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Impurity-band density of states in heavily doped semiconductors:
Numerical results
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The "band-tail" density of states p(E) available to electrons in a field of randomly dis-

tributed, attractive impurities developed in previous work is extended to higher energy E.
Numerical values of p(E) are also presented (1) for comparison with p(E) developed by

other methods and (2) for calculation of optical and other properties of heavily doped

semicoflductors depending on p(E).

I. INTRODUCTION

In earlier work' we obtained an expression for
the density of states p(E) available to electrons in a
solid containing a high concentration of randomly

distributed, attractive impurities. Of special in-

terest is the value of p(E) at low-energy E where

p(E) has an exponential tail extending deep into the

gap between the conduction and valence band. To
obtain an explicit, relatively simple expression for

p(E) valid at low E we made two approximations

to the general expression. Firstly, only contribu-

tions to p(E) from the electron ground states were

retained. Secondly, the parabolic cylinder function

D3/2 was approximated by its large argument

(deep-tail energy) limit. The p(E) then reduced ex-

actly to the form derived by Halperin and Lax.
The second approximation, which we call the
"deep-tail" approximation, particularly limited the

validity of p(E) to the low-energy, deep tail -region

of impurity-band energies.
Here we investigate to what extent these two ap-

proximations can be removed and how high an en-

ergy out of the band tail the p(E) can be extended.

%c find that the "deep-tail" approximation can be

quite easily removed. This allows us to improve
the accuracy of and to extend p(E) to somewhat

higher energies. The contributions to p(E) from

excited states are, however, much morc difficult to
include and now set the limit of validity of p(E).
%C also take this opportunity to present some nu-

merical values for p(E) which we hope will be use-

ful in explicit calculations of properties of heavily

doped semiconductors and 1Il IIlaklIlg coIIlpansons

with p(E) determined by other methods such as

field-theoretic techniques.

II. THE DENSITY GF STATES

A. The full ground-state density

In previous papers ' the density of states for
otherwise ffcc clcctrons having effective IIlass I
111 a fIcld of X Ialldo111 IIIlpllrItlcs (dcIlslty

N =X/0) with each impurity represented by a
scI'ccncd CoulolTlb potcntlal

Ze
U(r —R)=-

E'of1 —R/

was found to be

( )
Q a(v, z)

E gas/4 b( z)3j4

1n

X s(~,~)kg D
b—(»z)Xe

This result includes the ground states available to
the electrons only; contributions to pI(v} from ex-

cited states have been ignored. In pI(v) all energies

are expressed in units of E~ ——Iri Q /2m*, the ener-

gy associated with the screened impurity potential

having screening length Q
' in a medium having

dtclcctflc collstallt E'0. Tllc ( Is thc rcdllccd-Illca11-

square fluctuation of the random potential

and a(v, z) and b(v, z} are functions
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a{v,z)=(T+v) ~

I

g2
gm v 2z'exp —D', (z)

2

T

D3q2(x)=e /x ~ 1 — + ~ ~ ~
-x2/4 3/2

Sx

b(v, z) =(T+v)' Z2
2v2exp —D 3(z)

(4)

where v= (E —Eo)—/Eg is the electron energy E
measured away from the mean of the random po-
tcntlal

Eo f d——R U( r —R) .

The Dp(z) is the parabolic cylinder function and fi-
nally z =

2 AN/Eg 18 a free parameter setting tbc
curvature ro of a model harmonic well which
IHodcls thc randoGl potcnt1al. Thc optiInUm valUc
of this parameter at each energy E may be deter-
mined from the variational principle derived by
Lloyd and Best.5 They showed that p(v, z) should
maximize the "pressure" function P(v, z) given by

P(v, z) =Eg f dv'(v' v)p(v, z)—. (6)

Maximi»ng P(v, z) [dP(v, z)/dz=0] l~ads to the
cqURt1On fol Z»

'I

2 1 D-«» dx'x'e D3g2(x')
z 4 D ,(z)

and retained only the leading term. This is valid
for large values of x /2=b(v, z)/2$ which occur
physically at large negative energies E(vga 1) deep
in the band-tail energy region or at g'&~ 1 and is
dcnotcd thc dccp-tall Rppl oxlIIlatlon. This lcd to
the simpler equations in I for p~(v, z),

p (v z) e(v z)e-b(vz)/2g'. (9)7

2 1 D-«» —yz 4 D 3(z) 4 '

3 D —4(z) 2 z ~g2 5.y1/2I y O
, 4 D 3(z) z T+v 2"

(10)

respectively. Here I'{a,y) is the incomplete gamma
function

I {a,y)= f dy'fy') 'e
3'

3 D ~(z) 2 z-'
+

4 D 3(z) z T+v

and T=(—,)fico/Eg is the kinetic energy of ele:tron
localization.

y =xz/2=b{v, z)/2g' .

