depend on the velocity of the liquid-solid interface.
The reader wi11 also realize that on many of the
flguI'cs thc calcUlRtlons hRvc bccn cxtcndcd beyond
the apparent range of validity of the model; this
wRs clone prlnlarlly foI' 111ustrRtlvc purposes. A
thorough testing of the D1odel and its range of vali-

dity can only bc made as IIlolc cxpcrimcntal data 1s

accumulated and the D1odel itself is further
developed. In this section, therefore, rather than
discuss in greater detail some of the finer points of
the model, we will devote our attention to several
areas of morc general interest.

A.. "Solute Trapping"

Baker and Cahn ' have used the terminology
solUtc tI'Rpp1ng to clcscflbc the s1tURtlon 1A which

a solute atom experiences an increase in chemical
potcnt1al Rs 1t CI'osscs the interface. ID th1s sUbscc-

tion it will be shown that the model developed here
satisfies the Baker and Cahn criterion for solute

trapp1ng 1n d11Utc Solutions,

BRkc1 Rnd Cahn hRvc glvcn thc follow1ng cxaIIl-

ple of the calculation of the change in chemical
potential for a simple case in which dilute solu-

tions RI'c pfcscnt ln both thc solid Rnd liquid. FOI'

such solutions the chemical potentials of the
dopant in the solid and liquid arc given, respective-

ly, by Henry's law:

pd 8'+RT In(y*Cg ),——

pd =8'+RT ln(y'Cg) .
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gy. The constants may be eliminated by using the
condition that pd and JMd must be equal at equili-
brium, i.e., when Cd ——Cd and Cd ——Cd,' Cd and

Cd are the concentrations in the solid and liquid
at equilibrium. The change in the chemical poten-
tial experienced by a single dopant atom as it
crosses the interface region is then given by

Cd Cd
hpd ——pd —pd ——kT ln (s0 ( I

d d

or, since k; =C~ /C~ and k; =C~/C~,

b,ju& ——kTln(k;/k; ) .

(50)

(51)

Since the B's and y's are temperature dependent
and were eliminated by using equilibrium condi-
tions, the T in Eqs. (49a) and (49b) is the tempera-
ture appropriate for solidification under nearly
equilibrium conditions. For dilute solutions, T is
approximately T~, the melting point of the pure
material, and therefore

k, =k,'exp(b, p, /kT„) .

Comparing this to Eq. (18), it is found that

EIJ,~ = —kTslnk; f(U) .

(52)

(53)

At or very near equilibrium v=0, f(u)=0, and the
dopant experiences no change in chemical potential
as it crosses the interface. For very high interface
velocities f(U)~1, and the maximum value of the
change in chemical potential is hU~' of Eq. (17).
Thus, the model developed here does indeed imply
an increase in the chemical potential if k; is to
exceed k;, as Baker and Cahn require.

It is worthwhile to consider in more detail the
relationship between the requirement for a positive
value of b,p~ for solute trapping to occur and the

physical content of the model developed here. It is
not sufficient to examine the energy diagrams of
Fig. 5 because none of the quantities shown there
are the chemical potentials which exist during the
solidification process. As explained at the end of
Sec. III D, the vibrational energies of the dopant
atoms are not included in these diagrams. Let us

go back to Eq. (11) and calculate k; on the basis of
the developments in Secs. III A, III 8, and III D.
From Eqs. (11), (12), (13), and (16) we have

Uz —Uz . Assuming that T=Tq and using Eqs.
(34), (36), and (37), it can be shown that

k; =exp I [(U~ U~—)f (U)

—( Uq —Uz')]/kTs I, (55)

which is nothing more than another form of Eq.
(18). Equation (22) can be used to put k; in the
form

k;=k exp[(Ug —Ug )f(U)/kT/, ] . (56)

What has been demonstrated by this exercise is
that the quantities appearing on the energy-level
diagrams can be used to get back to the expression
for k;. From Eqs. (54) and (55) it is seen that the
quantity U~ appears explicitly. In spite of this, it
should be clear by now that Ud cannot be deter-
mined from the model developed here, although
the difference U~ —U~ can be. Since k; of Eq.
(56) already contains the ratio of the A's given in

