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This paper considers the problem of reflection of a finite-duration optical pulse incident

normally on a semi-infinite nonlocal medium. The light frequency is assumed to lie in

the vicinity of an exciton-polariton resonance. The reflected pulse is found to have tran-

sients associated with its leading and trailing edges. It is shown that spatial dispersion

enhances reflected transients when the laser frequency is at resonance with the exciton

polariton. For the case of CdS and GaAs semiconductors, the transient intensities are
about 10% of the incident intensity at a time 0.1 psec after the trailing edge of the re-

flected pulse and remain, about 1% even after several picoseconds. %'e have obtained ex-

plicit expressions for the transient part of the reflected field and evaluated them numeri-

cally under certain simplifying assumptions; analytical results are presented in some limit-

ing cases of interest. The theory predicts a crossover from exponential to inverse power-

law decay rate of transient reflectivity; this occurs at a characteristic time of the order of
1 psec for CdS and GaAs crystals.

I. INTRODUCTION

Electromagnetic wave propagation in a bounded
nonlocal dielectric has attracted considerable atten-
tion in recent years. ' ' The interest in nonlocal
media arises from the fact that in some semicon-
ductors, such as CdS and GaAs, the center-of-mass
motion of excitons renders the dielectric response
function e(k, co) wave-vector dependent (spatial
dispersion) near an exciton resonance. Various
optical processes, such as reflection and transmis-
sion from a nonlocal interface and Raman and
Brillouin scattering may thus provide valuable in-
formation about exciton parameters such as its
mass and decay rate.

Transmission in a nonlocal semi-infinite medium
has been well studied' in the steady state as well
as transient regimes. A monochromatic plane-
polarized wave, in general, excites two transverse
waves and a longitudinal wave in the nonlocal
medium. For electromagnetic pulses of finite
durations the transient effects give rise to precur-
sors. Together with the well-known Sommerfeld
and Brillouin precursors, ' ' which are the only
ones present in a local medium, spatial dispersion
gives rise to a third precursor, namely the exciton
precursor. ' Johnson' has discussed transient os-
cillations in transmittivity of a plate.

It is important to note that the transient effects

arise only when the light pulse has well-defined
boundaries such that the optical intensity becomes
strictly zero at the leading and the trailing pulse
edges. The often used Gaussian pulse will not give
rise to transients because it has no true beginning
or end.

Reflection from a nonlocal interface has only
been studied in the steady-state regime. Tran-
sient reflectivity from a local frequency-dispersive
dielectric was considered by Elert' more than 50
years ago. Generalization to nonlocal media was
recently reported. ' The purpose of this paper is to
provide a detailed analysis of the effects of spatial
dispersion on transient reflectivity. When an elec-
tromagnetic pulse of finite duration T is incident
on a nonlocal interface the reflected field consists
of the steady-state signal (of duration T) and tran-
sients arising from both the leading and the trail-
ing pulse edges. Experimentally it may be more
convenient to look for trailing-edge transient re-
fiectivity since steady-state reflectivity will then
not interfere with measurements. For sufficient
long pulses (T & few psec), transients from the two
edges will be essentially decoupled and can be con-
sidered independently. In this paper we consider
the case of a square pulse and obtain expressions
for steady-state and transient reflectivities.

Our results show that the transient reflectivity
consists of a "local" part and a "nonlocal" part.
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The former, although the only one present in a lo-
cal medium, is at least an order of magnitude
smaller than the latter. The measured transient re-
flectivity will thus almost completely arise from
spatial dispersion: to the leading order it varies as
M ' with the exciton mass M. Near an exciton
resonance, transient reflectivity is resonantly
enhanced. Its maximum magnitude in the begin-
ning (just after the reflected laser pulse is cutoff) is
about 10% of the incident intensity and decays ex-
ponentially. However, the time decay crosses over
to an inverse power decay at about 1 psec in semi-
conductors of interest such as CdS and GaAs. The
slow inverse power decay makes the transient re-
flected intensity persist for several picoseconds
with magnitude 1% of the incident intensity.
These effects should be measureable.

The plan of the paper is as follows. In Sec. II
the model susceptibility for the semi-infinite nonlo-
cal medium is introduced and an integral represen-

tation for the reflected field is obtained using the
Fourier analysis in the time domain. Using the
countour-integration method, the formal expres-
sions for the steady-state and transient parts of re-

flectivity are obtained in Sec. III. Sections IV and

V deal with the "nonlocal" and "local" parts of
transient reflectivity, respectively. Detailed numer-

ical results are presented for parameters appropri-
ate to CdS and GaAs crystals. Whenever possible,

the analytical expressions are obtained in certain

limiting cases. The results are discussed in Sec. VI
where various assumptions and approximations are
also summarized. Necessary mathematical details

are presented in the Appendix.

II. INTEGRAL REPRESENTATION
FOR THE REFLECTED FIELD

where eo is the background dielectric constant, ao
is the oscillator strength, M is the effective exciton
mass, I is a phenomenological damping rate, ~, is
the transverse exciton polariton frequency, and c is
the velocity of light. The space dependence of the
susceptibility

X(r —r ') = Jg(k, co)e' " ' ' ' 'd k

reflects the nonlocal nature of the optical dielectric
response.

