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The “band-tail” density of states p(E) available to electrons in a field of randomly dis-
tributed, attractive impurities developed in previous work is extended to higher energy E.
Numerical values of p(E) are also presented (1) for comparison with p(E) developed by
other methods and (2) for calculation of optical and other properties of heavily doped

semiconductors depending on p(E).

I. INTRODUCTION

In earlier work! we obtained an expression for
the density of states p(E) available to electrons in a
solid containing a high concentration of randomly
distributed, attractive impurities. Of special in-
terest is the value of p(E) at low-energy E where
p(E) has an exponential tail extending deep into the
gap between the conduction and valence band. To
obtain an explicit, relatively simple expression for
p(E) valid at low E we made two approximations
to the general expression. Firstly, only contribu-
tions to p(E) from the electron ground states were
retained. Secondly, the parabolic cylinder function
D;,, was approximated by its large argument
(deep-tail energy) limit. The p(E) then reduced ex-
actly to the form derived by Halperin and Lax.?
The second approximation, which we call the
“deep-tail” approximation, particularly limited the
validity of p(E) to the low-energy, deep-tail region
of impurity-band energies.

Here we investigate to what extent these two ap-
proximations can be removed and how high an en-
ergy out of the band tail the p(E) can be extended.
We find that the “deep-tail” approximation can be
quite easily removed. This allows us to improve
the accuracy of and to extend p(E) to somewhat
higher energies. The contributions to p(E) from
excited states are, however, much more difficult to
include and now set the limit of validity of p(E).
We also take this opportunity to present some nu-
merical values for p(E) which we hope will be use-
ful in explicit calculations of properties of heavily
doped semiconductors and in making comparisons
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with p(E) determined by other methods such as
field-theoretic techniques.’

II. THE DENSITY OF STATES
A. The full ground-state density

In previous papers"* the density of states for
otherwise free electrons having effective mass m*
in a field of N random impurities (density
N =N /Q) with each impurity represented by a
screened Coulomb potential
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This result includes the ground states available to
the electrons only; contributions to p;(v) from ex-
cited states have been ignored. In p;(v) all energies
are expressed in units of Eo=#Q*/2m*, the ener-
gy associated with the screened impurity potential
having screening length Q ~' in a medium having
dielectric constant €. The £’ is the reduced-mean-
square fluctuation of the random potential
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where v=—(E —E)/E is the electron energy E
measured away from the mean of the random po-
tential

Eo,= [ dRu(f—R). (5)
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The D,(2) is the parabolic cylinder function and fi-
nally z 2= %ﬁw/EQ is a free parameter setting the
curvature © of a model harmonic well which
models the random potential. The optimum value
of this parameter at each energy E may be deter-
mined from the variational principle derived by
Lloyd and Best.” They showed that p(v,z) should
maximize the “pressure” function P(v,z) given by

P(v,z)=E} fvw dv'(v' —v)p(v,z) . (6)

Maximizing P(v,z) [dP(v,z)/dz=0] leads to the
equation for z,
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and Tz(%)ﬁw/EQ is the kinetic energy of electron
localization.

B. The deep-tail approximation

In our previous determination,' referred to here
as I, of p,(v,2), we approximated the parabolic
cylinder function D3 ,(x) in (2) by
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and retained only the leading term. This is valid
for large values of x%/2=b(v,2)/2&" which occur
physically at large negative energies E(v>> 1) deep
in the band-tail energy region or at £’ << 1 and is
denoted the “deep-tail” approximation. This led to
the simpler equations in I for p;(v,2),
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and the variational equation for z
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respectively. Here I'(a,y) is the incomplete gamma
function
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and

y=x2/2=b(v,z) /2" .

Equations (9) and (10) are identical to (7) and (11)
in I. In I we found this approximation limited the
energy range for p;(v,z) to low values of E. At
values of E such that

x?/2=b(v,z)/2E' =5

(a limit proposed by Halperin and Lax?) we found
the leading correction (3/8x2) to p,(v,2) was ap-
proximately 4%, but we did not investigate higher
terms or the effect of the approximation on the
value of z determined from (10) rather than (7).