Eq. (34), the quantity ( U& —U~ )f(v) represents the
true change in the chemical potentials. The veloci-

ty dependence of this quantity can be interpreted
in the following manner. The thermodynamic con-
siderations of Baker and Cahn put the very gen-
eral requirement on the system that if k; is ob-
served to be greater than k; there must have been
an increase in the chemical potential of the dopant
atoms as they crossed the interface. Nothing how-

ever is said about the physical mechanism by
which this increase is obtained; the terminology
"solute trapping" is defined only in terms of the
increase in the chemical potential and solidification
at near-equilibrium rates. Loosely speaking, the
VDAE model developed here shows how the in-

crease in chemical potential implied by the thermo-
dynamic arguments is compensated by the velocity-
dependent Ud so that solute trapping can actually
occur. Thus, the build-up in Ud with velocity is
always exactly enough to compensate the increase
in bp~ implied by the ratio of k;/k; that is ob-
tained. However, it should be noted that since an
upper limit to Ud is given by Ud, there may very
well be some dopants for which Ud will not be suf-
ficient to ensure complete trapping (k; =1) in a
dispersed phase.

k;=( Ag A/g)e pxj [Uq Uq' EUq(v—)]/kT—J . —

(54)

B. Limitations of a thermodynamic approach
to pulsed-laser annealing

It has been previously assumed that E~ =XI (Eq.
10) and that Aq ——Az, and therefore it follows that

It has already been emphasized that the large
departures of k; from k; (Table I) and the fact
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that the conventional solubility limits for some
dopants can be exceeded by orders of magnitude
show that the ultrarapid solidification characteris-
tic of pulsed-laser annealing involves processes oc-
curring well away from thermodynamic equilibri-
um. Since conventional phase diagrams always as-

sume thermodynamic equilibrium to hold, it is leg-
itimate to question the application of conventional
thermodynamic concepts and the predictions of
thermodynamics to the laser-annealing process.
Specifically, thermodynamic approaches to the
solidification problem invariably involve the re-

quirement that the liquid-solid interface be at some
temperature. This requirement is necessary in ord-
er to relate various quantities to the phase dia-

grams. Since, in principle, equilibrium thermo-
dynamics does not even allow for the motion of
the liquid-solid interface, it is necessary to intro-
duce rate equations of the type appearing in Sec.
III A in order to have a theory of solidification.
For the freezing of a one-component liquid, simple
considerations based on rate equations leads to the
expression (Ref. 31)

face in order to establish that deparatures from lo-
cal thermodynamic equilibrium have occurred.

The foregoing discussion is not meant to imply
that equilibrium thermodynamic data and phase
diagrams are of no value in studying nonequilibri-
um phenomena. This is clearly not the case, as is
illustrated by the MS treatment of cellular forma-
tion. Moreover, it seems possible to utilize Eq.
(57) to set up a rough operational correspondence
between the melt-front velocity and the tempera-
ture of the interface. However, the utility of this
equation is limited by reliable information about
the rate constant K~. In any case, when large
departures from equilibrium occur, as they evident-

ly do during pulsed-laser annealing, predictions
based on equilibrium thermodynamic concepts
should be treated with caution. For this reason, it
should not be surprising if "absolute" solubility
limits based on the thermodynamic considera-
tions of Baker and Cahn are exceeded at the high
recrystallization velocities attained during pulsed-
laser annealing.