A number of authors ' have used translationally
invariant X(r —r ') for the wave propagation in a
semi-infjoite nonlocal medium. Zeyher et al.5

pointed out that for a bounded medium reflection
of the exciton polariton at the boundary makes the
susceptibility translationally noninvariant and pro-
posed that

(2.3)

should be used for the susceptibility. Here g is the
transverse part of r. Its use in Maxwell's equa-
tions determines the reflected and transmitted
fields in a unique and self-consistent manner. Oth-
er forms of nonlocal susceptibility have been ob-
tained by several authors. For example, Hy-
zhnyakov, Maradudin, and Mills used an extended
basis for a tight-binding exciton model and ob-'

tained a general expression for g(r, r ') which
reduces to (2.3) in a limiting case. Also Ting,
Frankel, and Birman' derived a nonlocal suscepti-
bility for extended Wannier-type excitons. There
have been numerous other derivations of the sus-

ceptibility for model bounded-nonlocal media; ex-
tensive references are given in the latest edition of

We consider a semi-infinite nonlocal medium oc-
cupying the half-space z &L, with z &L being vac-
uum (see Fig. 1). A square pulse of the light fre-

quency c00 is incident normally at the interface
z =L. Near an exciton resonance the coupling of
an exciton state to a photon produces a quasiparti-
cle exciton polariton. The origin of spatial disper-
sion or nonlocality is related to the center-of-mass
motion associated with the exciton polariton. One
particular model, a natural generalization of the
classical I,orentz oscillator model, takes'

4&QgNt=Eo+
co, co icoI +(%co, /M—)k—

VACUUM NONLOCAL
MEDIUM

I nttlnsity
)1

Z=Oi
I

= TIN8
2LrC 2L/C+T

Z=L

PIG. 1. Schematic illustration of the geometry and
the notation used. At time t =0 a square pulse of dura-
tion T is emitted from the plane z =0 where a detector
is place to monitor the reflectivity. For 21./c & t
&2I./c+ T the steady-state signal and for r=t
—2I./c —T &0 the transient signal is detected.
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the mell-known book by Agranovich and
Ginzburg. The general expressions for the reflect-
ed field, using (2.3) valid for arbitrary angle of in-

cidence, mere obtained by Frankd and Birman. 8

Here we consider the specific case of normal in-
cidence. The amplitude reflection coefficien is
given by'

p(co) =[1—n(co)]/[1+n(co)], (2.4)

(2.S)

and n ~ and n2 are the solutions of the implicit re-
lation

nj =+[e{kj,co)])~, k/=njco/c . (2.6)

where n is the effective refractive index of the non-
local medium,

n =(ning +Eo)/(n i +n2)

&t(0,t) =sin(coot)[6(t) —6(t —T)], (2.7)

where 6(t) is the Heaviside step function. Owing
to the linearity of the problem, one may work in
the frequency domain and treat each frequency
component by dispersion theory. The reflected
field is obtained as a superposition of these reflect-
ed components and can be written as the frequency
integral'

%e assume that the normally incident laser pulse
corresponds to a linearly polarized, monochromat-
ic, plane-wave field (transverse variation of all op-
tical fidds is ignored). For a square pulse of unit
intensity and duration T at the frequency coo, the
electric field at the plane z =0 is given by

Etc(0,t) = limRe J p
I 1 exp[i(~ ~ )T] I e cm() —2t, lc—)Zco p(co)

0

where the time delay 2L/c corresponds to the round-trip time between g =() and z —L

III. STEADY-STATE AND TRANSIENT REFLECTIVITV

{2.8)

The reflected field, Eq. (2.8), can be formally separated into steady-state and transient parts, after remov-
ing the usual harmonic time dependence, exp( i cot). The —steady-state part gives rise to a reflected pulse (of
duration T) whose leading and trailing edges contain the rapidly time-varying transient contributions.

The frequency integral in Eq. (2.8) is evaluated using the method of contour integration in the complex co
plane. Using Eq. (2.4) in (2.8), the integrand is found to have the following singularities: (i) a simple pole
at coo ig, (ii)—four branch points coj (j =1,4) in the lower half-plane, and (iii) two branch points co5 and co6
in the upper half plane. The explicit expressions for the location of these branch points are obtained using
Eqs. (2.1) and (2.6) and are given by (see the Appendix)

co, = —iI /2+[co, (1+P /e ) —I 2/4]'~t,

cog 4——(1—5 eo) '[ i(l /2+P5c—o, )+[co) (P5co, +I /—2) ])~ I,
co56——(1—5 eo) 'Ii(P5co, —I'/2)+[co, —(P5co, +I'/2) ]'~ J,

(3 1)

(3.2)

(3.3)

Note that the dimensionless pafanleter 5 ls a meas-
ure of the extent of nonlocality of the medium.
For semiconductors of interest such as CdS and
GaAs, we estimate 5-10 and P-10 '. lt is in-
teresting to observe that if the damping constant
I & 2P5co„all six branch points will lie in the
lomer half-plane. Presently me shall assume that
this is not the case, thereby excluding very heavily
damped exciton polaritons.

For t & 2L/c we close the contour in the upper
half-plane which is chosen so as to exclude the
branch-cut line joining m5 and m6. An evaluation
of the integral (2.8) shows that the branch points
~5 and co6 contribute in such a manner that
Etc(0, t & 2I. /c )=0 as required by causality.