C. The Halperin and Lax limit
If we further take the limit y— o (valid at

§'—0) in I'(a,y) and retain only the leading term
in
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the Eq. (10) for z reduces to

D_4(z) 273
D_;(z) (T+v)

=0. (11

This is the limit considered by Halperin and Lax
and obtained by them on the physical grounds of
minimizing only the exponent b(v,z) in (9).

III. NUMERICAL RESULTS

In Table I we present values of p;(v,z) and z in
(1) the full ground-state case, (2) in the deep-tail
approximation, and (3) in the Halperin and Lax
limit. The Table shows firstly that the full
ground-state density of states is smaller than the
deep-tail approximation presented in I. The differ-
ence is displayed in Fig. 1 for &= 0.5. The deep-
tail approximation (8) is an expansion in
x2/2=b(v,2)/2¢&" valid at large x%/2. At
b(v,2)/2&' =5 the deep-tail approximation lies
~5% above the full ground-state density. We take
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this as the limit of validity of the deep-tail approx-
imation. As noted in I, this is also the value of
b(v,z)/2£" at which p,(v,z) equals Kane’s® classical
density of states at each value of £&’. The value of
v and of b(v,2)/2&" at which p;(v,z) crosses the
Kane density of states as a function of £ is
displayed in Figs. 2 and 3, respectively. In Fig. 3
we see the value of b(v,z)/2¢&" at the crossing of
p¥™(v) and p,(v,2) is smaller than the correspond-
ing b(v,2)/2£" in L. Since pX®™(v) is valid at high-
energy E (small v) it was proposed to use p,(v,z) at
low E (large v) and p®*™(v) at high E to obtain a
density of states valid at all E. Over this range the
deep-tail approximation to p;(v,z) presented in I
will differ by less then 5% from the full ground-
state p,(v,2).

Table I shows that the Halperin and Lax limit
for p(v,z) differs substantially from the full case at
smaller values of v. If we again take a 5% differ-
ence as the validity domain, then the Halperin and
Lax limit can be used for values of b(v,z)/2&' > 10.

The full case p,(v,2) itself neglects contributions

TABLE 1. Numerical results for the density of states in units of (Q/E£'?), at dimensionless energies v for the full
ground-state case, the deep-tail approximation, and the Halperin and Lax limit.

Halperin and Lax limit

Deep-tail approximation

Full ground-state case

£ v z plz) pl(z) z p(z)

50 30 0.49225 6.8042%x107° 0.43779 9.0368 < 10~° 0.43778 8.9756x10~°
25 0.52264 4.7527x 10~ 0.45032 6.8394x10~° 0.45030 6.7774x10~¢
20 0.56237 1.1714x 1073 0.46176 1.9166x 1073 0.46171 1.8921x 103
15 0.61805 9.2053%x 1072 0.46922 1.8939x 10! 0.46907 1.8572x 107!

10 0.70592 1.9021 x 10° 0.46684 6.3075x 10° 0.46640 6.1061x 10°

5.0 0.88579 6.2013 % 10° 0.44688 7.1360 10! 0.44566 6.7319x 10!

4.0 0.95289 5.5164 % 10° 0.44047 1.0287 x 10? 0.43902 9.6308x 10!