I.I,EI',

, (Ts —T) .
RTg

(57) C. Anisotropic segregation effects

In such an equation, T is usually referred to as the
"temperature of the interface" or TI, —T is called

the "degree of undercooling. " This terminology
may have some meaning when conventional freez-

ing rates are being considered, but its meaning is
more difficult to specify when applied to ultrara-

pid solidification phenomena.
The differential-equation approach to the solidif-

ication problem shows that it is the gradient of the
temperature at the interface that determines the
melt-front velocity [Eq. (45)]. The calculations of
paper I, which were based on the finite-difference
heat diffusion equation, in effect required the in-

terface to be at the melting temperature of the ma-

terial during the solidification process. Of course,
as we have already seen in this paper, the interface
should be thought of as having finite dimensions
and not as a dividing plane between the solid and

liquid. This again illustrates the difficulties in-

volved in trying to define a quantity that could be

called the "temperature of the interface". More-

over, even if such a concept had meaning it would

be virtually impossible to measure the "interface
temperature" during rapid solidification. Recogni-
tion of this difficulty led Baker and Cahn to con-

sider a retrograde system (Zn-Cd) for which it is

not necessary to know the temperature of the inter-

Indications that k, may be dependent on the
direction of crystal growth have been in the litera-
ture for some time. Under the nonequilibrium
conditions of pulsed-laser annealing, directional ef-
fects are likely to become more apparent and it is
of interest to consider their origin in terms of the
VDAE model. Since k; is dependent on the
growth velocity through U~(U), if u were dependent
on growth direction, there would be a directional
dependence automatically imparted to k;. It is
possible that v does depend on growth direction
during laser annealing, but it is unlikely that this
dependence is strong. Moreover, the heat transport
equations used in Ref. 1 do not provide a mechan-
ism for direction-dependent solidification rates;
therefore, a direction dependence for v will not be
considered further here. Instead, it will be recog-
nized that U~ most likely depends on direction
through Uo of Eqs. (19a) and (19b). In order to see
how this can come about, the consequences of the
layer structure which forms in the interface re-
gion ' as the transition from the liquid to the solid
state evolves will be considered in more detail.

Study of the Si lattice shows that in the [100]
direction, the covalent bonding with a given Si
atom, or with a comparably bonded group III or V
dopant atom, involves three planes of atoms
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separated by a total distance of hx (100)=It /2,
where a is the lattice constant. hx will be called
the repeat distance. The corresponding distances
for the [111]and [110]directions are hx (111)
=a/v 3 and hx(100) =u/I/2, respectively. The
sparing 5x between the planes is uniform in the
[100] and [110]directions, but not in the [111]
diiection. Based on these simple considerations, it
might be concluded that dopant atoms would be
incorporated into the solid most efficiently in the
[100] direction. However, such consideratjons do
not take into account the strong tendency for
dopant atoms to make transitions back toward the
liquid (see Fig. 1). A model which by necessity
Illllst bc gi'catly ovcrsilIlpllf lcd, but which docs
take this tendency into account will now be
sketched,

Suppose that during crystallization the atoms in
an entire layer are deposited in a time interval
5t(hkl)=5x(hkl)/u. Suppose further that the nth

layer has just been completed during crystallization
ill the [hkl] direction. Wllllc tlM ntll layer was

forming, the n +1 layer was also beginning to
form (this is indicated schematically by the oscilla-
tloIls 111 region I of Figs. 1 aIid 5). Bcforc tllc
n +1 layer can be completed a dopant atom in the
fifth lager may make 8 jtImp 1nto 3, vacancy 18 the
n +1 layer. Let P;(hkl) be the probability per unit
time that such a jump of the dopant atom occurs;
the subscript i is necessary to distinguish the dif-
ferent interlayer spacings 5x;(hkl) contained in

du(hkl); e.g., i =2 in the [111]direction, The
velocity of a dopant atom in the interface region
(Fig. 1), time averaged over the repeat distance, is
giveI1 appf'Qx1mately by

Uo(hkl) = g P;(hkl)5t;(hkl)

formjng; hence Pi (100)a 1/2, Simjl@rly, for the

[111]dlteetion Pl (111)~ 1/4 and Pz(111)o:3/4.
The [110]direction presents a special problem be-

cause ln a Perfect crystal an atom in, any (110)
plane is bonded to two other atoms in the sanlc
plane Thus, while thc nth plane is formjng, the
number of bonds a dopant atom has with host
@toms in the same plane changes from zero to two.
There is no obvious way axound this djfficulty at
the level of the approximations being made here
and so it will be assumcti that on the average dur.
ing the tittle the nth plane js formjng a dopant
atom is bonded to one other atom in the plane;
hence Pl(110)~ 1/2.