For t ~ 2I./e we close the contour in the lower
half-plane. The four branch points are joined by a
pair of branch-cut lines and the resulting contour
is shown in Fig. 2. Evaluation of the integral (2.8)
along this contour is somewhat lengthy, although
straightforward. Algebraic details are presented in
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limit of 6~0, E, and EL, reduce to the previously
obtained results. ' We now consider the steady-
state and transient parts of the reflected field

separately.

A. Steady-state reflectivity

(Q)p-
= Re(u))

Using Eq. (A16), E,(t) is given by

E,(t) =ip(coo)e (3.6)

FIG. 2. Schematic illustration of the contour in the
complex c~ plane needed to evaluate the reflected field.
A pole at ~0—ig and six branch-point singularities coj,

j =1 to 6 give rise to the steady-state and transient re-

flectivity, respectively.

the Appendix. Here we note that the reflected
field is found to consist of three parts [Eq. (A15)]:

Eii(o, t}=Re[E,(t)+Ei (t)+ENL(t)] . (3.5)

The simple pole at ~0—i g contributes to the
steady-state reflected field E,(t). The four branch
points contribute to the transient reflected field
which consists of a local part Ei (t) and a nonlocal

part ENL(t). Although E, and EL both are affect-
ed by spatial dispersion, ENL arises solely from it
and vanishes as 5—+0 (M~ Oe ). Further in the

n i en+(pcoi//cop) ) tt2 —tl/ti ~ (3.7)

for 21./c &t &(2L/c+T) and zero otherwise.
After an initial time delay 21./c, a reflected square
pulse of duration T arrives at the plane z =0. In
Fig. 3 we have shown the reflectivity

Ro ——
~

p(coo)
~

and the phase P=arg[p(coo)] as a
function of coo in the vicinity of exciton-polariton
resonance for parameters appropriate to a CdS
crystal (5=2.3&(10 ). Reflectivity for the case
of a local medium (6=0) is shown by a dashed
line for comparison. We note that the main effect
of spatial dispersion is to reduce the reflectivity
peak height.

An analytic expression for Ro, correct to the
first order in 6, can be obtained for the case when

the laser frequency coo is slightly off resonance,

~

cop —co,
~

/co, ))6 . With the use of Eq. (A4), the
refractive indices n ~ and n2 can be approximated

by

0.5- I.G-

~ 0.2-
C3

M

O. I-

—= Ix IO
r
QJt 0.6

0.4

II
II
I I
I

I

I
—= SX IO ~

GJ

0990 0.995 I.GGO I.005 I.OIG 0.995 I.OOO

(8 0 /4P

FIG. 3. Resonance enhancement of the steady-state reflectivity Ro which persists for 2L/e (t ((2L/c + T). The
parameters are chosen appropriate to a CdS crystal with eo ——8, fico, =2 55 eV, M =0.9m, and .P'=1.25X10 ' (LT
splitting =0.2 meV). For comparison, the dashed line shows the reflectivity when spatial dispersion is neglected
M= ce). Phase is shown on the right.



25 TRANSIENT OPTICAL REFLECTIVITY FROM BOUNDED. . . 2719

(3.8)

From Eq. (2.4), Rp ——
~

p(cop)
~

is found to be given

by

R p 2~Eg cop
1+5 2 2

Rp so+1 coo—co
(3.9)

where Rp ——(ni —1) /(n&+ I) is the reflectivity of
a local medium. Equation (3.9) clearly shows how

spatial dispersion affects reAectivity of a crystal in
the vicinity of an excitonic resonance.

B. Transient reflectivity

Transient reflectivity consists of a "local" part
and a "nonlocal" part,

c

Er(t) =Et.(t)+ENL(t) y

where from Eq. (A17)

E (t)= [E (t 21./c)e—(t 2L, /c)—
—e

'"'
EJ(t 21./c —T)e—(t —2L /c —T)],

(3.10)

where q =(1—co, /cop) and we took I =0 for sim-

plicity. W&th the use of Eq. (2.5) the effective re-

fractive index

n =(ni+ep5/q)/(1+ni5/q)=nl+(ep n—
l )5/q .

for j=L and NL and EL(r) and EN„(r) are given

by Eqs. (A13) and (A14). The two terms in Eq.
(3.10) correspond to the transients arising from the
leading and trailing pulse edges, respectively. If
the pulse duration T is longer than the effective
time during which transients significantly contri-
bute, leading- and trailing-edge transients will not
interfere and can be considered independently. Up
to a constant phase factor, transients from both
edges are identical in form and magnitude and are
governed by E/(r). Experimentally it may be more
convenient to look for trailing-edge transients
which appear just after the reflected pulse is cut
off at t=2L/c+I .

For arbitrary values of the crystal parameters,
the evaluation of Ez(r) and EN&(r) [Eqs. (A13)
and (A14)] requires extensive numerical computa-
tion. Substantial simplification, however, occurs
when we note the presence of three small dimen-

sionless parameters ( & 10 ), 5=(fico, /Mc )'

p /2' (col ——co, )—/co„and I /co, . Here col is the
longitudinal exciton-polariton frequency and the
LT-splitting value col —e, is -0.1 meV. Neglect-
ing products and higher powers of the three small

parameters, we obtain somewhat simplified expres-
sions for the transient fields given by Eqs. (A19)
and (A20).