Equations (9) and (10) are identical to {7)and (11)
in I. In I wc foUnd this approximation limited the
energy range for p~(v, z) to low values of E At.
valUcs of E sUch that

x /2=b(v, z)/2/=5

(a limit proposed by Halperin and Lax ) we found
the leading correction (3/Sx ) to p~(v, z) was ap-
proximately 4%, but wc did not investigate higher
terms or the effect of the approximation on the
value of z determined from (10) rather than (7).

B. The deep-tRil RpproximstioQ C. The Hslperin and Lax limit

In our previous determination, referred to here
as I, of p~(v, z), we approximated the parabolic
cylinder function D3~2(x) in (2) by

If we further take the limit y~ so {vahd at
f~0) in I'(a,y) and retain only the leading term

hml'{a, y)=y e ~ 1+ —+a—1 (a—1)(a—2) + 4 4 4

P' + OO 3'
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the Eq. (10) for z reduces to
V

D-4(z) 2z-' =0.
s(z) (T+V)

This is the limit considered by Halperin and Lax
and obtained by them on the physical grounds of
mlnlmlzlng ollly tllc cxpoIlcllt b(v, z) 111 (9).

In Table I we present values of pl(v, z) and z m
(1) the full ground-state case, (2) in the deep-tail
approximation, and (3) in the Halperin and Lax
limit. The Table shows firstly that the full
ground-state density of states is smaller than the
deep-tail approximation presented in I. The differ-
ence is displayed in Fig. 1 for P= 0.5. The deep-
tR11 Rppl'oxlnlatloll (8) ls Rfl cxpaIlslofl 111

x /2=b(v, z)/2$' valid at large x'/2. At
b(v, z)/2$'=5 the deep-tail approximation lies
-5% above the full ground-state density. We take

this as the limit of validity of the deep-tail approx-
1IHation. As noted ln I, thjts is also the value of
b(v, z)/2(' at which pl(v, z) equals Kane's classical
density of states at each value of P. The value of
v and of b(v, z)/2(' at which pl(v, z) crosses the
Kane density of states as a function of g' is

displayed in Figs. 2 and 3, respectively. IIl Fig. 3
we see the value of b(v, z)/2(' at the crossing of
p (v) Rnd pl(v, z) Is sIIlallcl tllall tllc correspond-
ing b(v, z)/2g' in I. Since p"'"'(v) is valid at high-

energy E (small v) it was proposed to use pl(v, z) at
low E (large v) and p '"'(v) at high E to obtain a
density of states valid at all E. Over this range the
deep-tail approximation to pl(v, z) presented in I
will dlffcI' lly less tllcI1 5% fl'oII1 tllc full ground-
state pl(v, z).

Table I shows that the Halperin and Lax limit
for pl(v, z) differs substantially from the full case at
smaller values of v. If me again take a 0% differ-
ence as the validity domain, then the Halperin and
Lax limit can be used for values of b(v, z)/2(') 10.

The full case pl(v, z) itself neglects contributions

TABLE I. Numerical results for the density of states in units of (Q'/Eug'), at dimensionless energies v for the full
ground-state case, the deep-tall approx&mat&on, and the Halperj. n and I.ax hmjt.

Ha)penn and I ax limit
z p(~)

Deep-tail approximation
z p(~)

30
25
20
15
10
5.0
4.0
3.0

3.0
2.5
2.0
1.5
1.0
0.5
0.4
0.3

0.030
0.025
0.20
.015
.010
.005
.004
.003

0.49225
0.52264
0.56237
0.61805
0.70592
0.88579
0.95289
1.0470

1.0470
1.1113
1.1956
1.3138
1.5009
1.8870
2.0324
2.2377

5.0609
5.4296
5.9270
6.6540
7.8747

10.655
11.786
13.454

6.8042 ' 10-'
4.7527' 10-'
1.1714X10 '
9.2053g10 '
1.9021 g 100

6.2013g 10o

5.5164' 10'
3.9975 X 10'

2.6584' 10-'
1.0116' 10-'
3.0087X10-'
6.5938y, 10-'
9.4700 g 10
6.3651 & 10
4.9007 X 10-'
3.3381 y, 10