When the details of thc procedure given above
are worked out and the various quantities are sub-
stituted into Eq. (58) it is found that uo(111)
=0.866uo(100) and uo(110) = 1.414ps(100). Fig-
ure 11 shows the results of calculations of k;(hkl)
for Sb and Bi in Si usjng Rq. (kgb) for P~(v). Al-

though these results have little more than qualita-
tive significance, in amving at the value of
uc(111) it became evident that the interplanar spac-
ings and the bonding properties in the [111]direc-
tion are such that dopant atoms qannot move as
readily in this direction as they can in the [100]
and [110]directions, It should be noted that since
vo(100) was related to Di by vo—-D;/xo and to Dt
by u&=Dt/xo [see discussion following Hq. (20)],
variatjons of vo are equivalent to varjations of Dt
with xIl kept fixed. Thus, Fig. 11 also gives an in-
dicatjon of the sensitivity of k; to uncertainties in
the values of Dt.

$Q
I l

x 5x;(hkl)/ht(hkl) (58)

with ht (hkl) =du (hkl)/U.
A rigorous calculation of P, (hkl) and hence

Uo(hkl) would be virtually impossible since it
would involve the calculation of frequency factors,
accommodation coefficients, activation energies,
ctc. for transitions in the interface region about
which we have no detailed knowledge. In order to
make any progress at all, it will be assumed that
the P;(hkl) are simply proportional to the fraction-
al number of unformed bonds associated with a
dopant atoM in the nth layer. For example, in thy

[100] direction an atom in the nth layer forms
bonds with two atoms in the n —1 layer and can
have two bonds with the n + 1 layer which is

... t, I, I t

0 2 6 8 &Q

v, MELT-FRQNT vgLocjTY [trl/sag]
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D. Other models
of nonequilibrium segregation

There have been a number of attempts in the
past to describe the dependence of the interface
segregation coefficient on the velocity of the
liquid-soiid interface. These attempts will be re-

viewed very briefly here and, where possible, relat-
ed to the VDAE model.

Jackson' took an approach based on kinetic rate
theory and came to the conclusion that the depen-
dence of k; on v was very weak. Baker and Cahn
subsequently pointed out that Jackson's theory did
not satisfy the thermodynamic criterion for solute
trapping and therefore could not be correct. The
difference between Jackson's approach and the
VDAE model is that Jackson did not allow the
rate constants to depend explicitly on the interface
velocity. The types of arguments that Jackson
used to obtain a v-dependence of k; are essentially
the same as those used to derive the temperature
dependence of k;. As a result, his derivation was
tied too closely to equilibrium phase diagrams, and
could not apply to truly nonequilibrium segrega-
tion.

Thurmond ' has given a simple expression for
the dependence of k; on v, also based on kinetic
rate theory. In fact, his expression is essentially
the same as Eq. (g) of this paper which, as we have

seen, gives the wrong velocity dependence to k;.
Again, the reason for this incorrect behavior is the
neglect of the velocity dependence of the rate con-
stants themselves.

Baker and Cahn have given critiques of four
theories of solidification based on irreversible ther-

modynamics. Each theory is shown to have its
shortcomings and the interested reader should con-
sult Ref. 38 for the details. Here, however, it is of
interest to discuss a few features of the Jindal-

Tiller theory. These authors divided the interface
region into a number of layers each of which is re-

garded as an open thermodynamic system undergo-

ing irreversible changes. While the layer nearest
the solidified material is undergoing a phase transi-
tion, it is also exchanging atoms with the layer
next to it, and so forth. In this respect, the
Jindal-Tiller model resembles the VDAE model
developed here. The major problem Jindal and
Tiller encountered was the difficulty of solving the
simultaneous equations for any number of layers
greater than one. The VDAE model in some sense

glosses over this problem by the time-averaging
process leading to Eqs. (19a) and (19b). Jindal and

Tiller obtained an expression for k; which has the
right behavior at large values of v but does not go
to kg. as v goes to zero.