Using Eqs. (A3) and (All) in Eq. (A19), the lo-
cal part of the transient reflectivity is found to be
given by

z &2pco, i [p(n&, nz) —p( —ni, n2)]
(&) e

'
e

—I' /2 exp( ipco, r)d—u +
o (co, cop+pu

~

co,
~

—iI /2)— (3.11)

where the ellipses represents a similar expression obtained by cu, ~—co, . Here dependence of p on the two
refractive indices n l and n2 is explicitly shown, and n l and n2 are to be evaluated at the frequency
co=co, +puco, —iI /2. As a reminder p =2map/6p=(cot —co, )/co, . It is easy to verify that Eq. (3.11) reduces
to Elert's result' in the limit of infinite exciton mass (5=0). This follows by noting that when 5=0, n =n

&

and the term in the square brackets in Eq. (3.11) reduces to 4n i /(1 n i ). —
The nonlocal part is given by Eq. (A20) which together with (A3) and (All) becomes

iP5co, & [p(nl, n2) —p( —ni, n2)]
2ir col —cop —l 5 col u —l I"/2

[p(nl, nz) —p( n2, n, )]-+, exp( —P5
i
co,

i
ru)du+

col p col 5 co—
&

u ——l I /2

(3.12)

where again, the ellipsis represents two similar
terms obtained by co,~—~, . Here n ~ and n2 are
to be evaluated at the frequency

co =co, i P5co, u —i I'/2 . —

Note that ENL(r) is proportional to the spatial-



dispersion parameter 5 and vanishes for the case of
a local medium in the limit of infinite exciton
mass (5=0).

Equations (3.10) together with (3.11) and (3.12)
give the total transient reflected field associated
with a square pulse of duration T. In the follow-
ing we focus our attention on transients arising
from the trailing pulse edge and set r=t 2L/—c

T. Fo—r T & few psec, leading-edge transients
would die out before the trailing edge of the pulse
a1Tlves and therefore

nz i ——+[a+(a e—ob)'~ ]'~, (4.1)

a=(eo/2 —iPu/5), b= —P /{eo5 ) .

Substituting Eq. (4.2) in (4.1) and assuming
(e05/2P) && 1, we obtain

(4.2)

ble, analytically. For this purpose we need to
evaluate n i and n2 at the frequency
co=co, i—Pro, u —I'/2. Using Eqs. (A4) and (A5),
to the leading order in 5 we obtain

—I
CABOTEJ.{r)= e' —EJ.(r), (3.13)

ni i(P——/5)' e' [1—(5e /4P)e ' ]

n2 (P/5——)' e ' [1+(5eo/4P)e' ],
(4.3)

where ~» 0 and j=L and NL.
Since the transient effects are expected to be im-

portant only in the immediate vicinity of exciton-

polariton resonance, we shaH assume that the laser

frequency coo-e, . Under near-resonance condi-
tions, the second term in Eq. (3.11) and the last

two terms in Eq. (3.12}will not contribute signifi-

cantly and henceforth will be neglected. It may be

noted that these terms arise from the branch points

lying in the fourth quadrant of the complex co

plane (see Fig. 2). In the next two sections we con-
sider the nonlocal and local parts of transient re-

flectivity separately.

8=S1n Q (4.4)

In the following we neglect the second term in Eq.
(4.3). This sets an upper limit on the accuracy of
our approximations. For parameters appropriate
to crystals such as CdS and GaAs, we estimate
5eo/4P-10 ' —10;our calculations estimate
transient reflectivity within an error of 10%. Note
that under such conditions

I ni I
=

I
n2

I
=(P/5)'~~=(4rraoMc /%co, )'/ .

Using Eqs. (2.5) and (4.3) the effective refractive
index is found to be given by

IV. SPATIAL-DISPERSION-INDUCED
TRANSIENT REPLECTIVITY

In this section we simplify the nonlocal part of
the transient refiectivity, Eq. (3.12},and discuss
pertinent features numerically and, whenever possi-

I

n(ni, n2)=e' ~ (P/25)'~'(I —u)

n( —ni, n, )=e ' '(P/25)' '(1+u) ' ' (4»

n( n2, ni)=— n( —ni, n2) .—

Equations (2A) and (4.5) are used to evaluate the
integrand in Eq. (3.12). If we define a, =n(n „nz)
and a2 ——n( —n i,n2) we obtain

p(n i nq) p( ni, n2) =(1—a i )/(1+a i ) —(1—a2)/( I+a2) =2(az —a i )/{ )+a i +a2+a ia2)=2/a i

where we assumed p/5» 1. Using (4.6) in (3.12), and using {3 13), ENL«) is given by

Re[E„„(r)]= I
g, (r)

I
sin(~, r—yi),

where R i(&)= I
~ i(r)

I
exp[i&i(r)] is given by

(4.7)

ei,exp( P5ei, ru )—
R (r)=(2ip5'/m )' 'e "' ' J « - — — — «I+u +iv I —u }

(co, coo) i(P5a),—u+I —/2)

co, exp( P5co, ru )—
du — . — — (&u + I —&u —1)

(cog —coo) —t (P5aig u +I /2) (4.8)
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FIG. 4. Time decay of the nonlocal part of the re-

flectivity
~

R i l
for several values of the exciton damp-

ing rate I for a CdS crystal. The parameters are eo——8,
fico, =2.55 eV, M =0.9m„and P'=1.25)&10 ' (LT
splitting = 0.2 meV). The spatial dispersion parameter

5=2.35)&10 . When 5=0 (infinite exciton mass).