4.5491 X10-'
8.4189~ 10-'
1.5219g 10
2.6450 g 10
4.2469X10 "

5.4329 & 10
5.2897 y 10-'
4.8317& 10

0.43779
0.45032
0.46176
0.46922
0.46684
0.44688
0.44047
0.43336

0.82777
0.83797
0.84480
0,84634
0.84051
0.82594
0,82197
0.81767

3.8488
3.9669
4.0999
4.2507
4.4225
4.6176
4,6594
4.7021

9.0368 g 10
6.8394' 10-'
1.9166g 10
1.8939' 10-'
6.3075 g 10
7.1360g 10'
1.0287 y 10'
1.4309 y 10'

4.3885 g 10
1.8876 y 10-'
6.7536 y 10-'
1.9973 y, 10—'

4.8771 g 10
9.9142X 10-'
1.1194'10'

1.2559 y 10'

5.1982' 10-'
9.8535 g 10
1.8483 @10-'
3.4211 y 10-'
6.2191g 10
1.1018y, 10-'
1.2302 g 10
1.3714~ 10-'

0.43778
0.45030
0.46171
0.46907
0.46640
0.44566
0.43902
0.43165

0.82750
0.83752
0.84404
0.84506
0.83841
0.82266
0.81841

0.81383

3.8472
3.9647
4.0968
4.2462
4.4156
4.6066
4.6887
4.6887

8.9756 y10-'
6.7774' 10-'
1.8921 y, 10-'
1.8572' 10-'
6.1061'10'
6.7319g 10'
9.6308 y 10'
1.3282 y, 10'

4.2948 y 10-'
1.8380X 10
6.5301 g 10
1.9125y 10-'
4.6079 y, 10-'
9.1990&10
1.0343 X 10'

1.1552' 10'

5.0806 y 10-'
9.6064 y, 10-'
1.7963~ 10-'
3.3111'10- '
5.9862 X 10-'
1.0526~ 10-'
1.0351 g 10
1.3051 X 10-'
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FIG. 1. Density of states, in units of (Q'/Eog ), for
the full gmund-state case [Eq. (2)], for the deep-tail ap-
proximation [Eq. (9!l.and for the Halperin and Lax
limit [Eq. (9) with z determined by Eq. (11)]. Here g in

Eq. (3) is 0.5.

from excited states. We found these contributions
much more difficult to evaluate or even approxi-
mate. The expression (2) for p&(v, z) is obtained by
taking the infinite time limit in a long expression
for p~(v, z) valid at all energies [Eq. {21)of I]. The
infinite time limit means only ground states will be

5.0-

jfO t I 1 l

IO IO

I

IO IO

FIG. 3. As Fig. 2 for b(v, z)f2/'.

retained. Once this infinite time limit is not taken
the expression for pt(v, z) is extremely difficult to
evaluate and we have not been able to evaluate it at
this time.

The leading corrections due to excited states can,
however, be evaluated. Without making the deep-
tail approximation there are two correction terms,
given by (A2) and (A3) in I. The total correction
depends strongly on f At b(.v,z)/2g'=4 3, where.

pt(v, z) =p '(v), the excited-state correction given
by (A10) in I is less than 1% for f& 5. At
g'=S00 it is -3 lo. At large g' (Q~O) the poten-
tial {1)seen by the electrons becomes very broad
and the excited states lie only slightly above the
ground state. The dependence of the correction on
g' at b(v, z)/2$ for which pt(v, z)=p '"'(v) is
displayed in Fig. 4. Hence for f& 50 the excited-
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FIG. 2. Value of v at which the full ground-state
p~(v, z) [Eq. (2)] equals p"'"'(v) (solid line) and the deep-
tail approximation p~(v, z) [Eq. (9)] equals p '"'(v)

FIG. 4. I.eading excited-state corrections to p](v, z)
evaluated at p1(v,z) =pK '(v); (1) full ground-state case
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state correction is negligible for values of
pi(v, z) (p '"'(v).

IV. CONCLUSION

er techniques. The field-theoretic studies usually
consider 5-function potentials (1), which corre-
spond approximately to g'~0. The density of
states for a 6-function potential has also been
evaluated using the present technique. "

We have presented numerical values of z and

pi(v, z) for the full ground-state density of states,

plus estimates of excited-state contributions. We
hope these will be useful in calculations of optical
and other properties of heavily doped semiconduc-

tors ' and for explicit comparison with density-
of-state expressions derived field theoretic and oth-
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