At least two theories of nonequilibrium segrega-
tion based on modifications of the differential-
equation approach to solidification theory have
been proposed. As might be expected, the modifi-
cations involve the assumptions made about the in-
terface region. Whereas the more standard deriva-
tions based on the diffusion equation treat the in-
terface as a planar discontinuity (Ref. 11), the for-
mulations of Chernov" and Baker recognize that
the interface region must have finite width and
properties which are intermediate between those of
the solid and liquid. In this respect, these two
theories, are similar to one another and to the
VDAE model. There appears to be enough flexi-
bility built into the theories of Chernov and Baker
to account in principle for the nonequilibrium ef-
fects involved in ultrarapid solidification. Cahn
et a/. have illustrated the interface velocity
dependence of k; which follows from Baker' s
model when various assumptions about the inter-
face region are made.

All of the models discussed above were formu-
lated before the discovery of pulsed-laser annealing
and at a time when little or no experimental data
was available as an aid in the development of the
models. In addition to the VDAE model, two oth-
er models have been proposed in response to the
developments in the field of laser annealing.

Jackson et al. have proposed a model which in
some ways resembles the VDAE model described
here, ' however, it seems to have some builtin incon-
sistencies. These authors simply add a term pro-
poltional to the velocity to the numerator of Eq.
(g) (with Kd =Kd and Kd =Kd ), i.e.,

Xdf'+nv

X„"+v
(59)

The parameter a is interpreted as the fraction of
dopant atoms in the layer adjacent to the interface
which is trapped. Thus the maximum value a can
have is one, which should lead to the maximum
value of k;. Jackson ef; al. claim that it is fairly
unlikely that k;= 1 in alloys with retrograde solu-

bility, but we have seen that k
Sb in Si, Moreover, Jackson et ah. point out that
the above equation predicts that k; approaches o.

as v increases, which is certainly true. However,
this implies that v p) X,"and O.v)) X~I', which
seems highly unlikely. Also, it should be noted



MACROSCOPIC THEORY OF PULSED-LASER ANNEALING. III. 2809

that by adding the term av to the numerator of
Eq. (59), Jackson et al. imply that the rate constant
for a dopant atom jumping into the solid increases
rapidly with velocity. To this author, it seems
much more in accord with the concept of solute

trapping to make the rate constant for jumps Out

of the solid the one that changes rapidly with velo-

city, as the VDAE model does.
Morehead has described a finite difference cal-

culation of dopant diffusion which incorporates
kinetic rate effects at the interface. These calcula-
tions seem to incorporate a number of features
which resemble aspects of the VDAE model. The
values of the rate constants used by Morehead are
substantially smaller than those used in this paper.
Also, the agreement between experiment and his
calculated values of the maximum concentration to
be expected at any velocity is not good; the experi-
mental and calculated values differ by more than
an order of magnitude in many cases.

Finally, before leaving this discussion of other
models and calculations, it is of interest to note
that Hall, as early as 1952, proposed an expres-
sion for k; as a function of interface velocity
which is based on concepts similar to those in-
voked later by many people (including the author)
who have worked on the nonequilibrium segrega-
tion problem. Unfortunately, to this author' s
knowledge, Hall never published the details of the
model and the equations on which his final expres-
sion for k;(u) was based.

VII. SUMMARY AND CONCLUDING
REMARKS

In paper I of this series the heat transport equa-
tion, cast in finite difference form to allow for
temperature-dependent thermal properties and
melting, was solved for many different situations.
From a series of these solutions for a given model,
the position of the liquid-solid interface or melt
front as a function of time was obtained. The
duration of surface melting followed directly from
these calculations. Also, the velocity of the melt
front was calculated as a function of position and
time. To a first approximation, it was found that
the melt front velocity during solidification is con-
stant, and that an average value could be extracted
for use in other calculations.