~
Ri

~

=O. Note that significant reflectivity persists even

after several psec.

0. 1

0 I I I I I I I I -I I I I I I I I

0.996 0.998 I.O I.002 I.004 0.996 0.998 1.0 I.002 1.004
t'ai i tcit ni /tdt

FIG. 6. Resonance enhancement of the nonlocal part
of the transient reflectivity

l
R i l

and its phase (() i at
fixed time 0.1 psec; full line, I =5 X 10 'co„' dashed line,
I =5)&10 co, . The parameters appropriate to CdS are
the same as those of Fig. 4.

We evaluated R i(i ) numerically for parameters
appropriate to CdS and GaAs crystals. The results
are displayed in Figs. 4 and 5 where we show the
time decay of

~

R i(r) ~, for several values of I, for
the case of exact resonance coo ——co, . Several
features are noteworthy in the decay of transient
reflectivity. At time ~=0, when the trailing edge
of the reflected pulse has just passed and steady-
state refiectivity has dropped to zero,

~

R i(0)
~

is
-0.1 indicating than 10/o of the incident intensity
is carried out by the transient reflected field. As ~
increases

~

Ri
~

begins to decrease exponentially
but around v -1 psec a crossover from an exponen-
tial to a slow power-law decay takes place. The re-
sulting tail in Figs. 4 and 5 shows that, if I is suf-
ficiently small, the on-resonance transient reflec-
tivity is about 1% even if after several psec the re-
flected pulse is cut off. This feature should be ob-
served experimentally.

Resonance enhancement of transient reflectivity
is another remarkable feature and is illustrated in

g 0.20
GOAs

O. I 5
0.4-

Q. IO 0.3-

0.05
0.2-

O. l 0-
I I I I

0 I 2 5 4 5 6 7
Time (ps)

FIG. 5. Same as in Fig. 4 except that the parameters
appropriate to a GaAs crystal were used: eo ——12.55,
fico, =1.515 eV, and P =1.3)& 10 ' (LT splitting = 0.08
meV). The spatial dispersion parameter 5=2.22)& 10
When 5=0,

l
Ri

l
=0.

0.996 0.998 I.O l.002 I.004 0.996 0.998 I.O 1.002 l.004
4l /tLJt o/

FIG. 7. Resonance enhancement of
~

R i
~

and its
phase Pi for two values of I' as in Fig. 6. The parame
ters appropriate to GaAs are the same as those of Fig.
5.



I v'I+u +i~& u-
x

~

~

o u+(I'/2+1&oI)r,

&& exp( uris; )—du,
where b,co =(co, —ioo) and we have defined a
characteristic: time

(4.9)

r, =(P5co, ) (4.10)

It is useful to consider the limits r &&r, and

w» v, separately. In the former case we expand

exp( ur/r, )=(1——urlr, )

Rlld t11c llltcgratloll 111 Eq. (4.9) Is straightforward.

Figs. 6 and 7 for CdS and GaAs semiconductors.
At a fixed time r=0. 1 psec,

~

R I I and the phase

$1 is shown as a function of the laser frequency coo

in the vicinity of the exciton-resonance frequency
Enhancement of

i
R I i by a factor of 5 —10

is observed in a narrow frequency range. It is in-

teresting to compare Fig. 6 or 7 with Fig. 3 and
note a reversal in the form of the amplitude and
the phase spectra.

Most of the features of the decay of
~

R I(r}
~

can be understood qualitatively by evaluating the
integrals in Eq. (4.8) in a closed form for several

11111ltlIlg CRscs. Tllc IBR111 colltrlllutloI1 to R I (T) R-

rises from the first integral in Eq. (4.8) which can
be rewritten as follows

' 1/2
l 2l 5

If we ignore the natural decay rate I, we obtain
—~/w

R I(r)=CIe (4.1 1)

where Ci is a constant (r independent) whose exact
form is not of interest here.

In the opposite limit ~&& x, the major contribu-
tion to the integral in Eq. (4.9) comes from the re-
gion near u =O. To the lowest order we replace
(1+u)' by 1 in the numerator and obtain

j. /2

R i (r)=——— e' 'Ei (I'r!2+ihoor),
2 '6

(4.12)

where EI is the exponential integral. At exact
resonance, Am=0, and I ~&& 1,

' 1/2
e

—I"v/2

Ri(r)=-
n.l P'

(4.13)

Apart from the natural exponential decay
exp( —I r/2), R i(r) begins to decrease exponential-
ly and crosses over to a slow 7 decay around
r-r, . This feature is clearly seen in Figs. 4 and 5.
Using Eq. (4.10) we estimate r, - I psec for CdS
and GaAs crystals.