3.0 1.0470 3.9975% 10° 0.43336 1.4309 % 10? 0.43165 1.3282x 10?
5.0 3.0 1.0470 2.6584% 1073 0.82777 4.3885x 1073 0.82750 4,2948 %103
2.5 1.1113 1.0116 1072 0.83797 1.8876x 102 0.83752 1.8380x 1072
2.0 1.1956 3.0087x 1072 0.84480 6.7536 X 1072 0.84404 6.5301x 1072
1.5 1.3138 6.5938 102 0.84634 1.9973x 107! 0.84506 1.9125x 107!
1.0 1.5009 9.4700% 102 0.84051 4.8771x 107! 0.83841 4.6079% 107!
0.5 1.8870 6.3651x 1072 0.82594 9.9142% 10! 0.82266 9.1990% 10~

0.4 2.0324 4.9007 % 1072 0.82197 1.1194 < 10° 0.81841 1.0343 % 10°

0.3 2.2377 3.3381x 1072 0.81767 1.2559x 10° 0.81383 1.1552x 10°
0.05 0.030 5.0609 4.5491 %1077 3.8488 5.1982x 107 3.8472 5.0806x 107
0.025 5.4296 8.4189x 107 3.9669 9.8535%x 1077 3.9647 9.6064 % 10~
0.20 5.9270 1.5219 10~ 4.0999 1.8483x10~° 4.0968 1.7963x10~°
015 6.6540 2.6450% 10~° 4.2507 3.4211x10°¢ 4.2462 3.3111%x10~¢
010 7.8747 42469 10~¢ 4.4225 6.219110~¢ 4.4156 5.9862%10¢
.005 10.655 5.4329%x10~¢ 4.6176 1.1018X10™° - 4.6066 1.0526 1073
.004 11.786 5.2897x10~° 4,6594 1.2302x 1073 4.6887 1.0351x10°°
.003 13.454 4.8317x 107 4.7021 1.3714x 1073 4.6887 1.3051x10~°
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FIG. 1. Density of states, in units of (Q°/Eg&"), for
the full ground-state case [Eq. (2)], for the deep-tail ap-
proximation [Eq. (9)], and for the Halperin and Lax
limit [Eq. (9) with z determined by Eq. (11)]. Here £’ in
Eq. (3) is 0.5.

from excited states. We found these contributions
much more difficult to evaluate or even approxi-
mate. The expression (2) for p,(v,z) is obtained by
taking the infinite time limit in a long expression
for p,(v,z) valid at all energies [Eq. (21) of I]. The
infinite time limit means only ground states will be
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FIG. 2. Value of v at which the full ground-state
£1,2) [Eq. (2)] equals p¥*"(v) (solid line) and the deep-
tail approximation p,(v,2) [Eq. (9)] equals pX*"¢(v)
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FIG. 3. As Fig. 2 for b(v,2)/2€'.

retained. Once this infinite time limit is not taken
the expression for p,(v,z) is extremely difficult to
evaluate and we have not been able to evaluate it at
this time.

The leading corrections due to excited states can,
however, be evaluated. Without making the deep-
tail approximation there are two correction terms,
given by (A2) and (A3) in I. The total correction
depends strongly on £'. At b(v,z)/2£'=4.3, where
p1(v,2) =p¥*™(v), the excited-state correction given
by (A10) in I is less than 1% for £ <5. At
E'=500it is ~3%. At large &' (Q—0) the poten-
tial (1) seen by the electrons becomes very broad
and the excited states lie only slightly above the
ground state. The dependence of the correction on
& at b(v,2)/2€" for which p,(v,z) =pX*(v) is
displayed in Fig. 4. Hence for £’ < 50 the excited-
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FIG. 4. Leading excited-state corrections to p;(v,z)
evaluated at p,(v,2)=pX**(v); (1) full ground-state case
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state correction is negligible for values of
P](V’Z) SpKane(V).

IV. CONCLUSION

We have presented numerical values of z and
p1v,z) for the full ground-state density of states,
plus estimates of excited-state contributions. We
hope these will be useful in calculations of optical
and other properties of heavily doped semiconduc-
tors’ !0 and for explicit comparison with density-
of-state expressions derived field theoretic and oth-

er techniques.® The field-theoretic studies usually

consider 8-function potentials (1), which corre-
spond approximately to £’'—0. The density of
states for a 8-function potential has also been
evaluated using the present technique.!!
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