In the second paper of' the series, information
about the melt front from paper I was used in cal-
culations of dopant diffusion. Dopant diffusion

coefficients in solid silicon are several orders-of-
magnitude smaller than the corresponding values
in the liquid and the experimental data show that
only values of DI can explain the spreading of the
dopant profiles during pulsed-laser annealing of
ion-implanted samples. Hence, knowledge of the
time during which a given part of the sample is
molten is crucial to the calculations. The experi-
mental data show clearly that values of the inter-
face segregation coefficients must be chosen much
greater than the equilibrium values. In paper II, k;
was taken as an adjustable parameter without in-

quiring into the mechanism for nonequilibrium ef-
fects. The values of k; differed from the equilibri-
um values by several orders of magnitude for some
dopants.

In this third and final paper in the series, a
model based on kinetic rate theory and using ac-
tivation energies which depend on the melt-front
velocity has been discussed in detail. This model
gives the dependence of k; on u in terms of a func-
tion f(U) whose limiting behavior at small and large
values of u can be prescribed, but whose exact form
would be extremely difficult to calculate. Simple
analytical forms of f(u) which give good agreement
with the limited amount of experimental data now
available were introduced. Using approximations
for dilute alloys frequently found in the literature,
an expression for the concentration of a dopant in
the solid as a function of U was obtained, and
found to give reasonably good agreement with ex-
perimental results. Next, it was shown that when
the expressions for k, =k;(U) are used in the Mul-
lins and Sekerka theory of cellular formation satis-
factory agreement with experiment is obtained. If,
on the other hand, the equilibrium value of k;
= k; is used there is no agreement whatsoever
with experiment. It was shown that the model in-
troduced in Ref. 3 and developed here satisfies the
Baker and Cahn criteria for solute trapping, i.e.,
that the change in the chemical potential of a
dopant atom in going from the liquid to the solid
is positive for values of k; greater than k;. It was
pointed out that the traditional thermodynamic ap-
proach of assigning a temperature to the interface
region may need modifications when the tempera-
ture gradients are very large, as they are in pulsed-
laser annealing. The dependence of k; on the
direction of crystal growth was discussed on the
basis of a very simple model. Finally, attempts of
other authors to obtain expressions for the velocity
dependence of k; were reviewed and compared to
the VDAE model developed here.



Although some authors continue to dispute the
validity of the melting model of pulsed-laser an-

nealing, ' it seems to this author that the re-

markable agreement between theory and experi-
ment obtained with this model argues almost
overwhelmingly for its essential validity. In any

case, it is difficult to exaggerate the importance of
the laser-annealing phenomena. From the stand-

point of basic solid-state physics and materials sci-

ence, it has provided for the first time a method

for achieving ultrarapid recrystallization under
well-controlled conditions. It thus opens up possi-

bilities for exploring nonequilibrium thermodynam-
ic effects that were not previously accessible to ex-

perimentation. From a more applied viewpoint,
pulsed-laser annealing offers a variety of new fabri-

cation tcchn1qucs fol semiconductor dcvlccs.

Many of these techniques have already been ap-

plied to the fabrication of high-efficiency single-

crystal silicon solar cells * and laser-induced

melting shows promise of being a useful tool in the

study of grain boundary effects in polycrystalline

materials. ' The metastable alloys formed when

the equilibrium solubility limit is surpassed during
pulsed-laser annealing are essentially new materials
whose properties and applications are just begin-

ning to be extensively investigated. It is not diffi-
cult to understand why laser annealing, or more
generally laser processing, has generated such in-

tense interest among solid-state physicists and ma-

terials scientists.

ACKNOWLEDGMENTS

I am particularly grateful to F. %. Young, Jr.
for numerous useful discussions, for critical read-

ings of several versions of the manuscript, and for
gcncral 1ntcrcst 1n thc progress of thc work report-
ed here. This research was sponsored by the Divi-
sion of Materials Sciences, U. S. Department of
Energy under Contract No. W-7405-eng-26 with

the Union Carbide Corporation.

1R. F. Wood and G. E. Giles, Phys. Rev. 8 23, 2923
(1981).