When the laser frequency is slightly off-
resonance such that Am&, » 1, it is possible to ob-
tain a closed form expression for R I(r) valid for
all times. This is acheived by neglecting u in the
denominator of Eq. (4.9) and we obtain

1/2
1 216

R I(r) = ——
p (bco i I /2)r, —

'3 T

(4.14)

where y(g x)—I e II~ Idi is the IncomPlctc gamlrla fullctloll. It lllay easily bc vcrlf lcd thR't for r&) &gy

RI(r)-r
The nonlocal part of transient reflectivity, R I(&), vanishes in thc limit of infinite mass~ 5=0.

consider the local part EL(r) modified by spatial dlsp«sion.

The local part of the reflected field, EL(r) is given by Eq. (3.11). The IntcgrRIld

frequency o2=ol, +pliro, —I I'/2 and can be simplified following the procedure of Sec. D'. The tw««rac-
tive indices are found to be given by

.
(p/5 )I/2eio/2 n (p/5p)i/2e &o/2— (5.1)

Ii = i(p5/p)sin8—, p=(4IIao) ~ p =2Ir&'o/&o=(oil oil }/ioi . (5.2}
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Equations (5.1) and (5.2) are used to evaluate the integrand in Eq. (3.11) and we obtain

Re[EL(r)]= 1R2(r) 1sin(co, r—P2),

where R2(r)
I
R2(&)

I
exp[&y2(&)1 is given by

(5.3)

c0, —coo+@,u i I /2—
(S.4)

Equation (5.4) shows how the local part R2(r) of
transient reflectivity is affected by spatial disper-
sion. We first consider the case of exact resonance,
coo ——r0, . Figures 8 and 9 show the time decay of
1R2(r)

1
and 1/2(r)

1
for parameters appropriate

to CdS and GaAs crystals, repectively. By a
dashed linc wc have also sho%n thc corresponding

GaAs (a)

curves obtained for a local medium (5=0). A
comparison of the full and the dashed curves
shows that the effect of spatial dispersion is to
reduce 1R21 in magnitude and damp out its oscil-
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K
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FIG. 8. Time decay of the local part of the transient
reflectivity (a) the amplitude 1R21 and (b) the phase Pq
for several values of the damping rate I" for a CdS cry-
stal. The parameters used are the same as those of Fig.
4. For comparison dashed curves for the case 5=0 are
also shown.

I.O P.O
I

3.0
Time (ps}

I

4.0
I

5.0

FIG. 9. The same as in Fig. 8 except the parameters
appropriate to a GaAs crystal, the same as those of Fig.
5, were used. When 5=0, 1R21 is too small to be
shown on the present scale.
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CdS

(b)

Io-'

0.996 0.998 I.O I.002 I .004 0.996 0.998
QJ /(d

I.O

(40/
l.002 I.004

FIG. 10. Resonance enhancement of the local part of the transient reflectivity. (a) The amplitude
~
R2

~

and (b) the
phase P2 for several values of the damping rate I for a CdS crystal. The parameters are the same as those of Fig. 4.
Dashed line curves correspond to the case 5=0 when spatial dispersion is neglected. Note the double-peak structure in

~
R2

~

for I'= 10 co,. The two peaks correspond to the transverse and longitudinal exciton frequencies and are

separated by the LT-splitting 2 meV (=8X10 co,) %'hen damping rate I is large, double-peak structure cannot be
resolved.

latory variation with time. %hen we compare
Figs. 8 and 9 with Figs. 4 and 5, respectively, we

note that ~Rz
~

is smaller than ~Rt
~

by at least
an order of magnitude. This observation is very

significant: It implies that in crystals such as CdS
or GaAs transient reflectivity almost completely

. arises from spatial dispersion and is much larger
than that of a local medium.

Resonance enchancement of R2 is shown in
Figs. 10(a) and 11(a) for CdS and GaAs crystals,
respectively. At a fixed time r=0. 1 psec

~

R2
~

and the phase Pz are, plotted as a function of the
laser frequency coo in the vicinity of co, for two
values of I . For comparison, the dashed curve
shows the corresponding behavior when 5=0. We
note that the phase Pq is affected by spatial disper-
sion in a qualitative manner. This is understood
when we observe that the 5-dependent term in Eq.
(5.4) is purely imaginary.

An interesting feature of Fig. 10(a) is the

double-peak spectrum of
~
R2

~

for I =10 ro, .
The two peaks occur at coI and co„ the longitudinal

and transverse exciton-resonance frequencies.
Their origin can be traced to the integrand in Eq.
(5.4): when cop

——ro„ the region near u =0 contri-

butes in a resonant manner; when

cop=col =( 1+p)cog, the region near u = 1 contri-

butes in a resonant manner. Spatial dispersion af-

fects the height of two peaks in a different manner

as is evident from Fig. 10(a). For a larger value of
I =5)(10 co„both peaks broaden and cannot be
resolved. In fact, this is the reason for not obtain-

ing a double-peak spectrum for GaAs in Fig. 11(a).
The LT splitting coI —u, =0.08 meV for GaAs, is

smaller than that of CdS (=0.2 meV) and even for
I =10 ~„ the two peaks are broader in com-

parison to their separation -5&(10 co, .
It is possible to obtain a closed-form expression

for R2(r) in some limiting cases. With the defini-

tion of Aa&=(cp, —cop), Eq. (5.4) can be rewritten as

~pp2 r 1 exp( —tur/1 L)
R~(r) = e ' du -[(u +ir„/r, ) +(u ir„/r, ) —],

rr o u+ bco iI /2 rt—
where

(5.5)

—1 =pro~ =(Nt cog ), (5.6)

and r, =(p5ro, )
' was defined in Sec. IV.