~R. F. Wood, J. R. Kirkpatrick, and G. E. Giles, Phys.
R . B 23, 5555 (1981).

3R. F. Wood, Appl. Phys. Lett. 37, 302 (1980); R. F.
Wood, J. C. Wang, G. E. Giles, and J. R. Kirkpa-
trick, in Laser and Electron Beam Processing of Ma
terials, edited by C. W. White and P. S. Peercy
(Academic, New York, 1980), p. 37.

4W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35„
444 (1964).

~I. B. Khaibullin, E. I. Shtyrkov, M. M. Zaripov, M. R.
Galyautdinov, and G. G. Zakirov, Fiz. Tekh. Polu-

provodn. 11, 330 (1977) [Sov. Phys. —Semicond. 11,
190 (1977)].

6J. C. Wang, R. F. Wood, and P. P, Pronko, Appl,
Phys. Lett. 33, 455 (1978).

P. Baeri, S. U. Campisano, G. Foti, and E. Rimini,
Appl. Phys. Lett. 33, 137 (1978); J. Appl. Phys. 50,
788 (1979).

88. K. Jindal and W. A. Tiller, J. Chem. Phys. 49, 4632
(1968).

9J. C. Baker and J, W. Cahn, Acta Metall. 17, 575
(1969),

'oF. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
"See, for example, V. G. Smith, W. A. Tiller, and J. %.

Rutter, Can. J. Phys. 33, 723 (1955) and the brief re-

view in Ref. 2 above.
'2C. W. White, J. Narayan, and R. T. Young, Science

204, 461 (1979).
'3R. T. Young, J. Narayan, and R. F. Wood, Appl.

Phys. Lett. 35, 447 (1979).
K. A. Jackson and H. J. Leamy, in Laser-Solid In-
teractions and Laser Processing, edited by H. J.
Leamy and J. M. Poate (American Institute of Phys-
ics, New York, 1979), p. 102.

'5C. W. White, S. R. Wilson, B. R. Appleton, and F. W.
Young, Jr., J. Appl. Phys. 51, 738 (1980).

16J. R, Poate, H. J. Leamy, T. T. Sheng„and G. K.
Celler, Appl. Phys. Lett. 33, 918 (1978); G. J. van

Gurp, G. E. Eggermont, Y. Tamminga, W. T. Stacy,
and J. R. M. Gijsbers, Appl. Phys. Lett. 35, 273
(1979).

17A. G. Cullis, J. M. Poate, and G. K. Celler, in Laser-
Solid Interactions and Laser Processing, Ref. 14, p.
311;J. Narayan, J, Met. 32, 15 (1980).

'8I would like to thank F. W. Young for first bringing
this to my attention.

'9K. A. Jackson, Can. J. Phys, 26, 683 (1958).
~08. Chalmers, Trans. AIME 200, 519 (1954).
21H. Kodera, Jpn. J. Appl. Phys. 2, 212 (1963).
22Y. M. Shashkov and V. M. Gurevich, Zh. Fiz. Khim.

42, 2058 (1968) [Russ. J. Phys. Chem. +4, 1082
(1968)].



MACROSCOPIC THEORY OF PULSED-LASER ANNEALING. III.

23C. W. %'hite, B. R. Appleton, B. Stritzker, D. M.
Zehner, and S. R. Wilson, in Laser and Electron-
Beam Solid Interactions and Materials Processing,
edited by J. F. Gibbons, L. D. Hess, and T. %'. Sig-
mon (Elsevier North-Holland, Amsterdam, 1981), p.
59.

24A. G. Cullis, H. C. %ebber, J. M. Poate, and A. L.
Simons, Appl. Phys. Lett. 36, 320 (1980); R. F.
%ood and G. E. Giles, ibid. 38, 422 (1981).

z F. Seitz, in The Modern Theory of Solids (McGraw-
Hill, New York, 1940), p. 345.

2 C. Kittel, in Introduction to Solid State Physics, 4th
ed. (%iley, New York, 1971),p. 95.

z7See, for example, L. Pauling, in Nature of the Chemi

cal Bond, second edition (Cornell University Press,
Ithaca, 1948); also %'. A. Harrison, in Electronic
Structure and the Properties of Solids (Freeman, San
Francisco, 1980), p. 167.

~8K. %eiser, J. Phys. Chem. Solids 7, 118 (1958).
2 T. L. Allen, J. Chem. Phys. 27, 810 (1957).
3OSee B. L. Sharma, Diffusion in Semiconductors,

(Trans. Tech. , Clausthal-Zellerfeld, Germany, 1970),
and references therein.

3~See, for example, C. D. Thurmond, in Semiconductors,
edited by H. B. Hannay (Reinhold, New York, 1959),
p. 145.

32D. R. Stull and G. C. Sinke, Thermodynamic Proper-
ties of the Elements, No. 18 in Advances in Chemistry
Series (American Chemical Society, New York, 1956).

3Micrographs showing cellular structure in various ma-
terials solidified under a variety of conditions appear
in the article by L. A. Tarshis, J. L. Walker, and J.
W. Rutter, in Metallography, Structures and Phase Di-
agrams, Metals Handbook 8 (American Society for
Metals, Ohio, 1973), p. 150.

34%. A. Tiller, K. A. Jackson, J. %. Rutter, and B.
Chalmers, Acta Metall. 1, 428 (1953).

35J. W. Cahn, S. R. Coriell, and W. J. Boettinger, in
Laser and Electron Beam Processing of Materials,
Ref. 3, p. 89.

36J. Narayan, J. Appl. Phys. 52, 1289 (1981).
37A. G. Cullis, D. T. J. Hurle, H. C. Webber, N. G.

Chaw, J. M. Poate, P. Baeri, and G. Foti, Appl. Phys.
Lett. 38, 642 (1981).

3sJ. C. Baker and J. W. Cahn, Solidification (American
Society for Metals, Metals Park, Ohio, 1971), p. 23.

A discussion of these limits is given in Ref. 35.
~See, for example, R. N. Hall, Phys. Rev. 88, 139

(1952).
It is interesting to note that molecular dynamics calcu-
lations of the properties of a liquid phase in contact
with crystal phase shows layered structure in the in-
terface region. See S. Toxvaerd and E. Praestgaard, J.
Chem. Phys. 67, 5291 (1977).

42In a paper which appeared after this manuscript was
completed, Baeri et al. report that k; (111) is indeed
greater than k; (100) for a given melt-front velocity.
See P. Baeri, G. Foti, J. M. Poate, S. U. Campisano,
and A. G. Cullis, Appl. Phys. Lett. 36, 800 (1981).

s3A. A. Chernov, Growth of Crystals (Consultants
Bureau, 1962), Vol. 3, p. 35.

~J. C. Baker, Ph.D thesis, MIT, 1970 (unpublished),

Chap. V. A brief description of Baker's model is
given in Ref. 35 of this paper.

45K. A. Jackson, G. H. Gilmer, and H. J. Leamy, in
Laser and Electron Beam Processing of Materials,
Ref. 3, p. 104.

46F. Morehead, in Laser and Electron Beam Processing
of Materials, Ref. 3, p. 143.

47H. %. Lo and A. Compaan, Phys. Rev. Lett. 44, 1604
(1980).
J. A. van Vechten, in Laser and Electron Beam Pro-
cessing of Materials, Ref. 3, p. 53.

49R. T. Young, R. F. %ood, J. Narayan, C. W. White,
and %. H. Christie, IEEE Trans. Electron Devices
ED-27, 807 (1980); R. T. Young and R. F. Wood, J.
Appl. Phys. (in press).

5OJ. C. Muller, E. Fogarassy, D. Salles, R. Stuck, and P.
M. Siffert, IEEE Trans. Electron Devices ED-27, 815
(1980).
R. F. %'ood, R. T. Young, R. D. Westbrook, J.
Narayan, %'. H. Christie, and J. %. Cleland, Sol.
Cells 1, 381 (1980), Elsevier Sequoia Journal.