Equation (5.5) indicates that the relative magnitudes of r„and r, govern the effect of spatial dispersion
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FIG. 11. The samsame as in Fig. 10 except that GaAs parameters, the same as in Fig. 9 are used. Note that the
double-peak structure cannot be resolved for these values of I due to very small LT splitting =0.08 meV.

on Rz. If rz «r„Rz remains essentially unaffected. For the case of CdS crystal shown in Fig. 10,
iq-~„while for the case of GaAs shown in Fig. 11, rL-2(h;. It is important to note that the I.T splitting

sets a time scale for the decay of the local part of transient reflectivity.
We evaluate the integral in Eq. (5.5) for two limiting cases, ~„&&r, and rL &&r, . In the former case, at

exact resonance Aco =0 with I « ~z
' ——co~ —co„we obtain

r

R ( )
2p —r~n i r
7r 7L

—1/2
i~

V 2 pJ
(5.7)

where y(a, x} is the incomplete gamma function. In the other limit rq » r„we obtain

' 1/2
W2p L fpe~R p (1 )=— e ' "'

[ E ~ [( 1 +a )sir, ] E& ( i

axles,

) I——
C

(5.8}
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where a=(Leo i—I /2)ri and Ei(Z) is the
exponential-integral function. It may be verified
from Eqs. (5.7) and (5.8) that for large r,

~
Rz(r)

~

crosses over to an inverse power-law decay as is
also evident in Figs. 8 and 9.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied the problem of re-

flection of a finite-duration optical pulse, incident

normally on the boundary of a nonlocal medium
such as a CdS or GaAs crystal. The light frequen-

cy is assumed to lie in the vicinity of an exciton-
polariton resonance frequency. Using a square
pulse of duration T with infinitely sharp edges, we
have shown that the reAected pulse, also of dura-
tion T, has transients associated with its leading
and trailing edges. We have obtained explicit ex-
pressions for the transient part of reflectivity,
under certain simplifying assumptions, and have
studied its dependence on various exciton parame-
ters such as the mass M and the decay rate I".

Transient reflectivity can be decomposed into a
"local" part and a "nonlocal" part, the latter being
absent when spatial dispersion is ignored. An im-
portant prediction of our work is that for some
semiconductors such as CdS or GaAs, the nonlocal

part contributes to transients much more signifi-
cantly (an order of magmtude higher) than the lo-
cal part. For instance, at a time 0.1 psec after the
reflected pulse is cut off, the transient intensities
are about 10% of the incident intensity and remain
1% even after several psec. Such reflectivities
should be easily measurable.

A remarkable feature of our theory is that it
predicts a crossover from exponential to slow in-

verse power-law decay rate of transient reAectivity.
For CdS and GaAs crystals, the crossover time is
-1 psec after the trailing edge of the reAected
pulse. Although the physical origin of the cross-
over is not so clear to us, its existence can be
traced back to the structure of Eqs. (3.11) and
(3.12) as a one-sided Fourier transform. Applica-
tion of the Paley-Weiner theorem ' to the integral
indicates the need for a nonexponential decay of
transient reAectivity.

Our results are obtained under certain simplify-

ing assumptions. The finite length crystal is re-

placed by a semi-1nf1nltc nonlocal medium and a
linearly polarized plane wave is assumed to be as-
sociated with the light pulse, thereby ignoring its
transverse beam prOfil. Furthermore, advantage is

taken of the smallness of three dimensionless
parameters, namely, 5=(duo, /Mc )'~,
p =(co& ~, )/~„and I'/co, . For most semicon-
ductors of interest each one of them is (10
The graphical results presented here are expected
to be accurate within 10% of those obtained when

a more accurate analysis is carried out. In the ab-

sence of significant experimental data, efforts re-

quired to improve upon them do not appear to be
worthwhile. As a matter of fact, our simplified

approach has allowed us to obtain most of the
qualitative features in an analytical form.

Measurements of the predicted features of tran-
sient reflectivity can provide independently deter-

mined values of important exciton-polariton
parameters such as the mass, the lifetime, the os-

cillator strength, and the resonance frequency. Re-
cently group velocities of the exciton polaritons in
GaAs and CuC1 have been measured with use of
transient spectroscopy methods. This gives sup-
port to our belief that the predicted transient ef-
fects could be measured.
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APPENDIX: CONTOUR-INTEGRATION METHOD
TO EVALUATE THE REFLECTED

FIELD [EQ. (2.8)]

In this appendix we outhne the algebraic details
to evaluate the integral in Eq. (2.8) in the complex
co plane for t )2L/c. Care should be exercised in

dealing with the integrand. It is helpful to break
thc integral in two parts arising from each term in

the curly brackets: [
—exp[i(co —a)o}T] j. The

first part contributes for t ~ 2L/c while the second

part contributes only for t & 2L/c+ T. Equation
(2.8) can therefore be written in the form,

ER (O, t) =Re[E(t 2L/c)e(t 2L—/c)—
—e ' Elt 2L/c —T)—

y 6(r 2L/c —T)],— (Al)
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where

E(r)=lim f f(n„n2)dco,
~~0 —ao

(A2}

where

P =4nap. , 5 =(ficoi/Mc ) . (A6)

1 p(co ) —icos
f(nl, n2) = . e

2~ coo—Q) —ltd

(A3)

+[g+(g2 e b)1/2]1/2

a =(2co f'2 ) '[epco 5 + (co co, +—icoI )],

b =(co & ) '[(co co, +—icoI') —P co, /'ep],

(A4)

(A5}

For notational convenience, we have explicitly
shown the dependence of the integrand f (n l, n2)
on the refractive indices n 1 and n2 [see Eq. (2.4)]
and the co dependence is implicitly understood.

The choice of an appropriate contour depends on
the singularities of f(n l,n2). For this purpose we
require an explicit form of n 1 and n2. Using Eq.
(2.1) in (2.6), we obtain

An examination of Eq. (A4) shows that the condi-
tions b =0 and a =rob correspond to the branch-
point singularities in f (n l, n2). Using Eq. (A5),
these two conditions yield 6 branch points (in the
complex co plane) coj, j= 1 —6, whose location is

given by Eqs. (3.1)—(3.3). The branch points col

and co2 arise from the condition b =0. Around
these points the integrand f (n l, n2) is made
single-valued by going to the Reimann sheet on
which n~ ~—n] and n2 remains unchanged. The
branch points co3, co4, co5, and co6 arise from the
condition a =sob; on the corresponding Riemann
sheet n~ and n2 are interchanged. The appropriate
contour to evaluate Eq. (A2} is shown in Fig. 2
and contains only a simple pole at coo ——coo —ig.

A straightforward application of Cauchy's
theorem shows that

00 N) RCN3 —l oo

II)f(ni n2)dw= f f(nl n2}dw+ f„[f(nl n2}—f( —nl n2}]dw+ f [f(—n2 nl) —f(nl n2}]dw

N~ RCN4 —l ao

+ —n~, n2 — n~, n2 + n~, n2 — —n2, n~ w=2miR ,
N4 N4

(A7)

where R represents the residue at the po]e co=(cop i') U.
—sing. Eqs. (A2) and (A7), we formally decompose

E(r) into the steady-state (pole contribution) and the transient (branch-point contribution) parts,

E(r) =E,(r)+ET(r),

where

(Ag)

and

Eg(r)=ip(cop)exp( icopr), —

Nl N2 RCN3 —l ao RCN4 —l ao

ET(r) =f g(co)dco —f g(co)dco —f g'(co)dco+ f g'(co)dco,

g(co)=[f( —nl n2} f(nl n2)] g'(co)= [f(—n2 nl) f(nl n2}] .

(A9)

(A10)

(A 1 1)

We have found it useful to further decompose the transient part ET(r) into a "local" part and a "nonlo-
cal part. This facilitates comparison with a local medium for which the nonlocal part, by definition, van-
ishes identically. Such a decomposition can be carried out by noting that for a local medium the branch-cut
line (joining col and co3) in Fig. 2 is horizontal. This can be readily verified using Eqs. (3.1) and (3.2) with
5=0. We then formally obtain

ET(r) =EL(r)+EN1.(r),
where

N) N2

El (r) =f ., g(co)dco f ., g(co)dco—,

(A12)

(A13)

RCN3+ ImN ) RCN4+i ImN2 RCN3 —l ao RCN4 —l ao

ENL(r) =f g(co)dco —f g(co)dco —f '
g'(co)dco+ f '

g'(co)dco . (A14)
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We now substitute E =E,+EL+ENL in Eq. (Al) and obtain

Ea (O, t) =Re[E,(t)+Et (t)+ENt (t)],
where

E,(t) =ip(coo)[8(t 2L —Ic) e(f—2L —/c —T)]e

E,(t)= [E,(t 2L I—c)8(t 2L/—c) e—'~E, (t 2L/—c T)8—(t 2L/c T)],

(A16)

(A17)

with j =L or NL.
The evaluation of Eqs. (A13) and (A14) can be somewhat simplified by noting that in most cases of prac-

tical interest the three parameters 5, P /2ep, and I /co, are much smaller than unity ( & 10 ). We are there-
fore justified in neglecting their products and higher powers. The branch points coj given by Eqs. (3.1) and
(3.2) then simplify and become

co) 2-—iI /2+( I+p)cot t co, ~= i(I /—2+ f35co, )+co, , (A18)

where we have defined p =P /2Ep=2&czp/Ep and physically p =(cot —cot )/co„where cot —co, is the so-called
LT splitting. When Eq. (A18) is used in Eqs. (A13) and (A14), an appropriate change of variables permits
to rewrite them in the following simplified form:

1 1

Et ——pco, g(co, +puco, —t I /2)du+ g( co, p—uco, ——t I /2)du
0 0

1 1

ENL(r) =iP5co, g(co, iP5co,—u iI /2—)du — g( co, —iP5co, u—i I /2)—du
0 0

(A19)

+ g'(co, iP5co, u —i I /2—)du — g'( —co, i P5co, u ——iI /2)du
1 1

(A20)
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